
DYNAMIC WEB SERVICES COMPOSITION

A DISSERTATION SUBMITTED TO THE SCHOOL OF COMPUTER

SCIENCE AND ENGINEERING OF THE UNIVERSITY OF NEW SOUTH

WALES IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF

DOCTOR OF PHILOSOPHY

Liangzhao Zeng

August 2003

ii

‘I hereby declare that this submission is my own work and to the best of my knowledge
it contains no materials previously published or written by another person, nor mate-
rial which to a substantial extent has been accepted for the award of any other degree
or diploma at UNSW or any other educational institution, except where due acknowl-
edgement is made in the thesis. Any contribution made to the research by others, with
whom I have worked at UNSW or elsewhere, is explicitly acknowledged in the thesis.

I also declare that the intellectual content of this thesis is the product of my own work,
except to the extent that assistance from others in the projects design and conception
or in style, presentation and linguistic expression is acknowledged.’

Liangzhao Zeng
August 8, 2003

ii

Acknowledgements

Many people have contributed, directly or indirectly, to the successful completion of

this thesis. I would like to thank the following:

I would like to thank my supervisors. I have a great debt of gratitude with my supervi-

sor, Dr. Boualem Benatallah. I own him most of what I have learned about how to do

research. I also thank him for his encouragement, for his patience, and for teaching me

the meaning and the importance of doing research in a “professional” way. My thanks

also go to my co-supervisor, Dr. Anne Ngu. She gave me the blueprint of my research,

as well as helped me find and focus on an exciting research topic.

Many thanks go to my colleagues when I worked in IBM T.J. Watson research center.

In particular, I would like to thank Dr. Henry Chang. He has been my manager, mentor

and friend. His vision, guidance, and experience helped me learn a lot, not only on how

to conduct research, but also on how to be a real researcher. Dr. Jen-yao Chung gave

me valuable directions on how to investigate and tackle real problems. Dr. Jayant

Kalagnanam taught me linear programming. My thanks also go to Dr. Hui Lei and Dr.

Jun-Jang Jeng for many fruitful discussion and valuable comments. They both treat

me like an elder brother.

Furthermore, I would like to thank Dr. Marlon Dumas and Dr. Fethi Rabhi. It was

wonderful time when worked with them on papers. From them, I learned the recipe for

good papers.

Special thanks to my parents, Qingren Zeng and Jingxia Zhu, my sister Fangfei Zeng

and my brothers Liangyi Zeng and Liangyuan Zeng who always encouraged and sup-

ported me throughout my studies.

Contents

1 Introduction 1

1.1 Problem Statement . 1

1.1.1 Dynamic Process Schema Creation 2

1.1.2 Dynamic Web Service Selection 3

1.1.3 Service Execution Monitoring and Change Management . . . 3

1.2 Solution Overview . 4

1.2.1 Rule-directed Process Schema Generation 4

1.2.2 Quality-driven Service Selection 5

1.2.3 Adaptive Service Composition 6

1.3 Thesis Structure . 6

2 Sate of the Art 8

2.1 Background . 8

2.1.1 Business Process . 9

2.1.2 Workflow . 11

2.2 Overview of Service Composition 12

2.2.1 Example . 12

2.2.2 Architecture of a Service Composition Framework 13

2.2.3 Issues . 15

2.3 Service Composition Frameworks 18

2.3.1 Service Composition By Programming 18

2.3.2 Component-based Middleware 19

CONTENTS iii

2.3.3 W3C Web Service Framework 22

2.3.4 DAML-S Framework . 26

2.3.5 BPMI Framework . 27

2.3.6 ebXML Framework . 28

2.4 Research Prototype . 31

2.4.1 CMI . 31

2.4.2 eFlow . 33

2.4.3 IE (Internet Enterprise) . 34

2.4.4 METEOR . 35

2.4.5 SELF-SERV . 36

2.5 Comparison of Service Composition Frameworks and Prototypes . . . 38

2.6 Summary . 38

3 Generating Process Schemas for Composite Services 41

3.1 Introduction . 42

3.2 A Motivating Example . 44

3.3 Design Overview . 48

3.3.1 Preliminaries . 49

3.3.2 Incremental Service Composition 58

3.4 Rule Inference for Process Schema Generation 63

3.4.1 Creating and Updating Business Rules 64

3.4.2 Backward-chain Inference 64

3.4.3 Forward-chain Inference. 65

3.4.4 Data Flow Inference . 71

3.5 Related Work . 73

3.6 Summary . 75

iv CONTENTS

4 Quality Driven Service Selection 76

4.1 Introduction . 77

4.2 Web Service Composition Model . 79

4.2.1 Web Services . 79

4.2.2 Composite Services and Communities 80

4.2.3 Execution paths and plans 82

4.3 Web Service Quality Model . 84

4.3.1 Quality Criteria for Elementary Services 85

4.3.2 Quality Criteria for Composite Services 87

4.4 Service Selection by Local Optimization 90

4.5 Service Selection by Global Planning 92

4.6 Evaluation of Two Service Selection Approaches 105

4.6.1 Evaluation Metrics . 105

4.6.2 Comparison of the Two Composition Approaches 106

4.7 Related Work . 108

4.8 Summary . 110

5 Adaptive Service Composition 111

5.1 Introduction . 112

5.2 Handling Component Exceptions for Composite Services 113

5.2.1 An Overview of Control Tuples 114

5.2.2 Multi-level Exception Handling Policies 116

5.2.3 Control Tuples Generation 117

5.3 Handling Unexpected Exceptions . 118

5.4 Replanning the Execution of Composite Services 122

5.5 Related Work . 123

5.6 Summary . 126

CONTENTS v

6 Prototype 127

6.1 System Architecture . 127

6.2 Implementing the Service Broker . 129

6.3 Implementation of Service Composition Manger 133

6.3.1 An Application . 135

6.4 Experimentation . 137

6.4.1 Experiments in Static Environments 139

6.4.2 Experiments in Dynamic Environments 143

6.5 Summary . 149

7 Concluding Remarks 150

7.1 Contributions . 150

7.2 Directions for Future Work . 152

List of Tables

2.1 Service Composition Frameworks 39

2.2 Service Composition Prototypes . 40

3.1 Business Objective . 51

3.2 A Forward-chain Rule . 58

3.3 Operation Result on Uncertain . 68

4.1 Aggregation Functions for Execution Plan’s Quality 88

5.1 Exception Handling Actions . 116

5.2 A New Forward-chain Rule . 119

6.1 Simplified Service Ontology for Trip Planning 130

6.2 tModel for a Service Ontology . 131

6.3 Simplified WSDL Document for a Web Service 132

6.4 tModel for a Web Service . 133

List of Figures

2.1 Business Process Lifecycle . 9

2.2 Service Composition: A Running Example 13

2.3 Architecture of Service Composition Framework 14

2.4 CORBA architecture . 20

2.5 Web Service Architecture . 23

2.6 A High Level Overview of the Interaction of Two Companies Con-
ducting a Business Process Using ebXML [33] 30

3.1 A Motivating Example . 46

3.2 UML Class Diagram for Service Ontology 50

3.3 Defining Process Schema Using a Statechart 57

3.4 UML Class Diagram for Organizational Structure 57

3.5 Composition Hierarchy . 59

3.6 Process Schema Generation, Selection and Composition Service Exe-
cution . 59

3.7 Top Level Process Schema for Replacing Engine 61

3.8 Task Level Process Schema for New Engine Development 62

3.9 Snapshots for Composition Hierarchy 62

3.10 Cyclic Graph . 65

3.11 Backward-chain Inference . 67

3.12 Condition Tree . 68

3.13 Annotated Condition Tree . 69

3.14 Conflict Between the Rules . 70

viii LIST OF FIGURES

3.15 Forward-chain Inference . 70

4.1 Statechart of a Composite Service “Travel Planner” 80

4.2 DAG Representation of the Execution Paths of the Statechart of Fig-
ure 4.1. 84

4.3 Critical Path . 88

4.4 “Unfoldable” Statechart . 98

4.5 Foldable Statechart Equivalent to That in Figure 4.4 98

4.6 Acyclic Statechart Derived from That in Figure 6. 99

5.1 Partition a Composite Service into Regions for Regenerating Process
Schema . 120

5.2 Partition a Composite Service into Regions for Replanning 122

6.1 Architecture of the DYflow Prototype 128

6.2 Service Ontology Repository and Web Service Repository 129

6.3 GUI of Service Composition Manager 135

6.4 Task Level Composite Service for New Engine Development 137

6.5 Experimental Results (computation cost) in a Static Environment,
Varying the Number of Tasks in Process Schemas and the Number
of Candidate Component Services for Each Task. 140

6.6 Experimental Results (computation cost) in a Static Environment,
Varying Number of Execution Paths in Process Schemas and the Num-
ber of Candidate Services for Each Task. 141

6.7 Experimental Results (bandwidth cost) in a Static Environment, Vary-
ing the Number of Tasks in Process Schema and the Number of Can-
didate Services for Each Task. 142

6.8 Experimental Results (bandwidth cost) in a Static Environment, Vary-
ing the Number of Execution Paths in Process Schemas and the Num-
ber of Tasks in Process Schemas. 143

6.9 Experimental Results (computation cost) in a Dynamic Environment,
Varying the Number of Tasks in Process Schema and the Number of
Candidate Services for Each Task. 144

6.10 Experimental Results (computation cost) in Dynamic Environment,
Varying the Number of Execution Paths in Process Schemas and the
Number of Candidate Services for Each Task. 146

LIST OF FIGURES ix

6.11 Experimental Results (bandwidth cost) in a Dynamic Environment,
Varying the Number of Tasks in Process Schemas and the Number
of Candidate Services for Each Task. 147

6.12 Experimental Results (bandwidth cost) in a Static Environment, Vary-
ing the Percentage Services Change SLAs and the Number of Candi-
date Services for Each Task. 148

6.13 Experimental Results (bandwidth cost) in a Static Environment, Vary-
ing the Number of Execution Paths in Process Schemas and the Num-
ber of Candidate Services for Each Task. 149

x LIST OF FIGURES

Chapter 1

Introduction

With ever developing globalized markets, today’s business organizations operate their

business in a globalized economy. In order to be more competitive in such dynamic

economic environments, business organizations need to streamline their business pro-

cesses. With the proliferation of the Internet and the wide acceptance of e-commerce,

an increasing number of Web services are being offered. At the same time, the com-

position of Web services has gained a lot of momentum as a means to support business

process automation. Our research is motivated by the need to facilitate the creation

and execution of composite services.

This chapter is organized as follows. In Section 1.1, we outline the research issues that

we tackle in this thesis. In Section 1.2, we summarize our solutions and in Section 1.3

we present the structure of this thesis.

1.1 Problem Statement

Web services represent a new generation of web application. They are self-contained,

self-describing, modular applications that can be published, located, and invoked

2 Introduction

across the Internet. Web services perform functions, which can be anything from

simple operations to complicated business processes [70]. Once Web services are de-

ployed, they can be aggregated into composite services. Indeed, process-based com-

position of Web services emerged as the technology of choice for integrating hetero-

geneous and loosely coupled applications across the Internet and organizations. When

deploying business process management technologies to support dynamic Web service

composition, there are three major issues that need to be addressed, namely: (i) Dy-

namic process schema creation, (ii) Dynamic Web service selection, and (iii) Service

execution monitoring and change management.

1.1.1 Dynamic Process Schema Creation

One of the fundamental assumptions in most production workflow management sys-

tems (WFMS) [37, 47, 60] is that process schemas are static and predefined. In order to

automate business processes, designers need to understand business processes and use

modelling tools to chart process schemas. When a particular business process needs

to be enacted, a process instance is created from a process schema. In this approach,

the designer is required to explicitly define the tasks that compose business processes

and specify relationships among them. However, it is impractical to compose services

in many application domains. For example, it is extremely difficult, if not impossible,

to predefine all composite service schemas for research and development (abbr R&D)

processes in the automobile industry since R&D business processes are very dynamic.

To meet the constraints and opportunities posed by new technologies, new markets,

and new laws, business processes must be constantly redefined and adapted. However,

this does not mean there are no business rules that govern R&D processes; it does not

mean that planning for R&D processes is impossible. Indeed, there is a need to have

an approach that enables automatic generation of process schemas customized to an

organization’s environment, business policies and business objectives.

1.1 Problem Statement 3

1.1.2 Dynamic Web Service Selection

Composite services’ quality of service (QoS, e.g., execution duration and execution

price, etc.) is a key factor to satisfy end-user requirements. When composing existing

Web services to execute business processes, the number of composed Web services

may be large and the number of Web services to choose from may be even larger. Al-

though some Web services may have similar functionalities, they may offer different

QoS properties. In this context, it is a big challenge to optimize the QoS of compos-

ite services by selecting component services from a large number of Web services.

Existing service selection solutions adopt mainly a local dynamic selection approach,

meaning that they assign an individual task of the composite service to a component

service, one at a time [8, 23, 38]. Such an approach is not appropriate to cater for

global constraints and preferences. For example, the global constraints can be the

minimization of the overall duration of the execution of the composite services, or

the satisfaction of a given budget constraint. There is a need to have a quality driven

approach to select and compose Web services.

1.1.3 Service Execution Monitoring and Change Management

Web services perform their functionalities in an autonomous way. They operate in a

highly dynamic environment as new services may become available at any time, and

existing services may be removed, become temporarily unavailable, offer better QoS

properties, withdraw advertised QoS properties, etc. Moreover, enterprises are chang-

ing constantly: entering into new markets, introducing new products and restructuring

themselves through mergers, acquisitions, alliances and divestitures. Runtime modifi-

cation of business processes is necessary to meet changes in application requirements,

technologies and business policies. This calls for adaptive composition techniques in

which composite services will dynamically adjust their operations to respond rapidly

4 Introduction

to exceptions (e.g., non-availability of a selected component service) and opportuni-

ties (e.g., availability of a new component service offering better QoS properties than

existing ones, or emergence of a new business procedure offering a better approach to

achieve a business goal).

1.2 Solution Overview

In this thesis, we present a dynamic Web service composition framework called

DYflow: DY namic intelligent flow. The contributions of this thesis comprise three

major parts: rule-directed process schema generation, quality-driven service selection

and adaptive service composition. Furthermore, a prototype has been developed to

demonstrate the feasibility of the approaches proposed in this thesis.

1.2.1 Rule-directed Process Schema Generation

We propose an approach that supports rule-directed process schema generation [98,

102, 103]. In our approach, business objectives are declaratively defined, the process

schemas are generated on demand for composite services, and composite services can

be re-configured at runtime in order to adapt to changes. The features of our approach

are:

• A set of business rule templates. We propose a set of business rule templates

for modelling business policies. Traditionally, business rules are hard code

into business processes. We argue that business rules should be independent

of individual business processes. They can be re-used to generate different

composite service process schemas [102].

• A rule inference mechanism that combines backward-chain and forward-chain

inference for dynamic process schema generation. We propose a rule infer-

1.2 Solution Overview 5

ence mechanism to dynamically generate process schemas for composite ser-

vices. This is different from traditional business process modelling techniques

where the business rules are implicitly codified in the process schemas (e.g.,

data and control flow constraints).

1.2.2 Quality-driven Service Selection

We propose an approach to enable quality driven Web services composition [97, 99,

100]. In the framework, QoS of Web services is evaluated by an extensible multi-

dimensional quality model. The selection of Web services is driven by optimizing

QoS of composite services. The salient features of our approach are:

• A Web services quality model. We propose an extensible multi-dimensional

Web services quality model. The dimensions of this model characterize non-

functional properties that are inherent to Web services in general: execution

price, execution duration, reputation, reliability, and availability.

• Quality-driven service selection. We propose a global planning approach to

select Web services. In this approach, quality constraints and preferences are

assigned to composite services rather than to individual tasks within a com-

posite service. Service selection is then formulated as an optimization prob-

lem and a linear programming method is used to compute optimal service

execution plans for composite services. Experimental results show that the

proposed service selection strategy can efficiently create optimal execution

plans for composite services.

6 Introduction

1.2.3 Adaptive Service Composition

We propose an approach that supports adaptive service composition. It is able to react

to exceptions occurred in component services at runtime. At the same time, it also

provides facilities to allow runtime modifications on composite services. The salient

features of our approach are:

• Adaptive service composition. We propose an adaptive service composition

approach in which composite services continuously monitor the behavior of

their components and adapt themselves to appropriately react to run-time ex-

ceptions (e.g., component service failures, violation of QoS constraints) [101].

The adaptive behavior of services is centered around the concepts of service

coordinators and control tuple spaces.

• Handling unexpected exceptions. We proposed an approach that handles unex-

pected exceptions by runtime modification on composite services [103]. Dur-

ing the execution of a composite service, the service composition checks the

consistency between business policies and the process schema of the com-

posite service. In addition, the adaptive service composition manager can

automatically incorporate newly added business rules when there is a need to

refine the composite services at run time.

1.3 Thesis Structure

This thesis is structured as follows. In Chapter 2, we introduce some basic concepts

and definitions used in the thesis and survey some technologies that are related to Web

service composition. In Chapter 3, we present details on dynamic process schema

generation. In Chapter 4, we focus on quality-driven and dynamic service execution

1.3 Thesis Structure 7

planning. In Chapter 5, we discuss adaptive service composition. In Chapter 6, we

present the prototype and experiment results. Finally, in Chapter 7, we provide the

concluding remarks of the thesis and discuss some future work.

Chapter 2

Sate of the Art

This chapter gives an introduction to the research fields of service composition. Some

concepts such as business process, workflow, etc., as well as some terminologies that

will be used throughout this thesis are explained first. Then an overview of current

service composition approaches is given. A further goal of this chapter is to review

these research fields providing a broader context to the more specific issues that are

discussed in the thesis.

This chapter is organized as follows: Section 2.1 introduces some background concepts

and terminologies for this thesis. Section 2.3 provides a survey on service composi-

tion frameworks. Section 2.4 reviews some related research prototypes. Section 2.5

provides a brief evaluation of these frameworks and prototypes. Finally, the chapter is

summarized in Section 2.6.

2.1 Background

In this section, some background concepts and terminologies that relate to research

fields of service composition are introduced.

2.1 Background 9

2.1.1 Business Process

A business process is a set of activities (also called tasks) which are performed

collaboratively to realize a business objective or goal. Normally, business pro-

cesses are owned by an organization; however, the activities involved can be con-

ducted in different organizations. For example, the business process claims

processing is owned by an insurance company. It consists of activities such

as claim receiving, customer checking, claim classification,

lost analysising, auditing, payments & entitlements, claim

settlement, etc. It should be noted that these activities can be conducted in differ-

ent organizations. For instance, the activity of customer checking is conducted

by the insurance company, while the activity of lost analysis is conducted by

a consultant company and the activity of auditing may require a licensed finance

company to perform.

The business process lifecycle is depicted in Figure 2.1, which includes four steps from

business process modelling to change management. The details of each step are given

as follows:

Modelling

Re−Planning Exception Handling

Business Process
ExecutionSchemaProcess

Business Planning Executing

Change Management

Reengineering

Business ProcessBusiness Process
Execution Plan

Figure 2.1: Business Process Lifecycle

• Business Process Modelling. Modelling the business processes results in a

process schema (i.e., process model) that captures the three aspects of a busi-

ness process: description of each activity in the business process, control flows

and data flows among the activities.

10 Sate of the Art

• Business Process Execution Planning. Prior execution of a business process,

it is necessary to conduct the planning first. Execution planning may include

discovering the candidate participators (i.e., services and service providers),

allocating the resources, and selecting appropriate participators, etc. Usually,

there are multiple ways to execute the same business process. For instance,

a task can be assigned to different service providers that offer different QoS

properties. It is important to select appropriate participators based on certain

quality criteria, such as execution time and execution price, so that the QoS of

the business process is optimal.

• Business Process Execution. Executing business process means invoking ser-

vices to execute the tasks and enable control and data flows among the tasks.

The task may include material and/or electronic processes. Material pro-

cesses comprise designing, manufacturing, transforming, measuring, assem-

bling physical object, etc. An example of material process can be assembling

cars in automobile industry. Electronic processes, on the other hand, involve

software systems and humans to create and manage the information and trans-

actions. The material process can have an electronic presentation, and can

therefore be managed by the software system.

• Change Management. During the execution of business processes, it is al-

ways possible that some exceptions occur. For example, business conditions

may change, which require modification of business processes; some allocated

resources may become unavailable, users who expected to carry out the activ-

ities are absent, etc. These kinds of exceptions may require the re-engineering

of the business processes, re-planning the execution, etc.

2.1 Background 11

2.1.2 Workflow

Workflow is a technology that manages business processes automation [26]. The

Workflow Management Coalition(WfMC) [88] defines workflow as “the automation

of a business process, in whole or part, during which documents, information or tasks

are passed from one participant to another for action, according to a set of procedural

rules”. In the following subsection, some basic concepts in workflow are introduced.

