
Fall Detection – From Phone
to Cloud

-Archiving	Phone	Data	on	Cloud	Server	

Student:	Manvick	Paliwal

Advisor:	Dr.	Anne	Hee	Hiong	Ngu

What Fall Detection is all about?

Introduction

•  This	Independent	Study	is	about	a	Fall	Detection	Sensor	Application	
which	will	help	detect	if	someone	has	fallen	down.	This	application	is	
specially	designed	for	elderly	people,	but	anyone	can	use	it.	The	way	
this	works	is	we	collect	streaming	sensor	data	from	a	smart	watch.	
The	sensor	data	collected	is	them	processed	to	extract	key	features	
related	to	falling	on	a	smart	phone.	This	processed	data	is	then	fed	
into	a	Naive	Bayes	machine	learning	algorithm	which	analyzes	and	
output	fall	or	not	fall	as	the	outcome.		

Objective

• Archiving	of	sensor	data	to	the	cloud	robustly.	
•  Improving	the	accuracy	of	the	fall	detection	model	by	retraining	using	
archived	false	positive	data.	

Raw Data

• Raw	data	is	streamed	from	the	smart	watch	at	a	sampling	frequency	
of	32milliseconds.	
• We	store	this	data	inside	a	folder	named	“RawData”.		
• We	write	raw	data	to	a	file	name	cur_timestamp	under	“RawData”	
folder	
• After	every	5	minutes	we	rename	this	file	to	upload_timestamp	and	
create	a	new	cur_timestamp	file	and	start	writing	to	that	file.	
• Upload_timestamp	are	the	files	which	are	ready	to	be	uploaded.	

False Positive data

Two	ways	in	which	false	positive	data	can	be	stored.	
•  Storing	all	the	processed	data	(Not	efficient)	
•  Storing	Time	Stamps	(More	Efficient)	

False Positive data Continued…

• We	store	false	positive	data	inside	a	separate	folder	name	
“ProcessedData”.	
•  File	name:	TimeStamps.csv		
•  Time	Stamps	at	the	time	fall	happened	is	logged	

Uploading

• Reading	from	all	the	upload_timestamp	files	and	sending	post	
request	to	server.	
•  If	all	the	data	of	a	specific	file	is	uploaded	successfully	a	success	call	
back	is	sent	from	the	server.	
• Only	after	success	call	back	is	received	from	the	server	we	delete	the	
specific	file	from	the	phone.	

Chunking

• Challenges:	If	all	sensor	data	is	written	to	same	file	and	upload	
periodically,	The	file	gets	bigger	and	bigger	and	it	is	not	a	good	
practice	to	upload	a	huge	amount	of	data	over	http	post	request.		
• A	better	solution	is	based	on	uploading	Chunks.	
•  The	size	of	each	chunk	is	approximately	512kb	and	each	file	chunk	is	
created	every	5	minutes	(300	seconds).	

Robustness with 2 phones

• All	the	data	is	uploaded	correctly	and	in	a	robust	way	with	Two	
mobiles	uploading	data	simultaneously.	
•  If	Program	is	closed	in-between	of	the	uploading	process	none	of	the	
data	is	lost.	
•  If	the	Internet	connection	is	lost	in	the	process	of	uploading	of	data	
the	data	which	is	archived	is	deleted	and	the	data	which	is	not	
archived	is	saved	securely	on	client	device.	
•  Each	file	is	approximately	of	512kb.	

Processed data

Time Stamp

Processed data script

•  This	script	creates	false	positive	raw	data	on	server	using	time	stamps	
and	raw	data	
•  This	raw	data	is	then	pushed	to	R	script	to	create	processed	data.	
•  The	processed	data	is	then	finally	merged	with	existing	training	data	
to	retrain	the	model.	

Algorithm

	
•  Get	false	positive	Time	Stamp	(by	querying	FalsePositive	table)	
•  Get	Sample	ID	of	each	Time	Stamp	from	SampleMetaData	table	
•  Retrieve	50	sampleId	less	than	the	current	sample	Id	from	
SampleMetatData	
•  For	each	of	the	50	sample	id,	match	the	correspoding	sample	ID	to	get	all	
the	accelermeter	data	(Ax,	Ay,	Az)	
•  Store	the	data	in	false_positive_timestamp.csv	
•  Go	back	to	Step	2	as	and	repeat	untill	all	the	false	positive	TimeStamp	is	
queried.			

Cloud Server

• We	have	a	php	server	with	MySQL	as	the	back	end.	There	are	two	
php	scripts	which	are	ready	to	accept	the	data	in	JSON	format	and	
insert	it	into	MySQL	database.	
•  insertRawData.php	
•  insertTimeStamps.php	

Open Problems

•  SQLite	
•  Time	Stamp	is	not	accurate.		
•  Use	of	client	side	database	will	help	collect	more	accurate	false	positive	data.	

•  System	gets	slow		
•  Clear	processed	data	file	.	
•  Circular	queue	data	structure	can	be	used.	

•  System	should	be	Retrained	with	all	the	true	positive	and	false	
positive	data	
• We	haven’t	retrained	the	model	with	sufficient	data	
•  If	user	don’t	want	to	upload	the	data	the	system	will	crash	eventually	

Conclusion

• Chunking		
•  Developed	protocol	to	upload	and	archive	data	sensor	data	from	phone	to	
cloud	robustly.	
•  Data	is	divided	into	chunks	and	then	uploaded.	

•  Time	Stamps		
•  Presented	a	method	to	reduce	the	amount	of	data	to	be	uploaded.	
•  Instead	of	uploading	all	the	processed	data	only	time	stamps	can	be	
uploaded.	

Thank you
-Manvick	

