Fall Detection — From Phone
to Cloud

-Archiving Phone Data on Cloud Server

Student: Manvick Paliwal
Advisor: Dr. Anne Hee Hiong Ngu

What Fall Detection is all about?

Introduction

* This Independent Study is about a Fall Detection Sensor Application
which will help detect if someone has fallen down. This application is
specially designed for elderly people, but anyone can use it. The way
this works is we collect streaming sensor data from a smart watch.
The sensor data collected is them processed to extract key features
related to falling on a smart phone. This processed data is then fed
into a Naive Bayes machine learning algorithm which analyzes and
output fall or not fall as the outcome.

Objective

* Archiving of sensor data to the cloud robustly.

* Improving the accuracy of the fall detection model by retraining using
archived false positive data.

Raw Data

* Raw data is streamed from the smart watch at a sampling frequency
of 32milliseconds.

e We store this data inside a folder named “RawData”.

* We write raw data to a file name cur_timestamp under “RawData”
folder

* After every 5 minutes we rename this file to upload_timestamp and
create a new cur_timestamp file and start writing to that file.

e Upload _timestamp are the files which are ready to be uploaded.

False Positive data

Two ways in which false positive data can be stored.
* Storing all the processed data (Not efficient)
 Storing Time Stamps (More Efficient)

fFHlONM PQ O WM F 2:18

Smart Watch =

SENSOR LIST 0.00

ms_accelerometer
-0.9921875
0.07885743
-0.06201172
ms_gyroscope
acceleration_x -0.9904786
acceleration_y 0.07885743

acceleration_z -0.0637207

KA A~ v Nn 1E21420N2
ACT: Wed, 04.25.18, 14:18:13:390 CDT
Bound to SensorService.
1c0d4e24.txt loaded. Service updated.
Collection is starting...
ollection is starting UPLOAD

Collection has started.
Drinking button (VS) linked with service.

STOP COLLECTION DRINKING

< O 0O

Q0 VX

Smart Watch

Ok Cancel

¥ 5:35

False Positive data Continued...

* We store false positive data inside a separate folder name
“ProcessedData”.

* File name: TimeStamps.csv
* Time Stamps at the time fall happened is logged

Uploading

* Reading from all the upload_timestamp files and sending post
request to server.

* If all the data of a specific file is uploaded successfully a success call
back is sent from the server.

* Only after success call back is received from the server we delete the
specific file from the phone.

Chunking

* Challenges: If all sensor data is written to same file and upload
periodically, The file gets bigger and bigger and it is not a good
practice to upload a huge amount of data over http post request.

* A better solution is based on uploading Chunks.

* The size of each chunk is approximately 512kb and each file chunk is
created every 5 minutes (300 seconds).

Robustness with 2 phones

* All the data is uploaded correctly and in a robust way with Two
mobiles uploading data simultaneously.

* If Program is closed in-between of the uploading process none of the
data is lost.

* If the Internet connection is lost in the process of uploading of data
the data which is archived is deleted and the data which is not
archived is saved securely on client device.

* Each file is approximately of 512kb.

Processed data

resultant

cvfast

outcome

0.999418710544544

0.999418710544544

0.999418710544544 i

0

notfall

0.999418710544544

0.999418710544544

0.999418710544544

0

fall

1.0000650265474258

0.0071178813939963840.007117881393996384

1.0004756850946508

0.9988187144084879

\J
notfall

0.9999664420887584

0.0071178813939963840.007117881393996384

1.0004756850946508

0.9988187144084879

falls

1.000384502316167

0.0071178813939963840.007117881393996384

1.0004756850946508

0.9988187144084879

notfall

1.000384502316167

0.0071178813939963840.007117881393996384

1.0004756850946508

0.9988187144084879

falls

0.9989732294900412

0.0071178813939963840.007117881393996384

1.0004756850946508

0.9988187144084879

notfall

0.9989732294900412

0.0071178813939963840.007117881393996384

1.0004756850946508

0.9988187144084879

falls

1.000048574782312

0.0071178813939963840.007117881393996384

1.0004756850946508

0.9988187144084879

notfall

1.0004756850946508

0.0071178813939963840.007117881393996384

1.0004756850946508

0.9988187144084879

falls

1.0002684621219273

0.0071178813939963840.007117881393996384

1.0004756850946508

0.9988187144084879

notfall

1.0002684621219273

0.0084078103040803880.008407810304080388

1.0010227067768644

0.9988187144084879

falls

Time Stamp
TimeStamp
r |
1523932336

1523933528
1523933877
1524436541

Processed data script

* This script creates false positive raw data on server using time stamps
and raw data

* This raw data is then pushed to R script to create processed data.

* The processed data is then finally merged with existing training data
to retrain the model.

Algorithm

* Get false positive Time Stamp (by querying FalsePositive table)
 Get Sample ID of each Time Stamp from SampleMetaData table

* Retrieve 50 sampleld less than the current sample Id from
SampleMetatData

* For each of the 50 sample id, match the correspoding sample ID to get all
the accelermeter data (Ax, Ay, Az)

e Store the data in false_positive_timestamp.csv

* Go back to Step 2 as and repeat untill all the false positive TimeStamp is
queried.

Cloud Server

* We have a php server with MySQL as the back end. There are two
php scripts which are ready to accept the data in JSON format and
insert it into MySQL database.

* insertRawData.php
* insertTimeStamps.php

Open Problems

* SQLite
e Time Stamp is not accurate.
* Use of client side database will help collect more accurate false positive data.

e System gets slow
e Clear processed data file .
* Circular queue data structure can be used.

* System should be Retrained with all the true positive and false
positive data

* We haven’t retrained the model with sufficient data
* If user don’t want to upload the data the system will crash eventually

-, .
& s ol heppemed
% o i XP— Accuw ety O btesen e
a - ‘?Tec\)\u‘wov\ pep v -
A ! i
\‘ \ foe Stamp 18 secoseleck
| : e € -
\ _ \
U le» F?Q&JQ—(b ut o M
\Q%%QCL \\\‘\

&
Tivn® SECO"\.\) N

Flle Weye,

AV
\
e
A
ot e

e

100

b
F
o\
\ e ?
ol

—}
\)

Conclusion

* Chunking

* Developed protocol to upload and archive data sensor data from phone to
cloud robustly.

e Data is divided into chunks and then uploaded.

* Time Stamps

* Presented a method to reduce the amount of data to be uploaded.

* Instead of uploading all the processed data only time stamps can be
uploaded.

Thankyou

-Manvic