Workflow Schema and Workflow Instance

A workflow schema denotes the design of a workflow, which is a formal description of

various aspects of a business process, such as the activities to be carried out, dependen-

cies/relationships that exist among the activities (i.e., data flow and control flow among

the activities). Usually, workflow schemas can be defined by scripting languages (e.g.,

XPDL [96]) or graph modelling tools (e.g., Statechart [41], Petri Net [10, 71, 82, 90],

etc.). A comprehensive survey on workflow modelling can be found in [83]. An arbi-

trary number of workflow instances (i.e., cases) can be generated based on a workflow

schema. Each workflow instance represents one individual enactment of a business

process, using its own runtime data.

Workflow Management System

In [89], the WfMC defines workflow management system (WFMS) as:

A system that defines, creates and manages the execution of work-

flows through the use of software, running on one or more workflow

engines, which is able to interpret of the process definition, interact

with workflow participants, and, where required, invoke the use of IT

tools and applications.

12 Sate of the Art

Following this definition, workflow management involves the modelling of workflow

schemas and enactment of workflow instances. Accordingly, a WFMS consists of two

main functional components: a buildtime component and a runtime component. The

buildtime component provides a workflow definition language, and together with ap-

propriate tools, such as editors, browsers, compiler, etc., allow workflow designers to

define workflow schemas. On the other hand, the runtime component supports the cre-

ation, planning and enactment of workflow instances according to workflow schemas.

Also, a WFMS normally provides monitoring tools that allow users to keep the track

of execution progress of workflow, as well as detect and handle the exceptions that

occur during the execution of workflow instances. A WFMS is a system that enables

the automation of business processes.

2.2 Overview of Service Composition

In the previous section, we introduced business processes and their automation. In this

section, we will focus on a new approach which enables business process automation

by service composition. In the first part of this section, we illustrate an example of

composite service. Then we present a typical architecture of a service composition

framework. After that, we identify some issues in service composition. These issues

are used to compare different service composition frameworks and prototypes.

2.2.1 Example

In this example, we use an application from the finance domain. Assume that there

is a collection of component services provided by finance industry vendors (i.e., ser-

vice provider), which enable a variety of functions such as market analysis, security1

1A security is the basic unit being traded which can be a stock, option, future etc.

2.2 Overview of Service Composition 13

End
Analysis

Component Services

Composite Service:
Security Investment

Compose of

Selection
Security

Analysis
Budget

Analysis
Security Market Future

Exchange
Stock

Exchange

Start

Security Selection

Budget Analysis

Future Exchange

Stock Exchange

Security Market

Figure 2.2: Service Composition: A Running Example

exchange, and investment decision-making. An example of a composite service is

illustrated in Figure 2.2. This service is part of an integrated investment-making busi-

ness process, consisting of five component services, which selects the most profitable

security to be traded, performs an analysis of the budget available, determines the most

appropriate type of market on which to conduct the trade, then executes the trade on a

given exchange. For each task, the composite service selects a component service to

execute it.

2.2.2 Architecture of a Service Composition Framework

The Internet is emerging as the platform for organizations to provide their services2.

In this new platform, process-based service composition framework has emerged as a

key solution for managing business processes. The architecture of service composition

framework is depicted in Figure 2.3, which includes component services, composite

services (usually, composite services are associated with service composition engine),

and service brokers.

1. Component Service

Component services are own by service providers, which are software applica-

tions for specific needs. In order to participate in a composite service, a service
2In remainder of the thesis, we use term Web service , e-service and service interchangeably

14 Sate of the Art

Service Repository

Business Rules Process Schemas

Service Instance
Data

Implementation

Service
Interface

Service Description

Functional
Properties

Non−functional
Properties

Communication Protocol

Component Service
Publish/Update Service Broker

Composite Service

Discovery

Publication
Service Service

Discovery

Brokage Services

Compose of

Manages

Runtime ComponentBuildtime Component

Service Composition Engine

Communication Protocol

Communication Protocol

Figure 2.3: Architecture of Service Composition Framework

provider needs to advertise the service to the service broker. The components

of a service may include: communication protocols, service interface, service

description and implementation. Communication protocols (e.g., HTTP, RMI,

JMS (Java Message Service), etc.) are used for exchanging messages between

the component services, composite services, and service brokers. It is possible

that each service uses different proprietary network protocols. For example,

vendor A that provides Market Analysis services may allow HTTP ac-

cess, while vendor B that provides Future Exchange service may accept

JMS messages. The service composition framework needs to provide a com-

mon communication protocol that allows services to communicate with each

other. Usually, protocol translators should be used to translate messages be-

tween services’ own network protocols and a common protocol.

A service interface provides the access point to invoke a service. Usually, ser-

vice interfaces are bound with communication protocols. Service description

includes two major parts: functional and non-functional properties. Another

component in a service is the implementation. Different service providers can

have totally different approaches to implement services. For example, one ser-

vice provider may user JAVA to implement the service, while another service

2.2 Overview of Service Composition 15

provider may implement the service on the mainframe using COBOL. Service

wrappers can be used to provide the mapping between the implementation and

the service interface.

2. Composite Service

A composite service represents a business process. It consists of a collection

of component services. Often, composite services are supported by the Service

Composition Engine that selects and orchestrates the component services. The

Service Composition Engine may consist of: communication protocols, build-

time component and runtime component. The buildtime component defines or

generates process models, while the runtime component executes composite

services, including locating, selecting, and orchestrating component services.

3. Service Broker

The service broker is a computation entity that acts as a mediator between

component and composite services. Again, it also requires communication

protocols to exchange information with composite services and component

services. The key component of a service broker is brokage services. The

basic brokage service may include a naming service that consists of service

publication and discovery. Usually, the service broker maintains a service

repository that stores the Meta-data of services.

2.2.3 Issues

In the view of business process management, composite services are similar to work-

flows. Both of them aim to enable the flow of business processes. As composite

services operate in an open and dynamic environment, issues to be addressed may in-

clude: Service Description, Service Advertisement & Discovery, Service Provisioning,

Business Process Modelling, Service Selection (i.e., execution planning), Composite

16 Sate of the Art

Service Orchestration and Adaptive Composition.

• Service Description. In order to participate in composite services, service

providers first need to specify properties of a service as service descriptions.

Typically, a services has functional and non functional properties. The func-

tional properties specify what the service can do (e.g., operations, input and

output parameters), while non-functional properties include the service of

quality, transaction, conversation, security, etc. It is important for service

composition frameworks to provide languages that specify both functional and

non-functional properties.

• Service Advertisement & Discovery (A&D). To be noticed and selected

by composite services, component services need to be advertised first. In

the meantime, composite services need to discover the component services

that can match the task execution requirements (both functional and non-

functional). Usually, there is a service broker that enables service advertise-

ment and discovery.

• Composite Service Modelling. Typically, composite services represent com-

plex business processes, which may include the activities that the services

consists of (i.e., the tasks of the composite service) and interactions among

the tasks (e.g., control-flow, data-flow, and transactional dependencies). These

composite service models can be hard-coded, or scripted as process schemas.

Obviously, the approach that adopts process schemas provides more flexibility

than a hard-coded approach. It should be noted that process schemas can be

pre-defined, or generated on demand.

• Service Selection (execution planning). Once the process schema is defined,

the composite service needs to select component services to execute it. The

2.2 Overview of Service Composition 17

number of services providing a given functionality may be large and con-

stantly changing. Consequently, approaches where the development of com-

posite services requires the identification at design-time of the exact com-

ponent services to be composed are inappropriate. The runtime selection of

component services during the execution of a composite service has been put

forward as an approach to address this issue. Service selection can be local op-

timal or global optimal. In the local optimal mode, for each task in composite

services, a component service is selected that aims for optimizing the QoS of

executing a task, without considering the QoS of composite services. On the

contrary, in the global optimal mode, the task assignment aims for optimizing

the QoS of composite services.

• Composite Service Orchestration. When a composite service has an underly-

ing process schema, it is necessary to have a composition engine to orches-

trate the execution of composite services. In practice, there are two different

approaches: Centralized and Peer-to-Peer. In the centralized mode, the com-

position engine is responsible for invoking component services. It executes

control flows and enables message exchange among the component services.

In the peer-to-peer mode [9], the composition engine deploys some fragment

of data and control flow into the component services. At runtime, the compo-

nent services coordinate with each other to execute the data and control flow.

• Adaptive Composition. Web environment is highly dynamic. New Web ser-

vices may become available at any time. Existing Web services may be re-

moved, become temporarily unavailable, offer better QoS properties, with-

draw advertised QoS properties, etc. On the other hand, business environ-

ments also highly dynamic, which requires composite services dynamically

to change its business goal, operations, etc. Therefore, two kinds of excep-

tions may occur during the execution of composite services: expected and un-

18 Sate of the Art

expected. The expected exceptions are related to execution results of a task.

For example, the hotel room can not be booked since the price is changed.

The unexpected exceptions are related to the inconsistencies between process

schemas that are used to execute composite services and business processes in

real world. Therefore, there is a need for adaptive composition techniques in

which composite services will dynamically adjust their operations to respond

rapidly to exceptions (e.g., non-availability of a selected component service)

and opportunities (e.g., availability of a new component service offering better

QoS than existing ones).

2.3 Service Composition Frameworks

In this section, we survey some industry and organization (i.e., standard body) efforts

on service composition.

2.3.1 Service Composition By Programming

Service composition can be done using general-purpose programming languages. In

this approach, services are provided via an Application Programming Interface (API)

of a programming language, for example, C API. In addition to an API, service

providers also need to set up network communication protocols so that service re-

questors can invoke the API, for example, TCP/IP sockets. Service providers pro-

vide API manuals to describe services. Usually, since the service broker is absent

from this approach, the service requestors have to understand the API manuals that

are given by the service providers and manually select the appropriate services. If

the selected services are supported by different communication protocols, then service

requestors need to setup different network communication channels to assess these ser-

vices. For example, if each component service of the composite service Security

2.3 Service Composition Frameworks 19

Investment is supported by different protocols, then the developer needs to handle

five different protocols. At the same time, the business logic of composite services

must be hard-coded. Any modifications on business logic require re-compiling of the

programs. For example, when service requesters want to replace a component service

Market Analysis (provided by vendor A) in the composite service Security

Investmentwith new one (provided by vendor B), it is necessary to manually mod-

ify and re-compile the programs. The major shortcomings of this approach are: it is

tightly coupled, lacks adaptability, and not easily scalable. In order to overcome these

problems, people propose service composition frameworks to facilitate creation and

execution of composite services. In the following subsections, we survey some service

composition frameworks and research prototypes.

2.3.2 Component-based Middleware

A Software Component is a physical packaging of executable and published inter-

face [45]. The concept of software components has been around virtually since the

beginning of software, it has now evolved as a framework to support component (i.e.,

service) composition. Szyperski [80] provides the following definition: “A software

component is a unit of composition with contractually specified interface and explicit

context dependencies only. A software component can be deployed independently and

is subject to composition by third parties”. Currently, there are several components-

based middleware that have gain commercial support, such as DCOM, CORBA, and

EJB. In the following subsection, we take CORBA as an example to illustrate how the

component-based middleware supports service composition.

CORBA is the acronym for Common Object Request Broker Architecture, which is

defined by Object Management Group (OMG) [73]. It is an open, vendor-independent

architecture and infrastructure that computer applications use to work together over

networks.

20 Sate of the Art

Object Request Broker

Service Reqiestor Service Provider

CORBAfacilitesCORBAservices

Application
Object

Implementation

Figure 2.4: CORBA architecture

CORBA proposes a Reference Model (see Figure 2.4), which consists of the following

components: Application Objects, Object Request Broker,CORBAservices and COR-

BAfacilities [27].

Application Objects (i.e., services) are individual units of running software that com-

bine functionality and data. Services that objects provide are given by interfaces, where

interfaces are defined by OMG’s Interface Definition Language (IDL). According to

our service composition model, IDL is the standard language for defining service in-

terfaces.

Object Request Broker (ORB) is the service broker in CORBA, which enables objects

to transparently receive and response to requests in a distributed environment. It is the

foundation for building applications from distributed objects and for interoperability

between applications in hetero- and homogeneous environments.

CORBAservices (i.e., Object Services) is a collection of services (interfaces and ob-

jects) that support basic functions for using and implementing objects. Services are

necessary to construct any distributed application and are always independent of appli-

cation domains. For example, the Life Cycle Service defines conventions for creating,

deleting, copying, and moving objects; it does not dictate how the objects are imple-

2.3 Service Composition Frameworks 21

mented in an application.

CORBAfacilities (i.e., Common Facilities) is a collection of services that many ap-

plications may share, but which are not as fundamental as the Object Services. For

instance, a system management or electronic mail facility could be classified as a Com-

mon Facility.

In a summary, the CORBA provides an infrastructure to support communications

among service providers and service requestors, which hides the underlying com-

plexity of network communication protocol from the service composition developers.

CORBA provides IDL to define service interfaces. At the same time, it provides nam-

ing and trader services which allow service providers to register services and service

requestors to discover services. However, IDL only defines the syntactic of services,

it does not provide support for semantic description of services. Again, the semantic

description (especially the non-functional properties) of services is given by API man-

uals and the participants of a certain composite service need to agree on a predefined

interface. Another problem is that the ORB is not only responsible for service registry

and discovery, but also manages the invocation of services. It can be a bottleneck for

the execution of composite services. Other drawbacks of CORBA-based framework

include scalability and availability issues. In a summary, CORBA is suitable for stati-

cally composed services among a small number of organizations. However, it provides

little or no support for management of the changes in component services’ interface.

The component services in the composite services are tightly coupled. Hence, it is not

suitable when the number of component services in composite services is very big and

business processes are highly dynamic and extend across multiple organizations.

22 Sate of the Art

2.3.3 W3C Web Service Framework

Web services are information, software packages, software processes and computa-

tion resources delivered over the Internet using XML messages (e.g., SOAP message),

which serve a particular set of user needs. They are self-contained, self-describing

components that can be published, located, and used across the Internet. The rapid

growth of the Internet’s functionality and bandwidth has created tremendous opportu-

nities for organizations of any size to adopt Web services to diversify their businesses

and become truly global. Web services (e.g., order procurement, customer relationship

management, finance, accounting, human resources, supply chain and manufacturing)

have built very high expectations for organizations to establish deeper relationships

with partners. Widely available and standardized Web services make it possible to

realize just-in-time Business-to-Business Interoperability (B2Bi) by composing Web

services.

The Web services architecture (see Figure 2.5) is centred around protocols and stan-

dards proposed by W3C (World Wide Web Consortium) [85] and related organizations.

W3C was created in October 1994 to lead the World Wide Web to its full potential by

developing common protocols that promote its evolution and ensure its interoperabil-

ity. W3C has around 500 member organizations from all over the world and has earned

international recognition for its contributions to the growth of the Web.

This architecture describes the principles behind the next generation of e-business

architectures. It presents a logical evolution from the object-oriented system to the

service-oriented system. In the following, we will introduce the essential protocols

and components that construct this framework.

• SOAP (Simple Object Access Protocol) [78] is a network protocol that en-

ables communication among Web services. Actually, SOAP was initially cre-

ated by Microsoft and later developed in collaboration with Developmentor,

2.3 Service Composition Frameworks 23

Scripting using BPEL4WS...

Service Provider

Service Requestor

Web Service Service Broker

Service Property

Owns

Has

Invoke/Return

Discovery

Has

Process Schema

Defines Using WSDL/WSCL/WSAL...

UDDI Registry

SOAP MSG

SOAP MSG

SOAP MSGOwns

Has

Publish

Composite Service

Figure 2.5: Web Service Architecture

IBM, Lotus and Userland. SOAP is an XML based protocol for messaging

and remote procedure calls (RPCs). Rather than defining a new transport pro-

tocol, SOAP works on exiting network transport protocols, such as HTTP,

SMTP, MQSeries, FTP, etc. The transport element in the protocol is a SOAP

message, which is an XML document with a very simple structure: an XML

element with two child elements: the header and the body. Both the header

and the body elements are themselves XML nodes. In addition to the basic

message structure, the SOAP specification also defines a model that dictates

who should process messages and how recipients should process SOAP mes-

sages. From the view of a service composition framework, SOAP can be used

as a common communication protocol for the framework.

• WSDL (Web Service Description Language) [93] is an XML format for de-

scribing Web services as a set of endpoints (i.e., interfaces) operating on mes-

sages containing either document-oriented or procedure-oriented information.

The interfaces are described abstractly, and then bound to a concrete network

protocol and message format. WSDL is extensible to allow description of

endpoints and their messages regardless of what message formats or network

protocols are used to communicate. From the view of a service composition

24 Sate of the Art

framework, WSDL can be considered as a common language that defines ser-

vice interfaces.

• WSLA Language (Web Service Level Agreement language) [52, 61] is pro-

posed by IBM. It is targeted at defining and monitoring SLAs (e.g., Service

of Quality) for Web services. A WSLA document defines assertions of a ser-

vice provider to perform a service according to agreed guarantees for IT-level

and business process-level service quality parameters such as response time

and throughput, and measures to be taken in case of deviation and failure to

meet the asserted service guarantees, for example, a notification of the ser-

vice customer. The assertions of the service provider are based on a detailed

definition of the service parameters including how basic metrics are to be mea-

sured in systems and how they are aggregated into composite metrics. WSLA

agreement focuses on non-functional properties of Web services, which com-

plements service interfaces. From the view point of a service composition

framework, WSLA language can be used as the common language that speci-

fies the QoS property and agreement.

• WSCL (Web Services Conversation Language) [92] is proposed by HP.

WSCL specifies the XML documents being exchanged by Web services, and

the allowed sequencing of these document exchanges. WSCL conversation

definitions are themselves XML documents and can therefore be interpreted

by Web services infrastructures and development tools. From the view point

of a service composition framework, WSCL can be used as a common lan-

guage that specifies the conversation properties of services.

• WSCI (Web Service Choreography Interface) [91] is codeveloped by BEA

Systems, Intalio, SAP AG, and Sun Microsystems. It is an XML-based in-

terface description language that describes the flow of messages exchanged

by a Web Service participating in choreographed interactions with other ser-

2.3 Service Composition Frameworks 25

vices. It describes the observable behavior of a Web Service. This is expressed

in terms of temporal and logical dependencies among the exchanged mes-

sages, featuring sequencing rules, correlation, exception handling, and trans-

actions. From the view of a service composition framework, WSCI is similar

to WSCL, which can be used as a common language that specifies the conver-

sation properties of services.

• BPEL4WS (Business Process Execution Language for Web Services) [12]

is proposed by IBM, Microsoft and BEA for defining business pro-

cesses. BPEL4WS represents a convergence of the ideas in the

XLANG [95](structural constructs for processes) and WSFL [94](support for

graph oriented processes) specifications. Both XLANG and WSFL are super-

seded by the BPEL4WS specification. BPEL4WS supports the modelling of

two types of business processes: executable and abstract processes. An ab-

stract, (not executable) process is a business protocol, specifying the message

exchange behaviour between different parties without revealing the internal

behaviour for any one of them. An executable process, specifes the execution

order between a number of activities constituting the process, the partners in-

volved in the process, the messages exchanged between these partners, and

the fault and exception handling specifying the behaviour in cases of errors

and exceptions. The basic activities defined in BPEL4WS include: invoking a

Web service operation; terminating Web service instance, etc. From the view

of a service composition framework, BPEL4WS is a language that allows ser-

vice requestors to specify composite services.

• UDDI (Universal Description, Discovery and Integration) [81] is a service

registry specification proposed by an industry consortium led by IBM, Mi-

crosoft and Ariba. The UDDI is a platform-independent, open framework for

describing services, discovering businesses, and integrating business services

26 Sate of the Art

using the Internet, as well as an operational registry that is available today.

It proposes a unified and systematic way to publish and discover a Web ser-

vice. UDDI provides two basic specifications that define a service registry’s

structure and operation [29]:

– A definition of the information to provide about service and how to en-

code it; and

– A query and update API for the registry that describes how service in-

formation can be accessed and updated.

From the view point of a service composition framework, UDDI can be considered as

a service broker.

2.3.4 DAML-S Framework

DAML-S [30] is a DAML+OIL ontology for Web services developed by a coalition of

researchers [2], under the auspices of the DARPA Agent Markup Language (DAML)

program. It attempts to provide an ontology, within the framework of DAML, for de-

scribing the properties and capabilities of Web services in an unambiguous, computer-

interpretable form. It focuses on enabling agent technologies for automated Web ser-

vice discovery, execution, interoperation, composition and execution monitoring.

The DAML-S ontology describes a set of classes and properties, specific to the descrip-

tion of Web services. The upper ontology of DAML-S comprises the service profile for

describing service advertisements, the process model for describing the actual program

that realizes the service, and the service grounding for describing the transport-level

messaging information associated with execution of the program. The service ground-

ing is akin to the Web Service Description Language (WSDL) in the W3C framework.

2.3 Service Composition Frameworks 27

In DAML-S the process model provides a declarative description of the properties

of the Web-accessible programs. It conceives each program as either an atomic or

composite process. It additionally allows for the notion of a simple process, which is

used to describe a view, abstraction or default instantiation of the atomic or composite

process to which it expands. An atomic process is a non-decomposable Web-accessible

program. It is executed by a single (e.g., http) call, and returns a response. It does

not require an extended conversation between the calling program or agent, and the

Web service. In contrast, a composite process is composed of other composite or

atomic processes through the use of control constructs. These constructs are typical

programming language constructs such as sequence, if-then-else, while, fork, etc. that

dictate the ordering and the conditional execution of processes in the composition.

2.3.5 BPMI Framework

BPMI.org (the Business Process Management Initiative) [13] is a non-profit corpora-

tion that empowers companies of all sizes, across all industries, to develop and operate

business processes that span business partners over the Internet. It focuses on promot-

ing and developing Business Process Management (BPM) through the establishment of

standards for process design, deployment, execution, maintenance, and optimization.

The open specifications defined by BPMI.org include the Business Process Modeling

Language [14] (BPML), and the Business Process Query Language (BPQL). These

two languages aim for enabling the standard-based management of e-Business pro-

cesses with forthcoming Business Process Management Systems (BPMS), in much

the same way Structured Query Language (SQL) enabled the standards-based man-

agement of business data with off-the-shelf Database Management Systems (DBMS).

BPMI.org considers an e-Business process conducted between two business partners as

made of three parts: a public interface and two private implementations (one for each

partner). The public interface is common to the partners and is supported by protocols

28 Sate of the Art

such as ebXML [33]. The private implementations are specific to each partner and are

described in any executable language. BPML is one such language.

Once developed, the private implementation of an e-Business process must be de-

ployed on a platform that will actually execute it. For this purpose, BPMI.org de-

fines BPQL, a standard management interface, for the deployment and execution of e-

Business processes. Furthermore, BPQL relies on UDDI in order to provide a standard

way to register, advertise, and discover the public interfaces of e-Business processes.

2.3.6 ebXML Framework

ebXML [33] is an international initiative established by United Nations Centre for

Trade Facilitation and Electronic Business (UN/CEFACT) and OASIS. The proposed

architecture can be viewed as a service composition framework. It includes the follow-

ing components:

1. A standardized business Messaging Service framework that enables the inter-

operable, secure and reliable exchange of messages among trading partners.

From the view of a service composition framework, it is a common commu-

nication protocol for the framework.

2. A standard mechanism (Collaboration Protocol Profile - CPP) for describing

a Business Process (i.e., service) and its associated information model such

as company profiles. From the view of a service composition framework, it

enables service descriptions.

3. A mechanism (ebXML Registry) for registering and storing Business Process

and Information Meta Models so they can be shared and reused. From the

view of a service composition framework, it can be considered as the service

broker.

2.3 Service Composition Frameworks 29

4. A mechanism (Collaboration Protocol Agreement - CPA) for describing the

execution of a mutually agreed upon business arrangement which can be de-

rived from information provided by each participant. From the view of a

service composition framework, it specifies the agreement among business

partners.

5. A metamodel (ebXML Business Process Specification Schema - BPSS) for

specifying a collaboration (i.e., composite services) between business part-

ners. An ebXML Business Process Specification contains the specification of

business transactions and the choreography of business transactions into col-

laboration.The Business Process Specification is therefore incorporated with

or referenced by an ebXML trading partner CPP and CPA. Each CPP declares

its support for one or more roles within the Business Process Specification.

Further technical parameters are then added to these CPP profiles and CPA

agreements resulting in a full specification of the run-time software at each

trading partner.

Figure 2.6 depicts a sequence of steps to establish and conduct business collaborations

between two trading partners using ebXML architecture.

In this scenario, Company A is a service provider, while Company B is a service re-

questor. In the service register phase, Company A becomes aware of an ebXML Reg-

istry that is accessible on the Internet (see Figure 2.6, step 1). Then, Company A,

after reviewing the contents of the ebXML Registry, decides to build and deploy its

own ebXML compliant application (see Figure 2.6, step 2). Custom software devel-

opment is not a necessary prerequisite for ebXML participation. ebXML compliant

applications and components may also be commercially available as shrink-wrapped

solutions. Company A then submits its own business profile information (including im-

plementation details and reference links) to the ebXML Registry (see Figure 2.6, step

30 Sate of the Art

Figure 2.6: A High Level Overview of the Interaction of Two Companies Conducting
a Business Process Using ebXML [33]

3). The business profile submitted to the ebXML Registry describes the company’s

ebXML capabilities and constraints, as well as its supported business scenarios. These

business scenarios are XML versions of the business processes and associated infor-

mation bundles (e.g. a sales tax calculation) in which the company is able to engage.

After receiving verification that the format and usage of a business scenario is correct,

an acknowledgment is sent to Company A (see Figure 2.6, step 3).

In the service discovery phase, Company B discovers the business scenarios supported

by Company A in the ebXML Registry (see Figure 2.6, step 4). Company B sends a

request to Company A stating that they would like to engage in a business scenario

using ebXML (see Figure 2.6, step 5). Company B acquires an ebXML compliant

shrink-wrapped application.

In the service provisioning phase, before engaging in the scenario Company B submits

a proposed business arrangement directly to Company A’s ebXML compliant soft-

2.4 Research Prototype 31

ware Interface. The proposed business arrangement outlines the mutually agreed upon

business scenarios and specific agreements. The business arrangement also contains

information pertaining to the messaging requirements for transactions to take place,

contingency plans, and security-related requirements (see Figure 2.6, step 5). Com-

pany A then accepts the business agreement. Company A and B are now ready to

engage in a business process using ebXML(see Figure 2.6, step 6).

It should be noted that the ebXML specifications are not limited to the above sce-

nario. More complicated service composition scenarios, such as three or more service

providers conducting business using shared business processes, are also supported.

2.4 Research Prototype

In this section, we present some research projects related to business process integra-

tion and service compositions.

2.4.1 CMI

CMI (Collaboration Management Infrastructure) [4, 38] is a platform to manage col-

laboration process. It supports service modelling, service broker, dynamic service se-

lection and service integration (composition). The Collaboration Management Model

(CMM) is used to combine the business process and service management in a sin-

gle model. CMM consists of a Core Model (CORE) and several specialized models.

CORE provides a common set of process model primitives that constitute the basis

for all extensions. These primitives include constructs for defining resources, roles

and generic state machines. The CMM extensions include Coordination Model (CM),

Service Model (SM) , and Awareness Model (AM). The Coordination Model provides

primitives for coordinating participant and automating process management, which are

32 Sate of the Art

used by the service requestor to specify and manage composite services. The Service

Model is used by service providers to support service interfaces, service activities and

related wrapper processes, and service contracts. The Awareness Model allows the

monitoring of process related events, and the authorized composition and delivery of

such events only to process participants that need to perform their roles.

The CMI components include the user tools and engines. User tools in CMI are or-

ganized into to separate clients for participants and designers. A CMI participant is a

human or program individual involved in a collaboration process. A designer creates

and maintains CMM process, awareness, and service specifications. Participants inter-

act with the CMI enactment system using CMI client tools for participants. The client

tools subsume the tools defined by the Workflow Management Coalition. In particular,

participant tools include a worklist tool, an awareness information viewer, and a pro-

cess monitoring tool. The CMI worklist divides the activities that each participant is

eligible to perform into mandatory or optional work items. The awareness information

viewer maintains a participants awareness event queue and displays awareness events

to him/her. The CMI enactment system contains several engines that implement the

CMM. The CORE Engine implements the primitives of the CORE. It is used by the

other engines that are responsible for the CM, SM and AM. The Coordination En-

gine implements the CM by mapping CM primitives to process fragments of a WfMS,

i.e., IBM FlowMark, and orchestrates them at process execution time. The Awareness

Engine that implements AM and the Service Engine implements SM.

In CMI, the business processes are defined as state machine based models, which are

executed by a workflow engine. The adaptive processes are enabled by the notion of

Repeated Optional Dependency, which includes two parts: repeated optional creator

and repeated optional terminator. They handle the situation when both the exact in-

vocation place in the control flow path of the process and the number of invocations

cannot be specified beforehand.

2.4 Research Prototype 33

2.4.2 eFlow

eFlow [21, 22, 23] is a platform that supports specifying, enacting and monitoring of

composite services. In eFlow, a composite service is described as a process schema

that consists of other basic or composite services. A composite service is modelled by

a graph (the flow structure), that defines the order of execution among the nodes in the

process. It may include service, decision, and event nodes. Service nodes represent the

invocation of a basic or composite service, where a service node specification includes

a service selection rule. The rule is executed by an eFlow component called a ser-

vice process broker, which enables the selection of the appropriate service and service

provider. Decision nodes specify the alternatives and rules controlling the execution

flow. Event nodes enable service processes to send and receive several types of events.

eFlow architecture consists of the Service Process Composer, Service Process Engine,

Service Process Broker, Service Operation Manger and Migration Manger. Composite

services are specified through the Service Process Composer, which enables the defini-

tion and modification of process schemas. Services are enacted by the service process

engine, which is composed of the Scheduler, the Event Manager, and the Transaction

Manager. The scheduler contracts the Service Process Broker in order to discover the

actual service (and service provider) that can fulfill the requests specified in the service

node definition. The scheduler eventually contracts the provider in order to execute the

service. The Event Manager monitors event occurrences, by detecting temporal, data

and workflow events, and by receiving notifications of application-specific events by

external application. The Transaction Manager enforces transactional semantics by

enabling compensation of transaction regions, where the transactional region identi-

fies a portion of the process graph that should be executed in an atomic fashion. If for

any reason the part of the process identified by the transactional region cannot be suc-

cessfully completed, then all running services in the region are aborted and completed

ones are compensated, by executing a service-specific compensating action. The Ser-

34 Sate of the Art

vice Operation Manger logs the execution details and provides correction assistance if

desired. It is the component through which authorized users can monitor running ser-

vice executions or retrieve information about completed service execution. The eFlow

also includes a Migration Manager that handles dynamic changes to process instances.

When migrating process instances, it suspends instances to be migrated, verifies that

the migration can be actually performed, generates an execution state for the instance

in the new schema, and finally informs the engine that the execution of the migrated

instance can be resumed.

2.4.3 IE (Internet Enterprise)

IE (Internet Enterprise) [43, 49, 68] is an infrastructure for enabling virtual enterprise.

In the IE, service providers can enable its business to be programmatically accessible

on the Internet (becomes an e-service). The architecture treats e-services as workflow

participants in Internet wide workflow automation applications. Enabled by a scal-

able brokering service and an inter-organizational workflow facility, services offered

by autonomous service providers can be composed into an “Internet Workflow” (i.e.

composite services). There are three core components in the infrastructure:

1. BizBuilder [58], an e-service framework that is used to created E-services. In

BizBuilder, e-services are presented using WSDL. The non-functional proper-

ties are specified as constraints using the Constraint-Based Requirement Spec-

ification Language [79]. These constraints on e-services can be constraints

on the service attributes, or constraints on the input attributes and service at-

tributes of the operations. The E-services Adapter is the core component that

allows the underlying service (e.g., service implemented using Java) to be ac-

cessed on the Internet using standard protocol and format.

2. Sangam [44], a scalable, hierarchical brokering community based on UDDI,

2.4 Research Prototype 35

which is responsible for service advertising and discovering.

3. A dynamic workflow engine that uses e-services as entities, to create and enact

workflow models (i.e., process schema).

Collectively, these three components empower the Internet as a “public enterprise”,

where virtually any person or organization can design workflow models, and hence

create new businesses, using available, competing e-services. At runtime, the work-

flow engine accomplishes the dynamic service binding with the help of the broker

server, which performs the constraint-based [79] service provider selection, where the

constraints restrict the selection of proper e-service providers for e-service requests.

2.4.4 METEOR

METEOR [18, 69] is a workflow management system that enables QoS management

and service composition. A QoS model that allows for the description of nonfunctional

aspects of workflow component is developed, where the QoS model is composed of

four dimensions: time, cost, reliability, and fidelity. It has a mathematical model to

compute overall QoS of workflow, which can be used to estimate, predict, and analyze

the QoS of production workflow. In order to support service composition, Web ser-

vices are described by extended DAML-S. The Web service specification composed of

syntactic description, operational metrics (e.g., QoS dimensions), and semantic infor-

mation. The matching between the service template (i.e., task in composite service)

and service object is based on syntactic, operational and semantic similarity functions.

The proposed architecture provides registry and discovery services which allow service

providers to advertise services and service requestors to locate services. At runtime,

composite services are executed by the workflow management system. Runtime ex-

ceptions are handled by a case-base reasoning mechanism.

36 Sate of the Art

2.4.5 SELF-SERV

SELF-SERV [8, 9, 77] is a platform supporting the rapid composition and scalable or-

chestration of Web services. It proposes a declarative language based on Statechart for

composing Web services. The concept of service community is considered as the ar-

chitect for the composition of a potentially large number of dynamic services. Service

communities are essentially containers of alternative services. They describe the capa-

bilities of a desired service without referring to any actual provider. Actual providers

can register with any community of interest to offer the desired service. At run-time,

the community is responsible for selecting the service offer that best fits a particular

user profile in a specific situation. Another feature of SELF-SERV is the peer-to-peer

service execution model, whereby the responsibility of coordinating the execution of

a composite service is distributed across several peer software components called co-

ordinators. Coordinators are attached to each involved service. They are in charge

of initiating, controlling, monitoring the associated services, and collaborating with

their peers to orchestrate the service execution. The knowledge required at runtime by

each of the coordinator in a composite service (e.g. location, peers, and routing poli-

cies) is statically extracted from the service’s Statechart and represented in a tabular

form. In this way, the coordinators do not need to implement any complex scheduling

algorithm.

The SELF-SERV adopts a layered architecture (i.e., service, communication, directory,

and user layers) to provide support for discovery, creating and deploying Web services:

• Service Layer. It consists of a collection of composite services and contain-

ers. It features a class ContainerWrapper that defines methods for invoking

operations provided by containers and collecting the outputs of an invoca-

tion. When a user, an application program, or a state coordinator invokes

an operation of a container, the ContainerWrapper object corresponding to

2.4 Research Prototype 37

this container invokes the corresponding scoring service. The scoring service

takes as input the containers selection policy and the list of members regis-

tered with the container, returning the identifier of one of the members. The

service layer also provides two classes, StateCoordinator and InitialCoordina-

tor, that constitute the runtime environment required to perform peer-to-peer

orchestration; service providers must install the classes before participating

in a composite service. The StateCoordinator class implements methods for

receiving, processing, generating, and dispatching control flow notifications

according to a given routing table. In addition to these functionalities, the

InitialCoordinator class implements methods for invoking an operation of a

composite service and collecting the results of the invocation.

• Conversation Layer. It provides support for standardized interactions among

services. For example, it allows business partners to share their external busi-

ness processes according to a specific B2B standard, such as Electronic Data

Interchange (EDI), RosettaNet, or cXML, which defines common formats and

semantics for messages (such as request for quote or purchase order) and busi-

ness process conversations (such as chronology of message exchanges). The

conversation layer consists of a set of predefined service templates for various

B2B standards.

• Directory Layer. It consists of a set of directories that store metadata about ser-

vices and containers. Metadata directories contain information that describes

the meaning, categories, properties, capabilities, location, and access informa-

tion of the available services. The user layer of Self-Serv uses the metadata

to locate, browse, and query services and containers. Service providers can

advertise metadata in service directories such as UDDI or ebXML registries.

• User Layer. It provides access to the service composition environment through

three main components: the service discovery engine, the service builder, and

38 Sate of the Art

the service deployer. The service discovery engine facilities the advertisement

and location of services and their operations. The service builder allows the

developer to create and configure composite services and service containers.

The service deployer generates and deploys routing tables for every state in

the composite service state chart to enable peer-to-peer service orchestration.

2.5 Comparison of Service Composition Frameworks

and Prototypes

In this section, we compare the different service composition frameworks and Proto-

types. The comparison is conducted based on the issues we illustrated in Section 2.2.3.

In table 2.1, key service composition frameworks are compared. Currently, most of the

framework efforts focus on enabling the inter-operations among services. A compre-

hensive survey on Business-to-Business interaction can be found in [67]. In table 2.2,

some service composition prototypes are compared. One of the current trends is to

provide flexible service composition solutions that can offer optimal execution result

of composite services.

2.6 Summary

In this chapter, we first explained some basic concepts in business processes and then

gave a brief survey of existing and ongoing service composition frameworks and re-

search projects. The current research trend in service composition is to provide a scal-

able, low setup and development cost, flexible, and adaptive solution. It is however so

vital to consider how to optimize QoS of composite services. In the next chapter we

will present our solution for dynamic service composition.

2.6
Sum

m
ary

39

Table 2.1: Service Composition Frameworks
Service

Description

(functional)

Service

Description

(non-functional)

Service

A&D

Composite

Service

Modelling

Service

Selection

Composite

Service

Orchestration

Adaptive

Composition

Programming API manual Not

Addressed

Not

Addressed

Hard-code in pro-

grams

Manual Selection Hard-code Hard-code

CORBA IDL Not

Addressed

IDL, Naming and

trading services

Not

Addressed

Not

Addressed

Not

Addressed

Not

Addressed

W3C Framework WSDL WSCL or WSCI

for conversation

UDDI BPEL4WS Not

Addressed

Not

Addressed

Application and

excepted excep-

tion handling

DAML-S Service Profile Service Profile Not

Addressed

Process Model

and Ontology

Not

Addressed

Not

Addressed

Not

Addressed

BMPI BPML Not

Addressed

UDDI Not

Addressed

Not

Addressed

BPMS Expected excep-

tion handling

ebXML CPP CPA for service

agreement

ebXML Reposi-

tory Not

Addressed

BPSS Not

Addressed

Not

Addressed

Application and

excepted excep-

tion handling

40
Sa

te
of

th
e

A
rt

Table 2.2: Service Composition Prototypes
Service

Description

(functional)

Service

Description

(non-functional)

Service

A&D

Composite

Service

Modelling

Service

Selection

Composite

Service

Orchestration

Adaptive

Composition

CMI Service model Ontology, service

model

Service broker Pre-defined state

machine based

model

Service selection

policies

IBM FlowMark, central-

ized

Expected exception

handling by repeated

optional dependency

eFlow e”speak e”speak Service broker Pre-defined state

machine based

model

Service selection

rule

Service operation manger,

centralized

Expected and unex-

pected exception han-

dling

IE WSDL Service constraints UDDI Pre-defined pro-

cess schemas

Constraint based

selection, local

optimization

Workflow en-

gine,centralized

Expected exception

handling

Meteor Service

profile(DAML-S)

Ontology, QoS Model Not

Addressed

Pre-defined pro-

cess schemas

Syntactic, oper-

ational and se-

mantic similarity

functions

Workflow engine, central-

ized

Case-based reasoning

exception handling

SELF-

SERV

WSDL QoS Model UDDI Pre-defined Stat-

echarts

Local optimiza-

tion

Service coordinator, peer-

to-peer

Not

Addressed

DYflow WSDL Service ontology,

QoS Model

UDDI Generated State-

charts

Local or global

optimization

Composition engine, cen-

tralized

Peer-to-Peer ex-

ception handling,

component, expected

and unexpected

exception handling

Chapter 3

Generating Process Schemas for

Composite Services

The process-based composition of Web services is emerging as a promising approach

to automating business process within and across organizational boundaries [4, 21, 8].

In this approach, individual Web services are federated into composite Web services

whose business logic is expressed as a process model. Business process automation

technology such as workflow management systems (WFMSs) can be used to choreo-

graph the component services. However, one of the fundamental assumptions of most

WFMSs is that workflow schemas are static and predefined. Such an assumption is

impractical for business processes that have an explosive number of options, or dy-

namic business processes that must be generated and altered on the fly to meet rapid

changing business conditions. For example, business processes for managing product

lifecycle need to be generated and modified at runtime. In this chapter, we describe

a rule inference framework, where end users declaratively define their business objec-

tives or goals and the system dynamically composes Web services to execute business

processes.

This chapter is organized as follows. In Section 3.1, we first identify some research

42 Generating Process Schemas for Composite Services

issues and then outline our solutions for these issues. In Section 3.2, we introduce a

real world example, to be used for further illustration of our approach; the running

example stems from a product lifecycle management case study, which provides mo-

tivations for our work. Section 3.3 gives an overview of the proposed process schema

generator. Section 3.4 describes the details of rule inference algorithms for dynamic

process schema generation. Finally, we discuss related work in Section 3.5 and provide

a summary of this chapter in Section 3.6.

3.1 Introduction

Web services technologies are emerging as a powerful vehicle for organizations that

need to integrate their applications within and across organizational boundaries. In

particular, the process-based composition of Web services is gaining considerable mo-

mentum as an approach for the effective integration of distributed, heterogeneous, and

autonomous applications [6]. In this approach, applications are encapsulated as Web

services and the logic of their interactions is expressed as a process model. This ap-

proach provides an attractive alternative to hand-coding the interactions between ap-

plications using general-purpose programming languages [7].

The wide availability and standardization of Web services make it possible to compose

basic Web services into composite services that provide more sophisticated function-

ality and create add-on values [24]. For example, a composite service can provide a

high-level financial management service that uses individual payroll, tax preparation,

and cash management Web services as components. The process model underlying

a composite service identifies the functionalities required by the services to be com-

posed (i.e., the tasks of the composite service) and their interactions (e.g., control-flow,

data-flow, and transactional dependencies). Technologies for modelling and executing

business processes are generally referred to as WFMSs.

3.1 Introduction 43

Our work is motivated by the requirements of dynamic Web services composition.

Web environments are highly dynamic, Web services can appear and disappear around

the clock. So, approaches that statically compose services are inappropriate. Business

process automation technology such as production WFMS can be used to choreograph

the component services. However, one of the fundamental assumptions in most pro-

duction WFMSs [37, 47] is that process schemas are static and predefined. In order

to automate business processes, designers need to understand the processes and use

modelling tools to chart process schemas. When a particular business process needs

to be enacted, a process instance is created from a process schema. In this approach,

the designer is required to explicitly define the tasks that compose business processes

and specify relationships among them. However, it is impractical to compose services

in many application domains. For example, it is extremely difficult, if not impossible,

to predefine all composite service schemas for research and development (abbr R&D)

processes in the automobile industry since R&D business processes are very dynamic.

To meet the constraints and opportunities posed by new technologies, new markets

and new laws, business processes must be constantly redefined and adapted. However,

this does not mean there are no business rules that govern R&D processes; it does not

mean that planning for R&D processes is impossible too. Indeed, there is a need to

have a system that enables automatic generation of process schemas customized to an

organization’s environment, business policies and business objectives.

At the same time, since the global economy is volatile and dynamic, organizations are

changing constantly: entering into new markets, introducing new products and restruc-

turing themselves through mergers, acquisitions, alliances and divestitures. Moreover,

most composite services are long running, representing complex chains of tasks. Or-

ganizations that executing composite services may need to change business processes

to adapt the changes in application requirements, technologies, business policies, con-

ditions and constraints. Consequently, runtime modification of composite services is

44 Generating Process Schemas for Composite Services

necessary to meet these changes. However, in most process modelling techniques,

such runtime modification is a manual procedure, which is time-consuming and costly

to enforce. In order to reduce the cost and provide fast responses to these changes,

there is a need to automate the runtime modification of composite service schemas.

In this chapter, we present the design and implementation of a process schema genera-

tor: In the generator, business objectives (i.e., business goals) are declaratively defined,

and the process schemas are generated on demand. The salient features are:

• A set of business rule templates. We propose a set of business rule templates

for modelling business policies. Traditionally, business rules are hard code

into business processes. We argue that business rules should be independent

of individual business processes. They can be re-used to generate different

composite service schemas [102].

• A rule inference mechanism that combines backward-chain and forward-chain

inference for dynamic process schema generation. We propose a rule infer-

ence approach to support dynamic service composition. This is different from

traditional business process modelling techniques where the business rules

are implicitly codified in the process schemas (e.g., data and control flow con-

straints).

3.2 A Motivating Example

In this section, we present an example of product lifecycle management in the auto-

mobile industry. Let us assume that an automobile company decides to build a new

prototype of a sedan car. The chief engineer proposes to build the new prototype car

by replacing the old petrol engine with a new electric engine. In order

to achieve this business goal (i.e., replacing the engine), a sequence of tasks need to be

3.2 A Motivating Example 45

conducted, which includes: (1) new electric engine development; (2) new parts layout

design; (3) parts design, development & manufacturing and (4) assembling and testing

(see Figure 3.1).

1. New Engine Development

The automobile company has two different alternatives to obtain a new electric

engine: it can outsource the development of the electric engine to other com-

panies or it can develop the electric engine in-house. If the cost of outsourcing

is over $2000K, then the company will design and develop the electric engine

in-house. If the company wants to outsource the electric engine, a suitable

vendor needs to be selected first. If a domestic vendor is selected, then the

national quality control procedure should be applied, otherwise, international

quality control procedure needs to be applied. There are many alternative pro-

cesses in each type of quality control procedure; the selection of processes

depends on the requirements of the electric engine, budgets, and relationships

with vendors, etc.

2. Parts Layout Design

Replacing the engine of a sedan car will require system engineers to con-

duct parts layout design. This is because the new and old engines may have

different 3D specifications. Some old parts may need to be replaced. New

unique parts may be required by the electric engine. System engineers will

first conduct a 3D layout evaluation to decide whether to have a complete new

layout design or to re-use parts of the old layout design. The layout feasibility

analysis has three possible alternatives: (1) change the electric engine’s 3D

specification; (2) change related parts’ 3D specifications; or (3) change both

engine and related part’s 3D specifications. For each alternative, there is a set

of optional processes; the selection of these processes is based on the results

of a layout feasibility analysis. Within each process, there are many possible

46 Generating Process Schemas for Composite Services

Reuse Old Design

Feasible
analysis

Option 2
Option n

Complete New Design

Feasible
analysis

Integrate
design

Layout
design

Option 1

TestingPrototype
develop

design
Parts

Parts 3D change
request

Engine modification
Request

specification
Parts 3D

checking
inventory

Parts faulty
report

request
New parts

Layout design
report

evaluation
3 D Layout

layout design
Reuse original

Re−design
parts layout

evaluation
Cost

development
Self

Vender
 Selection Oversea Vender

Dometic Vender
Outsource

National

quality control
International

Development
planning

quality control

Option 1

TestingPrototype
develop

Layout
redesign

redesign
Parts

Modification
Planning

Option n
Option 2

Layout feasible
 Analysis

Change gas
engine’s 3D

Change other
parts’ 3D

Mutal 3D
change

catalog
checking

in catalog

No exist

manufacture

3D change/New parts

No change

Request
evaluation

Parts
verification

Pass

 Failture

Car
Assembling

Part List

sucess

Failture

Parts change
request

Car Testing

Car testing
Report

Task Data
Data flow Control FlowProcess

development
self design&

Self

Procurement

Procurement

development

design
Parts layout

Legent:

Parts design,

 & procurement

New engine

specification
E’ engine 3D

engine
New E’

development

testing
Assembling &

Budget < $2000K

Budget >= $2000K

New layout

Reuse layout

Figure 3.1: A Motivating Example

3.2 A Motivating Example 47

options for which tasks need to be invoked by the process, and many possible

data flows and control flows among the tasks.

3. Parts Design, Development & Procurement

Both the new electric engine and the layout design may require the design

and the development of new parts for the sedan car. Three basic processes

are involved to obtain a new part, namely (1) procurement, (2) self design

& development, and (3) self manufacture. The decision on which processes

should be adopted is dependent upon the result of request evaluation, catalog

checking and inventory checking.

4. Assembling and Testing

When the new electric engine and parts are ready, workshop engineers will

verify them. Any faults on these parts will be reported to the related part-

obtaining processes. If a part passes the verification, then workshop engineers

can assemble the parts. Any problem on assembling will generate a part mod-

ification request. When workshop engineers finish the assembling of the car,

the test engineers will conduct a sequence of tests, where each test will gen-

erate a report. The report may recommend some modifications of the electric

engine or other parts. In each step, there are several options for tasks and

control flow constraints. The final decisions depend on the type of parts, the

budget, testing standards, etc. For example, different countries have different

car safety standards. If the automobile company wants to sell the new car in

a particular country, then testing based on that country’s car safety standard

needs to be used.

The process of developing a new sedan car by replacing the petrol engine with

an electronic engine will take at least half a year with hundreds of new parts

to be designed, developed and manufactured. There are an explosive number of tasks

48 Generating Process Schemas for Composite Services

and control flow relationships in this R&D product development process. When pre-

defining process schemas, only the general knowledge (i.e., business rules) can be

used. The schemes need to consider all the possible options. However, it is almost

impossible to predefine process schemas for such an R&D product process since it is

too complex and time consuming to exhaustively enumerate all the possible options.

This calls for dynamic generation of composite service schemas based on both busi-

ness rules and context information (such as user profiles that define users’ role, pref-

erence, etc.). For example, during the R&D process, a user (i.e., engineer designer)

is assigned to develop a new electronic engine under $2000K budget. In this case, a

composite service can be generated based on current available services, requirement of

the new electronic engine, her profile and the budget constraints, without exhaustively

enumerating all the possible options in engine development. Another challenge is that

this R&D product process is a long running process, during which many changes may

occur. For example, during the enactment of this R&D product process, better quality

materials or new batteries that can be used for the electric engine may become avail-

able. The R&D product process needs to adapt to these changes by modifying process

schemes. In production workflows, such adaptations are very costly, especially when

workflow schemas are complex. However, if the composite service schema is dynam-

ically generated, adaptation can be done by re-generating composite service schemas.

In the following sections, we will use this motivating example to illustrate how com-

posite service’s process schemas are generated in our framework.

3.3 Design Overview

In this section, some basic definitions and concepts in dynamic process schema gener-

ation are explained first. We then present the main characteristics of our approach.

3.3 Design Overview 49

3.3.1 Preliminaries

In this subsection, we introduce some important concepts and definitions that are used

in process schema generation.

Service Ontology

A service ontology (see Figure 3.2) specifies a common language agreed by a com-

munity (e.g., automobile industry). It defines basic concepts and terminologies that

are used by all participants in that community. In particular, a service ontology speci-

fies a domain (e.g., Automobile, Healthcare, Insurance), a set of synonyms,

which is used mainly to facilitate flexible search for the domain (for example, the do-

main Automobile may have synonyms like Car), and a set of service classes that

are used to define the property of the services. A service class is further specified by

its attributes and operations. For example, the attributes of a service class may include

access information such as URL. Each operation is specified by its name and signature

(i.e., inputs and outputs). Apart from the service classes that are used to describe func-

tional properties of services, service ontology also specifies the services quality model

that is used to describe non-functional properties of the services, e.g., execution dura-

tion of an operation. The services quality model consists of a set of quality dimensions

(i.e., criteria). For each quality dimension, there are three basic components: what’s

the definition of criteria; which service elements (e.g., services or operations) it relates

to; how to compute or measure the value of criteria. More details about the service

quality model can be found in the next chapter.

The service ontologies are organized as a tree structure: the root service ontology can

be used by all the communities; child nodes automatically inherit parent’s properties

such as service classes, and can extend service classes that are used in their own com-

munities. In our framework, business objectives, business rules, and process schemas

50 Generating Process Schemas for Composite Services

Domain

Service Ontology

Synonyms

*

1

class
Legend: *

*

input output

*

Service Class

*

1

1

11

Service
Quality Model

Quality Criteria Attribute Operation Operation Name

ParameterSpecification

1 1
*

11
*

* 1 to many associations

associations

Figure 3.2: UML Class Diagram for Service Ontology

are specified over defined sets of service ontologies.

Initial State and Business Objectives

An initial state represents an end user’s starting point (i.e., initial task) of a business

process, while business objectives represent goals (e.g., target tasks) that the user wants

to achieve. We develop an XML schema based language that allows users to specify

their initial state and business objectives. In our framework, both initial state and

business objectives are defined in terms of a pre-defined service ontology. For both

initial state and business objectives, users need to specify the operation name as defined

in the service ontology. In initial state, users can provide the constraints on the input

of the operation; while in the business objectives, users can provide constraints on

both input and output of the operation. In Table 3.1, the XML document illustrates a

business objective where a user wants to change a leaded petrol engine in a sedan car

to an unleaded petrol engine.

Business Rule Templates

Business rules are statements about how business is conducted, i.e., the guidelines

and restrictions with respect to business processes in an enterprise. We propose using

3.3 Design Overview 51

< businessObjectives >
<User Name=”Gerg” Role=”Chief Engineer” / >
<targetTask Name=”change engine for sedan”>
<ontology-service NAME=”Automobile Engine” / >

< operation NAME=”changeEngine” >
< data-constraint >

<variable dataName=”car” dataItemName=”type” />
<op value=”=”/>
<value>”sedan”</value>

</data-constraint >
< data-constraint >

<variable dataName=”originalEngine” dataItemName=”type” />
<op value=”=”/>
<value>”Leaded Petrol”</value>

</data-constraint >
< data-constraint >

<variable dataName=”newEngine” dataItemName=”type” />
<op value=”=”/>
<value>”Unleaded Petrol”</value>

</data-constraint >
</operation>

</targetTask >
</ businessObjectives >

Table 3.1: Business Objective

business rule templates to facilitate the description of business policies. There are two

categories of business rule templates:

1. Service Composition Rules. Service composition rules are used to dynam-

ically compose services. There are three types of service composition rules,

namely backward-chain rules, forward-chain rules and data flow rules.

• Backward-chain rules indicate preconditions of executing a task. A pre-

condition can specify data constraints, i.e., some data must be available

before the execution of the task. A precondition can also be a flow con-

straint, i.e., execution of the task requires other tasks to be completed be-

forehand. A backward-chain rule is specified using the following struc-

ture:

BACKWARD-CHAIN RULE < rule-id>

52 Generating Process Schemas for Composite Services

TASK < task> CONSTRAINT <constraint>

PRE-CONDITION <pre-condition>

The following is an example of a backward-chain rule. This rule defines

that if a user wants to conduct a costAnalysis task on a new part,

where the part’s type is a car engine, then the systemTest and

clashTest tasks need to be completed first.

BACKWARD-CHAIN RULE bcr1

TASK costAnalysis

CONSTRAINT costAnaysis::partType== ’car

engine’

PRE-CONDITION complete task (systemTest)

AND complete task (clashTest)

• Forward-chain rules indicate that some tasks may need to be added or

dropped as a consequence of executing a given task. Forward-chain rules

are defined as ECA (Event-Condition-Action) rules:

FORWARD-CHAIN RULE <rule-id>

EVENT <event> CONDITION < condition>

ACTION< action>

In the following forward-chain rule, if task engineCostAnalysis

is completed and the makingCost of the new part is greater than

$2000K, then the task audit 2 needs to be executed after the task

costAnalysis.

FORWARD-CHAIN RULE fcr1

EVENT

TaskEvent::complete task(engineCostAnalysis)

3.3 Design Overview 53

CONDITION

(engineCostAnalysis::makingCost>

$2000K)

ACTION execute task(audit 2)

• Data flow rules are used to specify data flows among tasks. Each task

in a business process may have input and output parameters. For those

tasks that require an input, data flow rules can be used to specify the data

source. The general form of a data flow rule is given as follows:

DATA FLOW RULE < rule-id>

CONSTRAINT <constraint>

DATA-SOURCE TASK

< task> DATA-ITEM< data-item>

DATA-TARGET TASK <

task>DATA-ITEM< data-item>

A data source can be a task or human users. For example, in the fol-

lowing data flow rule, task designEngine’s output engineType

provides input for task testEngine’s engineType.

DATA FLOW RULE dfr1

DATA-SOURCE TASK designEngine DATA-ITEM

output::engineType

DATA-TARGET TASK testEngine DATA-ITEM

input::engineType

2. Service Selection Rules. Service selection rules identify a particular algo-

rithm or strategy to be used for choosing a Web service to execute tasks during

the runtime. The general form of a service selection rule is as follows::

SERVICE SELECTION RULE <rule-id>

54 Generating Process Schemas for Composite Services

TASK< task> CONSTRAINT< constraint>

SERVICE-SELECTION<

service-selection-method>

For each task, there is a set of candidate Web services that can perform the

task. Currently, we adopt a Multiple Criteria Decision Making (MCDM) [59]

approach to select Web services. However, methodologies other than MCDM,

such as auction or negotiation, can also be adopted by the system to support se-

lection of Web services. MCDM is a configurable decision model for quality-

based Web services selection. This decision model takes into consideration

some service quality criteria such as execution price, execution duration, etc.

Our implementation of MCDM based Web service selection can be found in

the next chapter. In the following service provider selection rule, if the task

is buildEngine and the engine’s weight is greater than 3000Kg, execution

price is used as the criteria to select Web services.

SERVICE SELECTION RULE ssr1

TASK TaskEvent::start task(buildEngine)

CONSTRAINT (bulidEngine::engine.weight >

3000Kg)

SERVICE-SELECTION service selection(MCDM,

execution price)

In our framework, we expect domain experts to define the various business rules using

the above rule templates. For example, domain experts in service outsourcing may

define service selection rules, while domain experts in product life cycle may define

service composition rules.

3.3 Design Overview 55

Process Schema

A process schema of a composite service is defined in terms of service ontologies. It

consists of a collection of generic tasks combined in certain ways. In our framework,

we adopt Statechart [41] to represent the process schema. Statechart is the board ex-

tension of the conventional formalism of state machines and state diagrams with essen-

tially three elements, dealing, respectively, with the notions of hierarchy, concurrency

and communication. An example of process schema or a business process template

for making new part is shown graphically in Figure 3.3. The choice of Statechart

for specifying composite Web services is motivated by two main reasons: (i) State-

chart have a well-defined semantics; and (ii) they offer the basic flow constructs found

in contemporary process modelling languages (i.e., sequence, conditional branching,

structured loops, concurrent threads, and inter-thread synchronization). The first char-

acteristic facilitates the application of formal manipulation techniques to Statechart

models, while the second characteristic ensures that the service composition mecha-

nisms developed in the context of Statechart, can be adapted to other process modelling

languages, like for example those that are being designed by Web services standard-

ization efforts (e.g., BPEL4WS, BPML).

A statechart is made up of states (also called tasks) and transitions. In the proposed

framework, the transitions of a Statechart are labelled with events, conditions, and as-

signment operations over process variables. States can be basic or compound. Basic

states are labelled with an operation name in a service class of a service ontology.

Compound states contain one or several statecharts within them. Specifically, com-

pound states come in two forms: OR and AND states. An OR-state contains a sin-

gle Statechart, whereas an AND-state contains several Statechart (separated by dashed

lines) which are intended to be executed concurrently. Accordingly, OR-states are used

as a decomposition mechanism for modularity purposes, while AND-states are used to

express concurrency: they encode a fork/join pair. The initial state of a statechart is

56 Generating Process Schemas for Composite Services

denoted by a filled circle, while the final state is denoted by two concentric circles: one

filled and the other unfilled.

There are two types of tasks in process schemas, namely an atomic task and composite

task. The atomic task can be executed by a primary Web service, while a compos-

ite task is a sub-process that contains multiple primary Web services (i.e., composite

services) to execute it. In our system, both the process schema for a whole business

process and the sub-process schemas for the composite tasks in the business process

are not statically predefined, they are dynamically generated at runtime.

It should be noted that tasks in process schemas are not bound with any Web services

at definition time. Transitions represent the control flows in schemas and are defined

by ECA (Event Condition Action) rules. The basic semantics of an ECA rule is as

follows: when an event occurs, the condition is evaluated. If the condition evaluates to

true, then the corresponding action is activated. Assume there is a transition between

task ti and tj , then the transition is denoted as TSti→tj .

Each task in a process schema can be seen as having an input and an output. The

input and output can be referenced in any of the conditions and actions in transitions.

In addition to input and output, the conditions and the actions of a transition in a

statechart may refer to other variables, namely internal variables. An internal variable

can be used in , e.g., one of the condition part of a transition. To summarize, a variable

appearing in the process schema can be: an input of a task, an output of a task, or an

internal variable. The value of a variable can be: (i) requested from the user during

the execution of the composite service, or (ii) obtained from the output of a task in the

composite service. Accordingly, there are two forms of data flows in process schemas,

i.e., data flow between two tasks, denoted as DFti→tj (d), which representing task ti

provides data (i.e., variable) d to task tj; data flow between the user and tasks, denoted

as DFuser→tj(d), which representing user provides data d to task tj;

3.3 Design Overview 57

Cost Analysis

Clash Testing Clash Analysis

Make a New Part Verify Testing

Data Control Flow Data flow Initial State Final StateLegend: State/Task

PSfrag replacements

ta

tb
tc

tdt1

t2

t3 t4

t5t6
Ws1

Ws2

Ws3

(We1)
(We2)

Figure 3.3: Defining Process Schema Using a Statechart

Organizational Structure

In our framework, the organizational structure is used to glue the basic elements in an

organization (real or virtual) such as Department, Role, User, Business Rule, and Ser-

vice together (see Figure 3.4). An organization is subdivided into several departments

that again may consist of other departments in a hierarchical structure. Each depart-

ment is associated with a service ontology, a set of roles, users, and services. Every

role is associated with a set of business rules. Every user is assigned one or more

roles describing his/her context-dependent behavior and has his/her own user profile.

The information in a user profile includes the user’s personal information, roles in the

organization, and preferences. In DYflow, the user profile facilitates the generation

and execution of composite services by providing the initial context information and

users’ preferences. When the system generates composite service schemas, personal

information provides input for executing composite services, user’s role information

Organization

DepartmentService Ontology

Service User

Role
* 1

1

1

*

*1 1

*

*

*

*
1 *

User Profile1 1

1 *

Legend: agregation associations class

Business Rule

Figure 3.4: UML Class Diagram for Organizational Structure

58 Generating Process Schemas for Composite Services

FORWARD-CHAIN RULE fcr3
EVENT

TaskEvent::complete task(partPriceQuatation)
CONDITION (partPriceQuatation::price >

orderBudgetLimitation)
ACTION execute task(budgetApproval)

Table 3.2: A Forward-chain Rule

is used to identify relevant business rules, and preferences are used to customize the

business rules. For example, in the forward-chain rule fcr3 (see Table 3.2), the vari-

able orderBudgetLimitation in the condition statement is left uninstantiated.

This value will be substituted by a preference (e.g., orderBudgetLimitation =

$20K) in a user’s profile. It should be noted that different users may have different

constraints for orderBudgetLimitation.

3.3.2 Incremental Service Composition

Instead of using a single composite service schema to represent the whole business

process, in our framework, we identify different levels of process schema. A process

schema that is used to initiate a new business process is defined as the top-level process

schema; a process schema that is used to execute a composite task in a process schema

is defined as task-level process schema (i.e., sub-process schema). In addition, these

two types of process schemas are organized in a hierarchical structure as shown in

Figure 3.5. It should be noted that all the process schemas in the system are created

on the fly based on user’s business objectives using the business rules; the composition

hierarchy is built from an initial top-level process schema which gets expanded into

a composition hierarchy at runtime. In this subsection, we first give the procedure

for process schema generation, then use the motivating example to illustrate how the

process schema generator works.

3.3 Design Overview 59

�������������������� ��������������
�������������� ����������

����������

�� 	�	�	�		�	�	�	

�
�
�

�
�
�

������������������������
�
�
�

�
�
�

���������� ����������

���������� ��������������
���������������������������������� ��������������

����������

�������������������� ��������������
���������� ����������

����������
�������������������� ����������

 � � � � !�!�!!�!�!
"�"�""�"�" #�#�##�#�#

$�$�$$�$�$%�%�%�%%�%�%�%&�&�&&�&�& '�'�''�'�'
(�(�((�(�(

Task refinement

Top level Composite Service Task level Composite Service

)�)�)�)�))�)�)�)�))�)�)�)�)*�*�*�*�**�*�*�*�**�*�*�*�*

Legend:

Figure 3.5: Composition Hierarchy

Dynamic Process Schema Generation and Composite Service Execution

Service composition (both top-level and task-level) generation and execution in our

framework involves three major steps (see Figure 3.6): process schema generation,

process schema selection and composite service execution.

1. Process schema generation. We formulate the problem of process schema

generation as a planning problem, which has three inputs:

(a) A description of initial state and user’s context (i.e., user profile),

(b) A description of user’s business objectives, and

(c) A set of service composition rules (i.e., domain theory).

It should be noted, in the input, the service composition rules are associated

with the user’s role that is specified in user profile. The associations between

the business rules and roles are defined in organizational structure. The output

Inference

Forward−chain
Inference

Backward−chain
Inference

Business
Objectives

A set of
schema

Execution

Process Schema Generation

Process Schemas
Selection

Process Schema
A Process

Composite Service Execution Result

Runtime Inference

Data flow

Figure 3.6: Process Schema Generation, Selection and Composition Service Execution

60 Generating Process Schemas for Composite Services

is a set of composite service schemas that can be instantiated and executed

to achieve the business objectives. We propose a three-phase rule inference

mechanism to generate composite service schemas. During the first phase, the

backward-chain inference discovers all the necessary tasks (i.e., backward-

chain task) that must be executed to achieve the business objective. The sec-

ond phase consists of using the forward-chain inference to determine which

tasks may potentially be involved as a consequence of executing tasks inferred

in the previous phase. The final phase involves the data flow inference mech-

anism. Details about inference algorithms can be found in next section.

2. Process schema selection. In some cases, more than one process schema

is generated by the three-phase inference mechanism. For example, if there

are more than one backward-chain rules for the same task, then there may

be multiple ways to achieve a business objective. In such case, the choice of

process schema is based on a selection policy involving parameters such as

total execution duration, and execution price, etc. By deriving an execution

plan for the execution of the composite service based on the current available

Web services, users are offered the opportunities to select one of the process

schemas. Detailed discussion on execution planning can be found in the next

chapter.

3. Composite service execution. In this step, the system starts executing the se-

lected composite service. At the same time, forward-chain rules are re-applied

at runtime to constantly monitor the state of the composite service execution

by runtime inference. The runtime inference rules use a broad range of run-

time events to drive the rule inference. This differs from the forward-chain

inference performed at pre-execution time that assumes all the component

services are able to complete the task and use start and termination events

only.

3.3 Design Overview 61

report

Parts design,

 & procurement
development

specification
E’ engine 3D

+,+,+,++,+,+,++,+,+,++,+,+,+-,-,-,--,-,-,--,-,-,--,-,-,-

.,.,.,.,..,.,.,.,..,.,.,.,./,/,/,/,//,/,/,/,//,/,/,/,/ 0,0,0,00,0,0,01,1,11,1,1

specification
Parts 3D

Parts
specification

Data Control Flow Data flow Legend: State/Task

Snapshot of composition hierarchy

Top level process schema Task level process schema

design
Parts layout

development
New engine

testing
Assembling &

Layout design

Figure 3.7: Top Level Process Schema for Replacing Engine

Example

In this subsection, we use the running example to present a detailed scenario on how

the process schema generator incrementally composes a composition hierarchy for an

R&D product process. We assume that the business rule base has been built and is

ready for rule inference.

• Step 1: Creating a top level process schema and starting the composite service

instance. In this step, the chief engineer provides a description of his/her busi-

ness objective (i.e., replacing engine) as input to the process schema

generator. The process schema generator will locate the user’s profile and

appropriate business rules to generate an XML document that represents a

statechart of service. The graphical presentation of the statechart is shown

in Figure 3.7. After creating the top level composite service, the chief en-

gineer will initiate the R&D product process. The task of new engine

development will be assigned to an engine designer.

• Step 2: Creating task level process schema and executing the composite ser-

vice instance. Assuming that an engine designer is assigned to execute the

first task new engine development in the top level composite service,

the process schema generator needs to generate a composite service for the

engine designer to execute this task. Having the business objective and the

62 Generating Process Schemas for Composite Services

Self Engine
Development

specification
Performance

specification
Engine

specification
Engine

23232322323232232323223232324343434434343443434344343434
53535535356363663636

737373737737373737737373737737373737838383838838383838838383838838383838 93939399393939:3:3::3:3:

Budget < 2000k

Budget >= 2000k

Cost
evaluation

Engine Performance
Requirement Analysis

Data Control Flow Data flow Legend: State/Task

Snapshot of composition hierarchy

Top level process schema Task level process schema

specification
Performance

Outsouring
engine

Performance
verfication

Figure 3.8: Task Level Process Schema for New Engine Development

engine designer’s profile as initial context, the process schema generator can

create a task level composite service schema as shown in Figure 3.8. It should

be noted that, for a task in a composite service, either an elementary service

is used to execute it, or the process schema generator creates a statechart to

execute it. For example, for the task of Cost Evaluation, since there is

no service composition rule for it, an elementary service is used to execute

it. However, for the task of Outsourcing Engine, since there is a set of

service composition rules, the process schema generator creates a composite

service to execute it. In summary, whenever a composite task is initiated in a

composite service (either top level or task level), a task level process schema

will be created and that schema will be added to the composition hierarchy

(see Figure 3.9).

• Step 3: Returning execution result to upper level process. When the task level

composite service outsourcing engine is completed, the flow control

;<;<;<;<;;<;<;<;<;;<;<;<;<;=<=<=<==<=<=<==<=<=<= ><><><><>><><><><>><><><><>?<?<?<??<?<?<??<?<?<?
@<@<@<@@<@<@<@A<A<A<AA<A<A<A

B<B<BB<B<BC<C<CC<C<C D<D<D<DD<D<D<DD<D<D<D
E<E<E<EE<E<E<EE<E<E<E
F<F<F<FF<F<F<FF<F<F<FG<G<G<GG<G<G<GG<G<G<G H<H<HH<H<HH<H<HI<I<II<I<I

I<I<IJ<J<J<J
J<J<J<JK<K<KK<K<K
L<L<L<LL<L<L<LL<L<L<LM<M<MM<M<MM<M<M

N<N<NN<N<NN<N<NO<O<OO<O<OO<O<O P<P<P
P<P<PP<P<P
Q<Q<QQ<Q<QQ<Q<Q

R<R<R<R<RR<R<R<R<RR<R<R<R<RS<S<S<SS<S<S<SS<S<S<S
T<T<T<TT<T<T<TU<U<U<UU<U<U<U V<V<V<VV<V<V<VV<V<V<VW<W<W<WW<W<W<WW<W<W<W

X<X<X<XX<X<X<XY<Y<Y<YY<Y<Y<Y

Z<Z<Z<ZZ<Z<Z<ZZ<Z<Z<Z[<[<[<[[<[<[<[[<[<[<[\<\<\\<\<\\<\<\]<]<]]<]<]]<]<]Snapshot 1 Snapshot 2 Snapshot 3 Snapshot n

Legend: Task refinement Top level Composite Service Task level Composite Service

Figure 3.9: Snapshots for Composition Hierarchy

3.4 Rule Inference for Process Schema Generation 63

returns to the level above it, which is the new engine development.

The execution result of the composite service will be used in the upper level

composite services to execute data flows and control flows. The R&D product

process is completed when the execution of the top level composite service is

finished.

The above scenario shows that the system only creates the necessary composite service

schemas for the R&D product process. It does not enumerate all the possible tasks,

control flows and data flows. Instead of using a single, large, one-level schema to rep-

resent the whole R&D product process, we use a composition hierarchy that consists of

multiple nested composite services. This modular approach allows distinct processes

to be encapsulated in a composite service. This representation is more scalable and

makes it easy to implement runtime modification on composite services.

To illustrate the viability of this architecture, and show how to incrementally gener-

ate composition hierarchies, we have implemented an automobile R&D application.

We start the application with about 100 business rules. The application incremen-

tally composes a composition hierarchy to manage the replacing engine R&D

product process (see Section 3.2), where the composition hierarchy consists of 15 pro-

cess schemas (120 tasks). The application shows that the system can efficiently create

process schemas to support R&D processes using the rule inference approach. More

details about the implementation can be found in Chapter 6.

3.4 Rule Inference for Process Schema Generation

As previously mentioned, the creation of process schemas are achieved through a com-

bination of backward-chain inference, forward-chain inference, and data flow infer-

ence. In this section, we first present our approach on creating and updating business

rules, then give the details on rule inference algorithms for process schema generation.

64 Generating Process Schemas for Composite Services

3.4.1 Creating and Updating Business Rules

When users add new rules or update existing rules, the system needs to check whether

there are conflicts among the rules. We distinguish two different types of conflict:

absolute conflict and partial conflict. For example, there are two forward-chain rules

fcr1 = E|C|A and fcr2 = E
′ |C ′|A′ , if A = ¬A

′ , E = E
′ and C = C

′ , then fcr1

and fcr2 have an absolute conflict; while, if A ⊂ ¬A
′

orA ⊃ ¬A
′ , E = E

′ , C 6= C
′

and C
⋂

C
′ 6= ∅, then fcr1 and fcr2 have a partial conflict. In our framework, the

business rule base accepts partial conflicts and rejects absolute conflicts since partial

conflicts do occur in business policies. For example, the following two rules (i.e., bcr2

and fcr2) have a partial conflict since when partType is engine, fcr2 drops task

orderPart while bcr2 adds task orderPart. Such a conflict indicates that there

are business policies which do not allow for the simultaneous ordering of a new engine

and the making of the same new engine.

3.4.2 Backward-chain Inference

In this subsection, we introduce the backward-chain inference algorithm (see Algo-

rithm 1). When a system receives a user’s objective, it must determine the tasks that

need to be accomplished to achieve the business objective. This is done as follows:

1. It searches the backward-chain rules for the target task stated in the business

objective. Then, starting at the target task, rules are used to infer backward-

chain tasks that are components of the generated process schema. The algo-

rithm recursively infers all the backward-chain tasks and the inference will

stop when there are no new backward-chain tasks found or the initial state is

reached.

2. Some backward-chain rules may have AND or OR operators in the action part.

3.4 Rule Inference for Process Schema Generation 65

Task A Task B Task C

B is backward−chain task of C, A is backwad−chain task of B,
C is backward−chain task of A

Figure 3.10: Cyclic Graph

In the case of an AND operator, both of the tasks are added into the process

schema. In the case of an OR operator in the action part, more than one process

schema is generated.

3. If the inferred task is already present in the process schema, the algorithm

detects a cycle in the generated process schema (see example in Figure 3.10).

The detection of a cycle indicates that there is a conflict among backward-

chain rules, which causes the target task to be unreachable. In such a case, the

process schema will not be able to achieve the business objective and thus no

process schema is generated.

An example of a fragment of process schema generated by two backward-chain in-

ference rules is illustrated in Figure 3.11. In this example, the target task is Create

New Part. Based on the backward-chain rule rb1, a Clash Analysis task and

BOM Rollup task are added into the process schema as backward-chain tasks. Since

a Clash Analysis task also has a backward-chain rule rb2, a Clash Design

task is added into the process schema as the backward-chain task of the Clash

Analysis task.

3.4.3 Forward-chain Inference.

A process schema that is generated by the backward-chain inference is not complete,

since new tasks may be added to the process schema at runtime depending on the result

66 Generating Process Schemas for Composite Services

Algorithm 1: Backward-chain Inference
input : Initial State s, Target Task t, Backward-chain rules
output : W = { W1,W2, ...,Wn}, where Wi is a process schema.
begin

Task Pool TP = {t}

W = ∅ ; T = {t} ; W = W ∪ {T}; W = T

P is a set of 2-tuple 〈TP,W 〉; P = {〈TP, W 〉}

for each 〈TPi,Wi〉 in P do

while TP 6= {s} do

Current Task Pool is TP ; Current schema is W

Get a task t from TP and t /∈ s;

TP = TP − {t}

BCR is a set of backward-chain rules for t

if BCR 6= ∅ then

for each rule r in BCR do

if there is not OR operator in r’s action then

t′ is the backward-chain task in r

if t′ /∈ t.BCTasks then

t.BCTasks = t.BCTasks ∪ {t′}; t.BCRules = t.BCRules ∪ {r}

W = W ∪ {t′}; TP = TP ∪ {t′}

if t′ ∈ W ∧ There is a cyclic graph in W then

W = W - { W }; remove〈TP, W 〉 from P ;

else

for each element in OR operator do

if A is the first Element in OR operator then

t′ is the backward-chain task in A

if t′ /∈ t.BCTasks then

t.BCTasks = t.BCTasks ∪ {t′}

t.BCRules = t.BCRules ∪ {r}

W = W ∪ {t′}; TP = TP ∪ {t′}

if t′ ∈ W ∧ There is a cyclic graph in W then

W = W - { W }; remove〈TP, W 〉 from P ;

else

TP
′

= TP ; W
′

= W ; W = W ∪ {W
′

}

add 〈TP
′

,W
′

〉 into P ;

t′ is the backward-chain task in A

if t′ /∈ t.BCTasks then

t.BCTasks = t.BCTasks ∪ {t′}

t.BCRules = t.BCRules ∪ {r}

W
′

= W
′

∪ {t′}; TP
′

= TP
′

∪ {t′}

if t′ ∈ W
′

∧ There is a cyclic graph in W
′

then

W = W - { W
′

}; remove 〈TP
′

,W
′

〉 from P ;

end

3.4 Rule Inference for Process Schema Generation 67

b2r
b1r

b1r b2r

^_^_^_^_^_^^_^_^_^_^_^^_^_^_^_^_^`_`_`_`_``_`_`_`_``_`_`_`_` abababaabababaabababacbcbccbcbccbcbc
Target Task Backward−chain TaskLegend

dbdbdbddbdbdbdebebebeebebebe

fbfbfbfbffbfbfbfbffbfbfbfbfgbgbgbgbggbgbgbgbggbgbgbgbg
hbhbhbhhbhbhbhibibibiibibibi j_j_j_j_j_j_jj_j_j_j_j_j_jj_j_j_j_j_j_jj_j_j_j_j_j_jk_k_k_k_k_k_kk_k_k_k_k_k_kk_k_k_k_k_k_kk_k_k_k_k_k_k

 Clash Design Clash Analysis

 BOM Rollup

TASK CreateNewPart CONSTRAINT CreateNewPart::partType ==engine

TASK ClashAnalysis

PRE−CONDITION (finish_task(ROM Rollup) AND (finish_task(Clash Analysis)

PRE−CONDITION finish_task(Clash Design)

BACKWARD CHAIN RULE bcr1

BACKWARD CHAIN RULE bcr2

Create New Part

Figure 3.11: Backward-chain Inference

of the execution of certain tasks. In this subsection, we introduce a forward-chain

inference algorithm (see algorithm 2) to discover additional tasks that may be added

to process schemas. In the algorithm, for each backward-chain task t in the process

schema W , we assume that R is the set of forward-chain rules that are triggered by the

event of completing task t. For each rule r in R, the condition part is represented as a

condition tree. The condition tree is used to evaluate the condition part. The definition

of the condition tree is as follows:

Definition 1 (Condition Tree). CT is a Condition Tree of the condition C in rule r, if

CT has two types of nodes: parent nodes and leaf nodes. Parent nodes represent the

logical operators in the condition C. Each atomic condition in C is represented by two

kinds of leaf nodes that are connected by an AND node. One of leaf node represents

availability of data while the other represents the constraints on the data. �

The evaluation of a condition tree is done as follows: When the data is available,

this leaf node is assigned a true value; otherwise it is assigned an uncertain

value. The semantics of expression that involves an uncertain value is given in

Table 3.4.3. Constraints on the data are expressed by a simple atomic condition, for

example, budget> $1000. The condition tree is evaluated from leaves to parent,

until the root node. The result of the root node presents the value of the condition that

the tree presents.

Example 1 (Condition Tree). Figure 3.12 gives the condition tree of condition C,

where C = ((Role = TestEngineer) ∧ (partName = Engine)) ∨ ¬ ((Role =

68 Generating Process Schemas for Composite Services

Operator Expression Result
True ∧ Uncertain Uncertain

AND False ∧ Uncertain False
Uncertain ∧ Uncertain Uncertain

True ∨ Uncertain True
OR False ∨ Uncertain Uncertain

Uncertain ∨ Uncertain Uncertain
NOT ¬ Uncertain Uncertain

Table 3.3: Operation Result on Uncertain

SystemEngineer) ∧ ((Budget > $1000))). �

If the condition tree evaluates to true, then the action in a forward-chain rule is

enabled. At the same time, the algorithm checks whether there are conflicts among the

rules. There are two types of conflicts: a conflict between a forward-chain rule and a

backward-chain rule; or a conflict between two forward-chain rules. For example (see

Figure 3.14 case 1), backward-chain rule rb adds task ti into process schemas, while

forward-chain rule rf drops task tj from process schemas. If the condition in rf is true,

then there is a conflict between the forward-chain rule and the backward-chain rule. In

another example (see Figure 3.14 case 2), forward-chain rule rf1 adds the task tj, while

forward-chain rule rf2 drops the task tj . Here there is a conflict between rf1 and rf2.

Such conflicts indicate that the target task is unreachable in the process schema. In this

case, the inference procedure terminates and the process schema is abandoned. If there

State(Budget) Budget > 1000

AND AND AND AND

ANDAND

NOT

OR

State(Role) Role=TestEngineer

State(partName) partName=Engine
State(Role) Role =SystemEngineer

Figure 3.12: Condition Tree

3.4 Rule Inference for Process Schema Generation 69

AND AND AND AND

ANDAND

NOT

OR

T F

F

F

T

T:70%

T:30%

T

T T

T:30%

T:70%

State(Role) Role=TestEngineer

State(partName) partName=Engine
State(Role) Role =SystemEngineerT T

T:30%T

State(Budget) Budget > 1000

Figure 3.13: Annotated Condition Tree

exists a cyclic graph in the generated process schema, no process schema is generated

and the inference procedure terminates as well.

In a situation where the condition tree is evaluated to uncertain, the algorithm

conducts a non-deterministic inference. The basic idea behind a non-deterministic

inference is to use past task execution results to determine the value of condition tree.

A description of the non-deterministic inference is given as follows:

1. It identifies all the data required by the rule conditions. If we assume all

the data required by the rule r is D and if current available data is Dc, then

Du(Du = D − Dc) is the set of unknown data that is required by the rule r.

2. For each d ∈ Du, the algorithm searches its data source and computes its

Frequency Table (see Definition 2) that enables the system to postulate the

likelihood that the condition is true or false. For example, d ∈ Du, if d is

an output of task t in composite service W , we assume d is provided by task

t. By applying the service provider selection rules on task t, the algorithm

locates a service provider. By querying the service provider’s past execution

results that are logged in the system, a frequency table is generated.

3. Assuming that for each d (d ∈ Du), State(d)= true, the algorithm evalu-

ates the atomic conditions based on the frequency table, which generates an

annotated condition tree as illustrated in Figure 3.13. In this annotated tree,

70 Generating Process Schemas for Composite Services

rb

rb rf

rflmlmlmllmlmlmllmlmlml
nmnmnmnnmnmnmnnmnmnmn

opopopopoopopopopoopopopopo
qpqpqpqpqqpqpqpqpqqpqpqpqpq

t jt irmrmrmrrmrmrmrrmrmrmr
smsmsmssmsmsmssmsmsms tutututututututtutututututututtutututututututvuvuvuvuvuvuvuvvuvuvuvuvuvuvuvvuvuvuvuvuvuvuv

t jt i

Case 1: conflict between backward−chain rules and forward−chain rule

wpwpwpwpwwpwpwpwpwxpxpxpxpxxpxpxpxpxyuyuyuyuyuyuyyuyuyuyuyuyuyyuyuyuyuyuyuyzuzuzuzuzuzuzzuzuzuzuzuzuzzuzuzuzuzuzuz {m{m{m{{m{m{m{|m|m|m||m|m|m|
Legend Backward−chain Task Forward−chain TaskTarget Task

rf1 rf2and

rf1}m}m}m}}m}m}m}~m~m~m~~m~m~m~ �p�p�p�p�p��p�p�p�p�p�
�p�p�p�p�p��p�p�p�p�p�t jt a rf2�m�m�m��m�m�m��m�m�m��m�m�m� �p�p�p�p��p�p�p�p�

�p�p�p�p��p�p�p�p�t jt a

Case 2: conflict between two forward−chain rules

Figure 3.14: Conflict Between the Rules

the root node gives the probability that the condition tree is true.

4. If the probability of the enabling task is greater than a given threshold θ then

the algorithm enables the action in the rule.

Definition 2 (Frequency Table). FT is Frequency Table of data item A, if FT =

{v1, v2, ...vn}, where vi ∈ FT , vi is a 2-tuple 〈per, ran〉, where ran is the value range

of the data item A, per is the probability of data item A’s value in the range. �

Example 2 (Frequency Table). FT is Frequency Table of data item budget,

FT = {v1, v2, v3}, where v1 = 〈0.2, [1000, 1500]〉, v2 = 〈0.4, [1500, 2500]〉, v3 =

〈0.4, [2500, 3500]〉 �

Figure 3.15 gives an example of forward-chain inference. In this example there is

a forward-chain rule rf1 for Clash Analysis task. Since the condition part is

b2r ���������������������������
���������������������������
 Cost Audit�� Clash Design

�������������������������������������3�3�3�3�3�3�3��3�3�3�3�3�3�3��3�3�3�3�3�3�3��3�3�3�3�3�3�3�
�3�3�3�3�3�3�3��3�3�3�3�3�3�3��3�3�3�3�3�3�3��3�3�3�3�3�3�3� ��������������������������������

Target Task Backward−chain TaskLegend Forward−chain Task

���������������������������� BOM Rollup

r f2

r f1

b1r
r f2

rf1��

������������������������������������
�3�3�3�3�3�3��3�3�3�3�3�3��3�3�3�3�3�3��3�3�3�3�3�3��3�3�3�3�3�3��3�3�3�3�3�3�Create New Part

100%
Clash Analysis

Purchase Audit

90%

EVENT TaskEvent:: finish_task(Clash Analysis)

ACTION add_task(Cost Audit)

EVENT TaskEvent:: finish_task(BOM Rollup)

ACTION add_task(Purchase Audit)

FORWARD CHAIN RULE fcr1

FORWARD CHAIN RULE fcr1

CONDITION BOMRollup::purchaseCost > $400

Figure 3.15: Forward-chain Inference

3.4 Rule Inference for Process Schema Generation 71

empty, the probability of adding Cost Audit task is 100%. For BOM Rollup

task, the forward-chain rule’s condition is PurchaseCost>$400. Based on past

task execution results, if the probability of PurchaseCost>$400 occurring is 90%,

then the probability of enabling the rule is 90%. So, a Purchase Audit task is

added into the process schema with probability of 90%.

3.4.4 Data Flow Inference

After the backward chain inference and the forward chain inference, tasks and control

flows of a process schema W are generated. The third or the final inference phase

involves applying the data flow inference rules to discover the data flows among the

tasks. If each task ti requires any input, data flow inference is invoked to discover the

data sources. It is done as follows:

1. For each data item d in task ti’s input, look up the associated data flow rules in

the rule base. Assuming that a set of data flow rules are associated with data

item d and a set of data sources DS can be located. We identify the correct

data source of data flows by checking the following four cases:

• If a data source in DS is the next task following task A in process schema

W , then the data source should be excluded from DS;

• If a data source in DS is not a task in process schema W , then the data

source should be excluded from DS;

• If a data source in DS is a previous or a concurrent task of the task ti in

the process schema W . Assume the data source is task is tj , then we can

denote a data flow as DFtj→ti(d).

• If a data source in DS is a user who is assigned to a role o, then we can

denote a data flow as DFuser(o)→ti(D)

72 Generating Process Schemas for Composite Services

Algorithm 2: Forward-chain Inference
input : A process schema W generated by backward-chain reference
output : A process schema W ′

begin

W ′= W ; Task Pool TP = W

for all t ∈ W do

t.probability = 1

while TP 6= ∅ do

Get a task t from TP ; TP = TP - {t}; R is set of all the forward-chain rules for t

for each rule r in R do

CT is the condition tree of rule r; t′ is the task in action part of rule r

if (CT is True ∧ action is add task() ∧ t′ /∈ t.FCTasks) then

if ((t′ ∈ W ′) ∧(There is a cyclic graph in W ′))∨((t′ ∈ W ′.dropTask) ∧

(t′.probability == 1)) then

Exit

if (t′ ∈ W ′.dropTask ∧ t′.probability! = 1) then

conflictWarning()

t′.probability = t.probability

t.RCTasks = t.RCTasks ∪ {t′}; t.FCRules = t.FCRules ∪ {r}

W ′ = W ′ ∪ {t′}; TP = TP ∪ {t′}

if (CT is True ∧ action is drop task()) then

W.dropTask = W.dropTask ∪ {t′}; t′.probability = t.probability

if t′ ∈ W ′ then

There is a conflict between forward-chain rule and backward-chain rule; Exit()

if (CT is Uncertain) then

Du is the un-known data set required by rule r

for each d ∈ Du do

Locate the data source for d; Compute the possible value set PV for d

Testing the condition tree CT using PV

per is the probability of enabling CT ; per′ = per ∗ t.probability

if (per′ ≥ θ ∧ action is add task()∧t′ /∈ t.FCTasks) then

if (t′ ∈ W ′ ∧ There is a cyclic graph in W ′) then

conflictWarning()

if t′ ∈ W ′.dropTask then

conflictWarning()

t′.probability = per′

t.RCTasks = t.RCTasks ∪ t′; t.FCRules = t.FCRules ∪ {r}

W ′ = W ′ ∪ {t′}; TP = TP ∪ {t′}

if (per′ ≥ θ ∧ action is drop task()) then

W.dropTask = W.dropTask ∪ {t′}; t′.probability = per′

if t′ ∈ T then

conflictWarning()

end

3.5 Related Work 73

2. If the data flow inference can not generate a data flow for a data item d, and the

data item d is not available in process schema W ’s input, then a notification

message will be sent to the user to allow him/her to specify a data source for

the data item.

3. The data flow inference also needs to detect if there are deadlocks in data flows

among the concurrent tasks.

After the three-phases of rule inference, the complete process schema is generated.

In some cases, a set of candidate process schemas is generated. For each process

schema, the system uses service provider selection rules to select a candidate service

provider for each of the tasks. Based on these service provider selections, the service

composition manager can estimate the total execution time and execution price of the

composite service. End users can then decide which process schema is to be executed

to achieve the business objectives.

3.5 Related Work

There are several on-going research efforts in the workflow management area. In this

section we review some related work on business rules specification in dynamic work-

flows, Web services standard, Web service composition, and planning in Artificial In-

telligence.

In the WIDE project [25], a workflow management system is built to support dis-

tributed workflow execution. ECA rules are used to support exceptions and asyn-

chronous behavior during the execution of distributed workflow instances. In the

EvE project [39], ECA rules are used to address the problem of distributed event-

based workflow execution, which is a fundamental metaphor for defining and enforc-

ing workflow execution. Both WIDE and EvE predefine process schemas using the

74 Generating Process Schemas for Composite Services

ECA rules. However, our framework uses ECA rules to specify business rules and

dynamically infer workflow schemas using those rules.

Some dynamic workflow management systems, such as [57] and [76], focus on the

evolution of a statically defined business processes. Our framework differs from those

systems in its ability to dynamically evolve process schemas via rule inference.

Decision Flow [46] focuses on providing a high level business process specification

language with declarative semantics understood by users throughout an enterprise. It

provides an algorithm for eager detection of eligible, needed or necessary tasks to

support efficient execution of decision flow. However, a decision flow is predefined

and the business rules are hard coded into the decision flow. ISEE [68] introduces

events and rules to the business process model. This enables runtime modifications of

the business processes. However, all the tasks in the business processes are predefined

and the rules cannot be modified dynamically.

Our approach composes the business processes on demand immediately before execu-

tion and continuously adapts the process as events occur at runtime. Business rules are

re-evaluated at runtime to ensure the optimal process schema is used at runtime.

Several standards that aim at providing infrastructure to support Web services com-

position have recently emerged including SOAP[78], WSDL[93], UDDI[81], and

BPEL4WS[12]. SOAP defines an XML messaging protocol for basic service inter-

operability. WSDL introduces a common grammar for describing services. UDDI

provides the infrastructure required to publish and discover services in a systematic

way. Together, these specifications allow applications to find each other and collabo-

rate using a loosely coupled, platform-independent protocol. BPEL4WS is the latest

attempt to add a layer on top of WSDL for specifying business processes and business

interaction protocols. By doing so, it extends the Web services interaction model and

enables it to support business transactions. BPEL4WS and our framework are comple-

mentary to each other. The former provides a formalism for defining process schemas,

3.6 Summary 75

while the latter is concerned with how the process schemas may be derived from busi-

ness rules. Although our prototype currently uses statechart to describe the resultant

process schemas, it could easily switch to the BPEL4WS framework.

Early work in AI planning seeks to build control algorithms that enable an agent to

synthesize a plan to achieve its goal [87]. Recently, AI planning has been used in infor-

mation gathering and integration over the web [56, 65]. In [1], AI planning is adopted

to enable the interaction of Web services, but it requires predefined activity diagrams

(i.e., process schema) that enumerate all the possible interactions of Web services. Our

framework uses planning algorithm for choosing the most optimal execution plan, but

it does not require any predefined process schemas.

3.6 Summary

Our framework enables dynamic process schema generation by rule inference. The

main features of our framework are:

• A set of business rule templates that model business policies.

• A rule inference approach that dynamically generates process schemas for

composite services.

In order to validate the framework introduced in this chapter, the process schema gen-

erator has been implemented as a platform that provides tools for: (i) defining the

business rules; and (ii) generating process schemas for composite services. Together,

these tools provide an infrastructure for a new approach to composing Web services.

More details on the implementation can be found in Chapter 6.

Chapter 4

Quality Driven Service Selection

In a process-driven service composition approach, individual Web services are fed-

erated into composite Web services whose business logic is expressed as a process

model. The tasks of this process model are essentially invocations to functionalities

offered by the underlying component services. Usually, several component services

are able to execute a given task, with different levels of pricing and quality. In the

previous chapter, we presented a framework that enables dynamic creation of process

schemas. In this chapter, we assume a process schema is created for a composite

service. We advocate that the selection of component services should be carried out

during the execution of a composite service, rather than at design-time. In addition,

this selection should consider multiple criteria (e.g., price, duration, reliability), and

it should take into account global constraints as well as preferences set by the user

(e.g., budget constraints). Accordingly, this chapter proposes a global planning ap-

proach to optimally select component services during the execution of a composite

service. Service selection is formulated as a global optimization problem which can

be solved using efficient linear programming methods. Experimental results show that

this global planning approach outperforms approaches in which the component ser-

vices are selected individually for each task in a composite service.

4.1 Introduction 77

This chapter is organized as follows. Section 4.1 introduces the research issues and

gives an outline of the proposed solution. Section 4.2 presents a service composition

model and defines some key concepts used throughout the chapter. Section 4.3 defines

the service quality criteria used for service selection and explains how the values of

these quality criteria can be computed for a given service. Section 4.4 presents a local

optimization based service selection approach. Section 4.5 formulates a global service

selection problem and describes a linear programming method to efficiently solve it.

Section 4.6 gives a brief comparison of both approaches. Finally, Section 4.7 discusses

related work, and Section 4.8 summarizes this chapter.

4.1 Introduction

A Web service can be considered as a self-described application that uses standard In-

ternet technologies to interact with other Web services. An example of a Web service

is a SOAP-based interface to place bids in an auction house. Once deployed, services

can be aggregated into composite services. An example of a composite service is a

“Travel Planner” system that aggregates multiple component services for flight book-

ings, travel insurance, accommodation bookings, car rental, and itinerary planning,

which are executed sequentially or concurrently.

The process model underlying a composite service identifies the functionalities re-

quired by the services to be composed (i.e., the tasks of the composite service) and

their interactions (e.g., control-flow, data-flow, and transactional dependencies). Com-

ponent services that are able to provide the required functionalities are then bound to

the individual tasks of the composite services and invoked during each execution of

the composite service.

The number of services providing a given functionality may be large and constantly

changing. Consequently, approaches where the development of composite services

78 Quality Driven Service Selection

requires the identification at design-time of the exact services to be composed are in-

appropriate. The runtime selection of component services during the execution of a

composite service has been put forward as an approach to address this issue [8, 23, 38].

The idea is that component services are selected by the composite service execution

engine based on a set of quality criteria. However, previous approaches in this area

have not identified a set of quality criteria (other than price and application-specific

criteria) for selecting Web services. In addition, existing service selection approaches

adopt a local selection approach, meaning that they assign a component service to in-

dividual tasks, one at a time. As a result, these approaches are not able to handle global

user constraints and preferences, like for example, that the overall duration of the com-

posite service execution should be minimized, or that a given budget constraint should

be satisfied.

In this paper, we present a quality-driven approach to select component services during

the execution of a composite service. The salient features of our approach are:

• A Web services quality model. We propose an extensible multi-dimensional

Web services quality model. The dimensions of this model characterize non-

functional properties that are inherent to Web services in general: execution

price, execution duration, reputation, reliability, and availability.

• Quality-driven service selection. In order to overcome the limitations of local

service selection outlined above, we propose a global planning approach. In

this approach, quality constraints and preferences are assigned to composite

services rather than to individual tasks within a composite service. Service

selection is then formulated as an optimization problem and a linear program-

ming method is used to compute optimal service execution plans for compos-

ite services. Experimental results show that the proposed service selection

strategy significantly outperforms local selection strategies.

4.2 Web Service Composition Model 79

4.2 Web Service Composition Model

In this section, we first present the basic concepts of the adopted service composition

model. We then give some definitions related to service execution planning.

4.2.1 Web Services

In order to participate in the composite service, service providers need to publish their

Web services as advertisements to the service repository. Each published Web service’s

property is described using a common service ontology. There are two important ele-

ments in service descriptions which are elaborated as follows:

• Service ontology and service class. A Web service provider needs to

specify which service ontology they use to communicate and which service

classes they support. For example, a travel service provider may specify

that it supports the service ontology Trip-planning and the service class

FlightTicketBooking. Actually, the service ontology specifies the con-

cepts and terminologies that Web services use to communicate and service

class describes the capabilities (e.g., operations) of Web services and how to

access Web services.

• SLAs. A Service Level Agreement (SLA) is a contract that defines the terms

and conditions of service quality that a Web service delivers to service re-

questers. The major component of an SLA is QoS information. There are a

number of criteria that contribute to a Web service’s QoS in a SLA. In our

system, we consider the execution price and execution duration of each oper-

ation. Some Web service providers publish QoS information in SLAs. Other

Web service providers may not publish their QoS information in their service

descriptions for confidential reasons. In this case, service providers need to

80 Quality Driven Service Selection

provide interfaces that only authorized requesters can use to query the QoS

information.

Service descriptions are stored in an ontology-based repository. A simple query lan-

guage is developed that allows service requesters to discover Web services.

4.2.2 Composite Services and Communities

A composite Web service is an umbrella structure aggregating multiple elementary and

composite Web services, which interact with each other according to a process model.

As we discussed in the previous chapter, we choose to specify the process model of a

composite service as a statechart [41]. A simplified statechart W specifying a “Travel

Planner” composite Web Service is depicted in Figure 4.1. In this composite service,

a search for attractions is performed in parallel with a flight and an accommodation

booking. After these searching and booking operations are completed, the distance

from the hotel to the accommodation is computed, and either a car or a bike rental

service is invoked. Note that when two transitions stem from the same state (in this case

the state t5), they denote a conditional branching, and the transitions should therefore

be labelled with disjoint conditions.

Legend

CarRental

State And−state

AttractionSearching

FlightTicketBooking HotelBooking

DrivingTimeCalculation

BikeRental

Initial State Final StateTransition

PSfrag replacements

ti
tf
tc
td

t1
t2

t3 t4

t5

t6

t7

t8

Ws1

Ws2

Ws3

Ws4

Ws5

(We1)
(We2)
⇐⇒

Figure 4.1: Statechart of a Composite Service “Travel Planner”

A basic state (also called task) of a statechart describing a composite service can be

labelled with an invocation to either of the following:

4.2 Web Service Composition Model 81

• An elementary Web service, i.e., a service which does not transparently rely

on other Web services.

• A composite Web service aggregating several other services.

• A Web service community, i.e., a collection of Web services with a com-

mon functionality but different non-functional properties (e.g., with different

providers, different QoS parameters, reputation, etc.)

The concept of a Web service community addresses the issue of composing a large and

changing collection of Web services. Web services in communities share a common

service ontology. Service communities provide descriptions of a desired functionality

(e.g., flight booking) without referring to any actual service (e.g., Qantas flight booking

Web service). The set of members of a community can be fixed when the community

is created, or it can be determined through a registration mechanism, thereby allowing

service providers to join, quit, and reinstate the community at any time. When a com-

munity receives a request to execute an operation, this request is delegated to one of

its current members. The choice of the delegation is done at execution time based on

the parameters of the request, the characteristics of the members, the history of past

executions, and the status of ongoing executions. Sections 4.3, 4.4 and 4.5 deal with

the selection of delegations during the execution of a composite service whose states

are labelled with invocations to communities.

In the following subsection, we define three concepts, namely execution path and ex-

ecution plan. These concepts are used when planning the execution of a composite

service.

82 Quality Driven Service Selection

4.2.3 Execution paths and plans

In this section, we define two concepts used in the rest of the paper: execution path and

execution plan. To simplify the discussion, we initially assume that all the Statecharts

that we deal with are acyclic. If a statechart contains cycles, a technique for “unfold-

ing” it into an acyclic statechart needs to be applied beforehand. Details of “unfolding”

process are discussed in Section 4.5.

Definition 3 (Execution path). An execution path of a statechart is a sequence of states

[t1, t2, .. tn], such that t1 is the initial state, tn is the final state, and for every state ti

(1 < i < n), the following holds:

• ti is a direct successor of one of the states in [t1,...,ti−1]

• ti is not a direct successor of any of the states in [ti+1,...,tn]

• There is no state tj in [t1, ..., ti−1] such that tj and ti belong to two alternative

branches of the statechart.

• If ti is the initial state of one of the concurrent regions of an AND-state AST,

then for every other concurrent region C in AST, one of the initial states of C

belongs to the set {t1, ..., ti−1, ti+1,...,tn}. In other words, when an AND-state

is entered, all the concurrent branches of this AND-state are executed.

�

This definition relies on the concept of a direct successor of a state. Roughly stated, a

basic state tb in a statechart is a direct successor of another basic state ta if there is a

sequence of adjacent transitions1 going from ta to tb without traversing any other basic

1Two transitions are adjacent if the target state of one is the source state of the other.

4.2 Web Service Composition Model 83

state. In other words, the first transition in the sequence stems from ta, the last transi-

tion leads to tb, and all intermediate transitions stem from and lead to either compound,

initial, or final states (but are not incident to a basic state).

Since it is assumed that the underlying statechart is acyclic, it is possible to represent

an execution path as a Directed Acyclic Graph (DAG) as follows.

Definition 4 (DAG representation of an execution path). Given an execution path [t1,

t2, .. tn] of a statechart ST, the DAG representation of this execution path is a graph

obtained as follows:

• The DAG has one node for each task {t1, t2, .. tn}.

• The DAG contains an edge from task ti to task tj iff tj is a direct successor of

ti in the statechart ST.

�

If a statechart diagram contains conditional branchings, it has multiple execution paths.

Each execution path represents a sequence of tasks to complete a composite service ex-

ecution. Figure 4.2 gives an example of Statechart’s execution paths. In this example,

since there is one conditional branching after task t5, there are two paths, called We1

and We2 respectively. In the execution path We1, task t6 is executed after task t5, while

in the execution path We2, task t7 is executed after task t5.

As stated before, the basic states of a statechart describing a composite service can be

labelled with invocations to communities. If this is the case, actual Web services (i.e.,

members of communities) need to be selected during the execution of the composite

service. Hence, it is possible to execute a path in very different ways by allocating

different Web services to the states in the path. The concept of execution plan defined

below captures the various ways of executing a given execution path.

84 Quality Driven Service Selection

��������������������
����������������

���������������� � � ¡�¡¡�¡

¢�¢�¢¢�¢�¢£�£�££�£�£
¤�¤�¤¤�¤�¤¥�¥¥�¥

¦�¦�¦¦�¦�¦§�§§�§¨�¨¨�¨©�©©�© ª�ªª�ª
«�««�«

¬�¬�¬¬�¬�¬­�­�­­�­�­

Execution Path 1

Execution Path 2

PSfrag replacements

ti
tf

ta1

ta2

t1

t1

t2

t2

t3

t3

t4

t4

t5

t5
t6

t7

t8

t8

Ws1

Ws2

Ws3

Ws4

Ws5

(We1)

(We2)⇐⇒

Figure 4.2: DAG Representation of the Execution Paths of the Statechart of Figure 4.1.

Definition 5 (Execution plan). A set of pairs p = {< t1, si1 >, < t2, si2 >, . . . , <

tN , siN >} is an execution plan of an execution path We iff:

• {t1, t2, ... tN} is the set of tasks in We.

• For each 2-tuple < tj, sij > in p, service sij is assigned the execution of task

tj .

�

4.3 Web Service Quality Model

In a Web environment, multiple Web services may provide similar functionalities with

different non-functional property values (e.g., different prices). In the composition

model presented in the previous section, such Web services will typically be grouped

together in a single community. To differentiate the members of a community during

service selection, their non-functional properties need to be considered. For this pur-

pose, we adopt a Web services quality model based on a set of quality criteria (i.e.,

non-functional properties) that are applicable to all Web services, for example, their

4.3 Web Service Quality Model 85

pricing and reliability. Although the adopted quality model has a limited number of

criteria (for the sake of illustration), it is extensible: new criteria can be added without

fundamentally altering the service selection techniques built on top of the model. In

particular, it is possible to extend the quality model to integrate non-functional service

characteristics such as those proposed in [74], or to integrate service QoS metrics such

as those proposed by [84].

In this section, we first present the quality criteria in the context of elementary services,

before turning our attention to composite services. For each criterion, we provide a

definition, indicate its granularity (i.e., whether it is defined for an entire service or

for individual service operations), and provide rules to compute its value for a given

service.

4.3.1 Quality Criteria for Elementary Services

We consider five generic quality criteria quality for elementary services: (1) execution

price, (2) execution duration, (3) reputation, (4) reliability, and (5) availability.

• Execution price. Given an operation op of a service s, the execution price

qprice(s, op) is the amount of money that a service requester has to pay for

executing the operation op. Web service providers either directly advertise the

execution price of their operations, or they provide means to enquire about it.

• Execution duration. Given an operation op, of a service s, the execu-

tion duration qdu(s, op) measures the expected delay in seconds between the

moment when a request is sent and the moment when the results are re-

ceived. The execution duration is computed using the expression qdu(s, op) =

Tprocess(s, op) + Ttrans(s, op), meaning that the execution duration is the sum

of the processing time Tprocess(s, op) and the transmission time Ttrans(s, op).

86 Quality Driven Service Selection

Services advertise their processing time or provide methods to enquire about

it. The transmission time is estimated based on past executions of the service

operations, i.e., Ttrans(s, op) =
Pn

i=1
Ti(s,op)

n
, where Ti(s, op) is a past observa-

tion of the transmission time, and n is the number of execution times observed

in the past.

• Reliability. The reliability qrel(s) of a service s is the probability that a request

is correctly responded within the maximum expected time frame (which is

published in the Web service description). Reliability is a technical measure

related to hardware and/or software configuration of Web services and the

network connections between the service requesters and providers. The value

of the reliability is computed from historical data about past invocations using

the expression qrel(s) = Nc(s)/K, where Nc(s) is the number of times that

the service s has been successfully delivered within the maximum expected

time frame, and K is the total number of invocations.

• Availability. The availability qav(s) of a service s is the probability that the

service is accessible. The value of the availability of a service s is computed

using the following expression qav(s) = Ta(s)/θ, where Ta is the total amount

of time (in seconds) in which service s is available during the last θ seconds

(θ is a constant set by an administrator of the service community). The value

of θ may vary depending on a particular application. For example, in appli-

cations where services are more frequently accessed (e.g., stock exchange), a

small value of θ gives a more accurate approximation for the availability of

services. If the service is less frequently accessed (e.g., online bookstore), us-

ing a larger θ value is more appropriate. Here, we assume that Web services

send notifications to the system about their running states (i.e., available, un-

available).

4.3 Web Service Quality Model 87

• Reputation. The reputation qrep(s) of a service s is a measure of its trust-

worthiness. It mainly depends on end user’s experiences of using the service

s. Different end users may have different opinions on the same service. The

value of the reputation is defined as the average ranking given to the service

by end users, i.e., qrep =
Pn

i=1
Ri

n
, where Ri is the end user’s ranking on a

service’s reputation, n is the number of times the service has been graded.

Usually, the end users are given a range to rank Web services, for example, in

Amazon.com, the range is [0, 5].

The overall quality vector of a service s is defined by the following expression:

q(s) = (qprice(s), qdu(s), qav(s), qre(s), qrep(s)) (4.1)

= (q1(s), q2(s), q3(s), q4(s), q5(s))

It should be noted that the method for computing or measuring the value of the quality

criteria is not unique. The global planning model presented Section 4.5 is independent

of these computation methods.

4.3.2 Quality Criteria for Composite Services

We also use above quality criteria to evaluate the QoS of composite services execution

plans.

Assume that p = {< t1, si1 >, < t2, si2 >, . . . , < tN , siN >} is an execution plan of a

composite service CS. Refer to aggregation functions in table 4.1 for the estimation of

the QoS of the composite service CS when providing service based on execution plan

p. Brief explanation of each criterion’s aggregation function is given as follows:

88 Quality Driven Service Selection

Table 4.1: Aggregation Functions for Execution Plan’s Quality
Criteria Aggregation function
Execution Price Qprice(p) =

∑N
i=1 qprice(si, opi)

Execution Duration Qdu(p) = CPA(qdu(s1, op1), ..., qdu(sN , opN))

Reputation Qrep(p) = 1
N

∑N
i=1 qrep(si)

Reliability Qrel(p) = ΠN
i=1(e

qrel(si)∗zi)

Availability Qav(p) = ΠN
i=1(e

qav(si)∗zi)

• Execution price: Execution price Qprice(p) of an execution plan p is a sum of

every service si’s execution price qprice(si, opi).

• Execution duration: Execution duration Qdu(p) of an execution plan p is

computed using Critical Path algorithm (CPA)2. The critical path algorithm

considers execution path We and its execution plan p as a project digraph. It

identifies the critical path of the project digraph. The critical path is a path

from the initial state to final state in the project digraph, which has the longest

total sum of Web services’ execution duration. It should be noted that the

sum of Web services’ execution duration in the critical path is the execution

duration of the execution plan p. The task that belongs to the critical path is

a critical task, while the service that belongs to the critical path is a critical

service.

2The Critical Path algorithm [75] is a graph algorithm which is used in project scheduling applica-
tion. The description of this algorithm is outside the scope of this paper.

®¯®®¯®°¯°°¯°Legend: critical path of project digraph critical task critical service

±¯±¯±±¯±¯±²¯²²¯² ³¯³¯³³¯³¯³
´¯´¯´´¯´¯´

µ¶µ¶µµ¶µ¶µµ¶µ¶µ·¶·¶··¶·¶··¶·¶·
¸¯¸¯¸¸¯¸¯¸¹¯¹¯¹¹¯¹¯¹

º¯º¯ºº¯º¯º»¯»»¯»
s23, 20 Seconds

s38, 25 Seconds s45, 20 Second

s59, 2 Second

s62, 15 Seconds

PSfrag replacements
ta1

ta2

ti
tf

t1

t2

t3 t4

t5

t6

t7

t8

s13

s28

s35

s49

s52

Ws1

Ws2

Ws3

Ws4

Ws5

(We1)
(We2)
⇐⇒

Figure 4.3: Critical Path

4.3 Web Service Quality Model 89

Figure 4.3 provides an example of critical path. In this example, the project

digraph represents execution path We1 and its execution plan p, where p={

< t1, s13 >, < t2, s28 >, < t3, s35 >, < t4, s49 >, < t5, s52 > }. Each task’s

execution duration is given in the project digraph. There are two project paths

in this project digraph, where project path 1 is < t1, t4, t5 > and project path

2 is < t2, t3, t4, t5 >. The total execution time of project path 1 (resp. project

path 2) is 37 seconds (resp. 62 seconds). Since project path 2’s total execution

duration is longer than that of project path 1, then the critical path for the

project digraph is project path 2. Thus, the execution plan’s total execution

duration is 62 seconds. Task t2, t3, t4 and t5 are critical tasks. Services s28,

s35, s49 and s52 are critical services.

• Reputation: Reputation Qrep(p) of an execution plan p is the average of each

service si’s reputation qrep(si) in the execution plan p.

• Reliability: Reliability Qrel(p) of an execution plan p is a product of

eqrel(si)∗zi . In the aggregation function, zi is an integer variable which has

value 1 or 0: Value 1 indicates that service si is a critical service in the execu-

tion plan p; Value 0 indicates that service si is not a critical service. If zi = 0,

i.e., service si is not a critical service, then eqrel(si)∗zi = 1. Thus, the reliability

of service si will not affect the value of the execution plan’s reliability.

• Availability: Availability Qav(p) of an execution plan p is a product of

eqav(si)∗zi , where qav(si) is service si’s availability.

Using above aggregation functions, the quality vector of a composite service’s execu-

tion plan can be computed using the following expression:

Q(p) = (Qprice(p), Qdu(p), Qav(p), Qre(p), Qrep(p)) (4.2)

= (Q1(p), Q2(p), Q3(p), Q4(p), Q5(p))

90 Quality Driven Service Selection

4.4 Service Selection by Local Optimization

In this approach, the execution of a composite service is done by selecting a compo-

nent Web service to execute each task, without taking into account the other tasks. The

procedure of executing a task is: (1) prompting the end user to provide the input pa-

rameters’ value if it is necessary; (2) locating Web services that can execute the task;

(3) selecting a Web service; (4) assigning the task to the selected Web service.

The selection of a Web service to execute a task is a two-phase process. In the first

phase, the system collects candidate Web services’ QoS information. In the second

phase, the system selects a Web service based on QoS information. After collecting

the QoS information, each Web service’s quality vector q(s) can be computed.

Once all the candidate Web services’ quality vectors are computed, the system can

select a Web service to execute the task. Here, we adopt the Multiple Criteria Decision

Making (MCDM)[5] approach to select a Web service. Assume that for a task tj in a

composite service, there is a set of candidate Web services Sj (Sj = {s1j , s2j, ..., snj})

that can be used to execute the task. Using all the candidate Web services’ quality

vectors, we can obtain the following matrix Q. Each row in Q represents a Web

service sij, while each column represents one of the quality dimensions.

Q =



















q1,1 q1,2 . . . q1,5

q2,1 q2,2 . . . q2,5

...
...

...
...

qn,1 qn,2 . . . qn,5



















(4.3)

A Simple Additive Weighting (SAW)[15] technique is used to select an optimal Web

service. Basically, there are two phases in applying SAW:

• Scaling Phase

Some of the criteria used could be negative, i.e., the higher the value , the

4.4 Service Selection by Local Optimization 91

lower the quality . This includes criteria such as execution time and execution

price. Other criteria are positive, i.e., the higher the value, the higher the

quality. For negative criteria, values are scaled according to Equation 4.4. For

positive criteria, values are scaled according to Equation 4.5.

vi,j =







qmax
j −qi,j

qmax
j −qmin

j

if qmax
j − qmin

j 6= 0

1 if qmax
j − qmin

j = 0
(4.4)

vi,j =







qi,j−qmin
j

qmax
j −qmin

j

if qmax
j − qmin

j 6= 0

1 if qmax
j − qmin

j = 0
(4.5)

In the above equations, qmax
j is maximal value of a quality criteria in matrix

Q, i.e., qmax
j = Max(qi,j), 1 ≤ i ≤ n. While qmax

j is minimal value of a

quality criteria in matrix Q, i.e., qmin
j = Min(qi,j), 1 ≤ i ≤ n. Applying

these two equations on Q, we get matrix Q
′ which is shown below:

Q
′

=



















v1,1 v1,2 . . . v1,5

v2,1 v2,2 . . . v2,5

...
...

...
...

vn,1 vn,2 . . . vn,5



















(4.6)

Example. Assume that there are eight Web services in S. Also assume that

their value on service reputation are: Q5=(q1,5, q2,5, q3,5, q4,5, q5,5, q6,5, q7,5,

q8,5) = (7.5,8.4,9,8.3,8.7,9.1,9.4,9.2,9.5). Since reputation is a positive criteria,

Equation 4.5 is used for scaling. In this example, qmax
5 = 9.5, qmin

5 = 7.5, this

resulted in: Q
′

5 = (0, 0.55, 0.45, 0.75, 0.4,0.6, 0.8, 0.95,1)

• Weighting Phase

The following formula is used to compute the overall quality score for each

92 Quality Driven Service Selection

Web service:

Score(si) =

5
∑

j=1

(vi,j ∗ Wj) (4.7)

where Wj ∈ [0, 1] and
∑5

j=1 Wj = 1. Wj represents the weight of criterion

j. End users can give their preference on QoS (i.e., balance the impact of

the different criteria) to select a desired Web service by adjusting the value of

Wj . The system will choose the Web service which has the maximal value

of Score(si). If there is more than one Web services with the same maximal

value of Score(si), then a Web service will be selected from them randomly.

Formula 4.7 is a local optimization selection policy to select an optimal service

for a task.

4.5 Service Selection by Global Planning

As mentioned before, in existing approaches, the selection of a component service to

execute a task is determined without taking into account the constraints with other

tasks of the composite service [8, 23, 38]. More precisely, in our previous section, ser-

vice selection is done at each service community locally. Although service selection is

locally optimized, the global quality constraints may not be satisfied. For example, a

global constraint, such as the composite services’ execution price being less than 500

dollars, can not be enforced. In this section, we present a global planning based ap-

proach for Web services selection. We first present an approach of selecting an optimal

execution plan for a composite service, then present a novel linear programming based

method for selecting an optimal execution plan.

4.5 Service Selection by Global Planning 93

Selecting an Optimal Execution Plan

The basic idea of global planning is the same as query optimization in database man-

agement systems. Several plans are identified before each execution of a composite

service, and the optimal plan is selected. The foregoing discussion makes it clear that

a statechart has multiple execution paths and each execution path has its own set of ex-

ecution plans if the statechart contains conditional branchings. In this subsection, we

assume that the statechart does not contain any conditional branchings and has only

one execution path. We will discuss the case where a statechart has multiple execution

paths in Section 4.5.

We also assume that for each task tj , there is a set of candidate Web services Sj that are

available to execute task tj. Associated with each Web service sij is a quality vector

(see equation 4.1). Based on the available Web services, by selecting a Web service

for each task in an execution path, the global planner will generate a set of execution

plans P :

P = {p1, p2, ..., pn} (4.8)

n is the number of execution plans. After a set of execution plans is generated, the

system needs to select an optimal execution plan. When selecting the execution plan,

instead of computing the quality vector of a particular Web service, each execution

plan’s global service quality vector needs to be computed.

The selection of an execution plan also uses MCDM approach. Once the quality vector

for each execution plan is derived, by accumulating all the execution plans’ quality

vectors, we obtain matrix Q, where each row represents an execution plan’s quality

94 Quality Driven Service Selection

vector.

Q =



















Q1,1 Q1,2 . . . Q1,5

Q2,1 Q2,2 . . . Q2,5

...
...

...
...

Qn,1 Qn,2 . . . Qn,5



















(4.9)

Again, a SAW technique is used to select an optimal execution plan. The two phases

of applying SAW to select an optimal execution plan are:

• Scaling Phase

As in the previous section, we need equations to scale the value of each quality

criterion. For negative criteria, values are scaled according to Equation 4.10.

For positive criteria, values are scaled according to Equation 4.11.

Vi,j =







Qmax
j −Qi,j

Qmax
j

−Qmin
j

if Qmax
j − Qmin

j 6= 0

1 if Qmax
j − Qmin

j = 0
j = 1, 2 (4.10)

Vi,j =







Qi,j−Qmin
j

Qmax
j −Qmin

j

if Qmax
j − Qmin

j 6= 0

1 if Qmax
j − Qmin

j = 0
j = 3, 4, 5 (4.11)

In the above equations, Qmax
j is maximal value of a quality criterion in matrix

Q, i.e., Qmax
j = Max(Qi,j), 1 ≤ i ≤ n. Qmax

j is the minimal value of a

quality criterion in matrix Q, i.e., Qmin
j = Min(Qi,j), 1 ≤ i ≤ n.

In fact, we can compute Qmax
j and Qmin

j without generating all possible exe-

cution plans. For example, in order to compute the maximum execution price

(i.e., Qmax
price) of all the execution plans, we select the most expensive Web ser-

vice for each task and sum up all these execution prices to compute Qmax
price.

In order to compute the minimum execution duration (i.e., Qmin
du) of all the

4.5 Service Selection by Global Planning 95

execution plans, we select the Web service that has the shortest execution du-

ration for each task and use CPA to compute Qmin
du . The computation cost of

Qmax
j and Qmin

j is polynomial.

After the scaling phase, we obtain the following matrix Q
′ :

Q
′

=



















V1,1 V1,2 . . . V1,5

V2,1 V2,2 . . . V2,5

...
...

...
...

Vn,1 Vn,2 . . . Vn,5



















(4.12)

• Weighting Phase

The following formula is used to compute the overall quality score for each

execution plan:

Score(pi) =
5
∑

j=1

(Vi,j ∗ Wj) (4.13)

where Wj ∈ [0, 1] and
∑5

j=1 Wj = 1. Wj represents the weight of each

criterion. End users can give their preference on QoS (i.e., balance the impact

of the different criteria) to select a desired execution plan by adjusting the

value of Wj . The global planner will choose the execution path which has

the maximal value of Score(pi) (i.e., max(Score(pi))). If there is more than

one execution plan which has the same maximal value of Score(pi), then an

execution plan will be selected from them randomly. Formula 4.13 is a global

optimization selection policy for a composite service.

Handling Multiple Execution Paths

In Section 4.5, we assume that the statechart only has one execution path. In this sub-

section, we discuss the case where Statecharts have multiple execution paths. Assume

96 Quality Driven Service Selection

that a statechart has n execution paths. For each execution path, an optimal execution

plan can be selected. So, the global planner has n selected execution plans. Since each

selected optimal execution plan only covers a subset of the entire statechart, then the

global planner needs to aggregate these n execution plans into an overall execution

plan that covers all the tasks in the statechart. This overall execution plan will be used

to execute the statechart. For example, for the Travel Planner statechart W (see

Figure 4.1), there are two execution paths We1 and We2. The optimal execution plans

p1 and p2 of these two execution paths are selected. From Figure 4.2, it can be seen

that both execution paths We1 and We2 are subsets of W . Thus neither p1 nor p2 covers

all tasks in W . Since the global planner conducts planning before the execution, it

does not know which execution path will eventually be used for the composite service.

Therefore it needs to aggregate p1 and p2 into an overall execution plan which covers

all the tasks in W .

Assume that statechart W has k tasks (i.e., t1, t2, ..., tk) and n execution paths (i.e.,

We1, We2,..., Wen). For each execution path, the global planner selects an optimal exe-

cution plan. Consequently, we obtain n optimal execution plans (i.e., p1, p2, ..., pn) for

these execution paths. The global planner adopts the following approach to aggregate

multiple execution plans into an overall execution plan.

1. Given a task ti, if ti only belongs to one execution path (e.g., Wej), then

the global planner selects Wej’s execution plan pj to execute the task ti. We

denote this as <ti, pj>. For example, in Travel Planner statechart, task

t6 (i.e., BikeRental) only belongs to execution path We2. In this case,

We2’s execution plan p2 is used to execute t6, i.e., <t6, p2>.

2. Given a task ti, if ti belongs to more than one execution paths (e.g., Wej,

Wej+1, ..., Wem), then there is a set of execution plans (i.e., pj , pj+1, ..., pm)

that can be used to execute Wsi. In this case, the global planner needs to

4.5 Service Selection by Global Planning 97

select one of the execution plans from pj, pj+1, ... , pm. The selection can

be done by identifying the hot path for task ti. Here, the hot path of a task

ti is defined as the execution path that has been most frequently used to ex-

ecute the task ti in past instances of the composite service. For example, in

Travel Planner statechart, task t2 (i.e., AttractionSearching) be-

longs to both execution path We1 and We2. Assume that the statechart W has

been used to execute the composite service 25 times. Also assume that, in 20

times the execution of the composite service follows the execution path We1;

while in 5 times, the execution of the composite service follows the execution

path We2. This indicates that the execution path We1 has been more frequently

used to execute task t2 (i.e., We1 is the hot path for t2). Thus, We1’s execution

plan p1 is used to execute t2, i.e., <t2, p1>.

The system keeps composite service execution traces in an execution history [36]. This

allows the global planner to identify the hot path for each task.

Unfolding Cyclic Statecharts

Hitherto, we have assumed that the composite service Statecharts are acyclic. If a

statechart contains cycles, these need to be “unfolded” so that the resulting statechart

has a finite number of execution paths. The method used to unfold the cycles of a

Statechart is to examine the logs of past executions in order to determine the maximum

number of times that each cycle is taken. The states appearing between the beginning

and the end of the cycle are then cloned as many times as the cycle (i.e., the transition

that represents the cycle) is taken.

This unfolding method works only if the “beginning” and the “end” of each cycle in

the statechart can be clearly identified. It does not work, for example, if the transitions

causing the cycle are located in two different conditional branches as in Figure 4.4. In

98 Quality Driven Service Selection

this case, it is not possible to determine which is the first state and which is the last

state in the cycle (is it t2 or t3?). An equivalent statechart which can be unfolded using

the above method is shown in Figure 4.5. In this equivalent statechart, the transition

causing the cycle does not cross the boundaries of any conditional branch.

PSfrag replacements

ti
tf
tc
td

t1

t2

t3

t4t5
t6

W
′

Figure 4.4: “Unfoldable” Statechart

PSfrag replacements

ti
tf

TS1

td

t1

t2

t3

t4
t5
t6

W
′

Figure 4.5: Foldable Statechart Equivalent to That in Figure 4.4

It can be proved that any arbitrary statechart can be transformed into an equivalent

statechart in which the cycles do not cross the boundaries of conditional branches (as

illustrated above). This proof is similar to that of the theorem stating that any program

written using “goto”, can be transformed into an equivalent program which only uses

structured loops (i.e., “while” loops)[3].

Now we use the statechart in Figure 4.5 as an example to present output of the “unfold-

ing” process. Assume that in the logs, the transition TN1 is taken in 1, 2, and 3 times

in different instances of the composite service. So, the state W
′ is cloned three times

in the acyclic statechart (see Figure 4.6). From this acycle statechart, we can generate

all the possible execution paths. Again, based on execution logs, we can identify a hot

path for each task in the statechart.

4.5 Service Selection by Global Planning 99

PSfrag replacements

ti
tf

TS1

td

t1

t2

t3

t4

t12

t13

t22

t23
t5
t6

W
′

W
′

W
′

Figure 4.6: Acyclic Statechart Derived from That in Figure 6.

Linear Programming Solution

The approach of selecting an optimal execution plan in previous section requires the

generation of all possible execution plans. Assume that there are N tasks in a statechart

and there are M potential Web services for each task. The total number of execution

plans is MN . The computation cost of selecting an optimal execution plan is O(MN).

Such an approach is impractical for large scale composite services, where both the

number of tasks in the composite services and number of candidate Web services in

communities are large. For example, assume that a composite service has one execu-

tion path and 10 tasks, and for each task, there are 10 candidate Web services. Then

the total number of execution plans is 1010. It is very costly to generate all these 1010

plans and select an optimal one. In this subsection, we present a method based on

linear programming (LP) [51], which can be used to select an optimal execution plan

without generating all the possible execution plans.

There are three inputs in LP: variables, an objective function and constraints on the

variables, where both the objective function and constraints must be linear. LP attempts

to maximize or minimize the value of the objective function by adjusting the values of

variables based on the constraints. The output of LP is the maximum (or minimum)

value of the objective function and the values of variables. In order to use LP to select

an optimal execution plan, we model the selection of an optimal execution plan as an

LP problem. Following, we discuss the details about these three inputs of LP according

100 Quality Driven Service Selection

to selection of an optimal execution plan.

For variables, we use the integer variables yij to represent the selection of Web ser-

vices sij . yij’s value can be 1 or 0: Value 1 indicates selecting Web service sij and 0

indicates otherwise. For the objective function, since we use MADM and SAW to se-

lect an execution plan, based on equation 4.10,4.11 and 4.13, we obtain the following

objective function:

Max

(

2
∑

l=1

(

Qmax
l − Qi,l

Qmax
l − Qmin

l

∗ Wl

)

+
5
∑

l=3

(

Qi,l − Qmin
l

Qmax
l − Qmin

l

∗ Wl

)

)

(4.14)

where Wl ∈ [0, 1] and
∑5

j=1 Wj = 1. Wl is the weight assigned to the quality criterion.

Now, the LP has variables and the objective function. In the following subsections, we

discuss constraints on variables.

• Constraints on Execution Duration and Execution Price

In this subsection, we consider constraints on the execution plan’s execution

duration and execution price. Assume that A is the set of all tasks to be exe-

cuted in the statechart. For each task tj, there is a set of Web services Sj . For

each task tj , we only select one Web service, since yij (yij = 0 or 1) repre-

sents the selection of Web services sij , then the constraint on selection of Web

services is:

∑

i∈Sj

yij = 1, ∀j ∈ A (4.15)

For example, there are 100 potential Web services that can execute task j,

since only one of them will be selected to execute the task j, then we have
∑100

i=1 yij = 1.

4.5 Service Selection by Global Planning 101

Assume that variable xj represents the earliest start time of task tj, variable

pj represents the execution duration for task j, and variable pij represents the

execution duration for task tj by service sij . We use the notation tj → tk to

denote that task tk is task tj’s direct successor task. We have the following

constraints:

∑

i∈Sj

pij yij = pj, ∀j ∈ A (4.16)

xk − (pj + xj) ≥ 0, ∀tj → tk, j, k ∈ A (4.17)

Qdu − (xj + pj) ≥ 0, ∀j ∈ A (4.18)

Constraint 4.16 indicates that the execution duration of a given task tj must

be the execution duration of a Web service in A, since only one of the Web

services in A will be selected to execute task tj . Constraint 4.17 indicates that

if task tk is task tj’s direct successor task, then the execution of task tk must

start after task tj has been completed. Constraint 4.18 indicates that the exe-

cution of composite services is finished only when all the tasks in composite

services are finished.

Assume that zij is an integer variable that has value 1 or 0: 1 indicates that

Web service sij is a critical service and 0 indicates otherwise. The relationship

between the execution duration of an execution plan and the duration of the

critical services of the plan is captured by the following equation.

Qdu =
∑

j∈A

∑

i∈Sj

pijzij (4.19)

For execution price, assume that variable cij represents the execution price of

Web service sij , then we have the following constraint on total execution price

of composition service:

Qprice =
∑

j∈A

∑

j∈Sj

cij yij (4.20)

102 Quality Driven Service Selection

An alternative of constraint 4.20 is given as follows:

∑

j∈A

∑

j∈Sj

cijyij ≤ B, B > 0 (4.21)

where B is the budget constraint that is given by users. This constraint in-

dicates that the whole composite service’s execution price can not be greater

than B. By introducing a budget constraint the above problem needs to be

explicitly solved as an integer programming. This problem is a special case

of the knapsack problem and hence NP-hard [64]. Notice that constraints on

other criteria can be easily incorporated into LP if the aggregation function is

a linear function. For example, assume that variable rij represents the repu-

tation of Web service sij , we can have the following constraint on execution

plan’s reputation:

Qrep =
∑

j∈A

∑

j∈Sj

rijyij (4.22)

• Constraints on Reliability and Availability

In this subsection, we consider constraints on criteria where the aggregation

function is not a linear function. Among criteria that are used to select Web

services, both availability and reliability’s aggregation functions are nonlinear

(See table 4.1). We can linearize them using a logarithm function as shown

below. Assume that variable aij represents the reliability of Web service sij.

Since zij indicates whether Web service sij is a critical service or not, the

reliability of the execution plan is:

Qrel = Πj∈A





∑

j∈Sj

eaijzij





4.5 Service Selection by Global Planning 103

By applying the logarithm function ln, we obtain:

ln(Qrel) =
∑

j∈A

ln





∑

j∈Sj

eaijzij





Since
∑

j∈A zij = 1 and zij = 0 or 1, we obtain:

ln(Qrel) =
∑

j∈A





∑

j∈Sj

aijzij





Let Q
′

rel = ln(Qrel), we have the following constraint on execution plan’s

reliability:

Q
′

rel =
∑

j∈A

∑

j∈Sj

aijzij (4.23)

Assume that bij represents the availability of the Web service sij. Similar to

reliability, for availability, we have the following constraint:

Q
′

av =
∑

j∈A

∑

i∈Sj

bijzij (4.24)

where Q
′

av = ln(Qav).

Criteria that can be added into LP are not limited to what we defined in Sec-

tion 4.3. Other criteria can also be added into LP once the aggregation func-

tions are given.

• Constraints on Uncertainty of Execution Duration

In the previous sections, we assumed that the execution duration pij of Web

services are deterministic. In fact, Web service sij’s execution duration pij

might be uncertain. For example, given operation op, Web service s advertises

that the execution duration is 5 seconds. But actual execution duration may

be 4.5, 4.6 or 5.2 seconds. Assume that pij is a normal distribution, where the

normal distribution has a probability function given as follows:

104 Quality Driven Service Selection

f(x) =
1√
2πσ

exp
[

− 1

2

(

x − µ

σ

)2
]

,−∞ < x < ∞

The normal distribution is a 2 parameter distribution with a mean (i.e., µ) and

standard deviation (i.e., σ), where

µ =
1

n

n
∑

i=1

xi (4.25)

σ2 =
1

n − 1

n
∑

i=1

(xi − µ)2 (4.26)

By applying formula 4.25 and 4.26 on a Web service sij using its past ex-

ecution results, we can have µij and σij for the Web service sij . Since
∑

i∈A

∑

i∈Sj
pijzij = Qdu, the total execution duration Qdu must be normal

distribution3 and its deviation σdu is given as follows:

σ2
du =

∑

i∈A

∑

i∈Sj

σ2
ijzij (4.27)

So, if we consider the total execution time duration’s deviation in the LP, we

can have the following objective function:

Max

(

2
∑

l=0

(

Qmax
l − Qi,l

Qmax
l − Qmin

l

∗ Wl

)

+

5
∑

l=3

(

Qi,l − Qmin
l

Qmax
l − Qmin

l

∗ Wl

)

)

(4.28)

where Q0 = σ2
du and W0 ∈ [0, 1], is the weight assigned to the total execution

time duration’s deviation.

Now, we have all the three inputs for LP. The output of the LP is values of sij that in-

dicate the selection of Web services. These selected Web services compose an optimal

execution plan.
3Detail proof can be found in [86]

4.6 Evaluation of Two Service Selection Approaches 105

4.6 Evaluation of Two Service Selection Approaches

When executing composite services, an instance is created based on a statechart first.

As we discussed in the previous section, during the execution of the composite ser-

vices, there are two approaches to select the Web services, namely local optimization

and global planning approach. In this section, we first outline the metrics that can be

used to evaluate the effectiveness of these two service composition approaches and

then compare them.

4.6.1 Evaluation Metrics

In our framework, the metrics that are used to evaluate the Web services composition

approach are QoS of composite service and system cost.

• QoS of Composite Service. Although we seek to reduce the system cost to

execute composite services, we must nevertheless ensure that the approach

doesn’t degrade the user experience. QoS of composite services can be mea-

sured in a number of ways; we consider the following dimensions:

– Total execution price and execution duration. In most of the cases,

invocation of Web services will incur payment. Total execution price is

the total payment in dollars incurred by end users during the execution of

a composite service. Another important quality dimension is total execu-

tion duration, i.e., how long must end users wait for the whole composite

service’s execution result. Although there is a trade-off between the price

and duration metrics, it is very important that the system is able to find

an optimal combination that can satisfy end users’ preferences.

– Satisfaction of user’s requirements. Although good quality Web service

composition requires minimal execution price and duration, the satisfac-

106 Quality Driven Service Selection

tion of end users’ constraints are important aspects too. Basically, there

are two kinds of constraints: constraints on a single task and constraints

on multiple tasks. The system’s ability to accept both kinds of end users’

constraints is the key to satisfying user’s requirements.

• System Cost. When the system receives a request to execute a composite

service from an end user, the system use process resources (i.e., computation

cost) to search the service repository to locate the potential Web services that

can be used to execute tasks. The system also needs to spend computation

costs to select Web services and plan execution of a composite service on be-

half of the end user. Similarly, the system also consumes bandwidth resource

(i.e., bandwidth cost) when searching Web services for tasks, e.g., the sys-

tem sends query messages to the service broker to locate Web services and

receives response messages from the service broker. When executing com-

posite services, the system also communicates with Web services during task

execution. So, the main system cost can be described in terms of computation

and bandwidth cost.

In the following subsection, we will apply these metrics to compare our proposed Web

service composition approaches.

4.6.2 Comparison of the Two Composition Approaches

Now we will use the above metrics to compare the two service selection approaches

that are proposed in this paper. In general, we observe a tradeoff between the qual-

ity metrics and cost. We discuss the local optimization approach first. The com-

putation cost of the local optimization approach is polynomial. The bandwidth cost

is also very limited: for each task, between the service requestor and the service

4.6 Evaluation of Two Service Selection Approaches 107

broker, there are two messages (i.e., query message and result message); be-

tween the service requestor and the selected Web service, there are three messages

(i.e., assign, initial and completed message). However, there are two main

problems in respect to QoS of the execution result: (1) The local optimization re-

gards the execution of a task as being independent from other tasks when selecting a

Web service to execute the task. It cannot consider inter-task constraints, which will

lead to sub-optimal execution results in terms of service quality. For example, in the

Travel Planner statechart, task t2 (i.e., AttractionSearching) and task t3

(i.e., FlightTicketBooking) are executed concurrently. If we assume execution

duration for task t3 is always longer than task t2, optimally, when selecting a Web ser-

vice to execute task t2, the system should select the Web service that offers the lowest

execution price, without consideration of execution duration. But in the local opti-

mization composition approach, the system cannot take advantage of the concurrency

between t2 and t3, it may not be able to select the Web service that offers the lowest ex-

ecution price, since the system considers both execution duration and execution price.

(2) When selecting Web services, the local optimization approach can consider con-

straints on single task. But it cannot consider global constraints, i.e., constraints that

cover multiple (or all) tasks in composite services. Although it is always able to select

a Web service with minimal execution price, or minimal execution duration for each

task. However, it fails when both total execution price and execution duration need to

be considered at a global level. For example, it can’t enforce a constraint where the

composite service’s execution price can not exceed 500 dollars and execution duration

cannot exceed 3 days.

In the global planning based approach, the planning of composite service execution

incurs a substantial computation cost and bandwidth cost. The global planner needs to

select an optimal execution plan to execute composite services, it must also monitor

the potential Web services that can be used to execute tasks in the composite service.

108 Quality Driven Service Selection

When changes happen in Web services, the global planner needs to evolve execution

plans at runtime. Another problem with the global planning approach is that users are

required to provide necessary input for all the tasks in the process schema even if some

of the tasks may not be executed. For example, when there are some or-split in the

composite service, i.e., there are multiple execution paths.

The advantage of the global planning approach is that it can select the Web services that

can satisfy users’ global constraints. If end users always specify their constraints on

a single task and there is absolutely no requirement for specifying global constraints,

then the local optimization Web services composition is ideal because its system cost

is low compared to the global planning approach. In our framework, we support both

types of service selection approaches to give users the choice to specify the approach

that best meets their requirements.

In order to validate the selection approaches introduced in this chapter, both local op-

timizer and global planner have been implemented as means to select Web services

for composite services. We also conduct experiments by executing composite services

using these two selection approaches. From the experimental results we conclude that

the global planning approach gives a better QoS of composite service execution with

little extra system cost. More details about implementing these two components can

be found in Chapter 6.

4.7 Related Work

Web service composition is a very active area of research and development [6, 24, 31,

32]. In this section, we first briefly examine some Web service standards then look at

some service composition prototypes.

Several standards that aim at providing infrastructure to support Web services com-

position have recently emerged including SOAP [78], WSDL [93], UDDI [81], and

4.7 Related Work 109

BPEL4WS [12]. SOAP defines an XML messaging protocol for communication

among services. WSDL is an XML-based language for describing web service in-

terfaces. UDDI provides the directory and a SOAP-based API to publish and discover

services. BPEL4WS provides a process-based language for services composition. No-

tations for service description and composition have also been proposed in other efforts

such as ebXML from the B2B integration community and DAML-S from the semantic

Web community. In addition, there are some works focus on QoS of Web services,

service level agreement [52, 61]. However, modelling the QoS of composite service

is still missing in these standard efforts. It should be noted that the above standards

are complementary to our approach. Our approach builds upon the building blocks of

these standards (e.g., SOAP, UDDI) to provide a quality-driven and dynamic service

composition model.

Not much work has been done on QoS-driven service compositions. Previous work has

investigated dynamic service selection based on user requirements. Related projects

include CMI [38] and eFlow [23]. CMI’s service definition model features the concept

of a placeholder activity to cater for dynamic composition of services. A placeholder

is an abstract activity replaced at runtime with a concrete activity type. A selection

policy is specified to indicate the activity that should be executed in place of the place-

holder. In eFlow, the definition of a service node contains a search recipe represented

in a query language. When a service node is invoked, a search recipe is executed in

order to select a reference to a specific service. Both CMI and eFlow focus on opti-

mizing service selection at a single task level. In addition, no QoS model is explicitly

supported. Our approach focuses on optimizing service selection at a composite ser-

vice level. Based on a generic QoS model, a novel service selection approach that uses

linear programming techniques has been proposed.

Related work on QoS has been done in the area of workflows. In general, most existing

projects in this area focus on specifying and enforcing temporal constraints [35, 11].

110 Quality Driven Service Selection

Other projects such as METEOR [18] and CrossFlow [55] consider more comprehen-

sive QoS models. METEOR [18] considers four quality dimensions, namely time, cost,

reliability and fidelity. However, this work does not focus on the dynamic composi-

tion of services. It focuses on analyzing, predicting, and monitoring QoS of workflow

processes. CrossFlow proposes the use of continuous-time Markov chain to estimate

execution time and cost of a workflow instance. It should be noted that efforts in this

area are complimentary to our approach.

Other complementary research proposals include [66, 72], which focus on data quality

management in cooperative information systems. They investigate techniques to se-

lect best available data from different service providers based on a set of data quality

dimensions such as accuracy, completeness, and consistency.

4.8 Summary

Dynamic selection of component services is an important issue in Web services com-

position. In this chapter, we present a general and extensible model to evaluate QoS

of both elementary and composite services. Based on the QoS model, a global ser-

vice selection approach that uses linear programming techniques to compute optimal

execution plans for composite services is described.

We conducted experiments to compare the proposed technique with the local optimiza-

tion selection approach. The results show that the global planning approach effectively

selects high quality execution plans (i.e., plans which have higher overall QoS). More

details about experiments can be found in Chapter 6.

Chapter 5

Adaptive Service Composition

The growth of Internet technologies has unleashed a wave of innovations that are mark-

ing today’s economic truly global. In order to survive dynamic economy environments,

it is important for organizations to have the ability to effectively manage business

changes. In the previous chapters, we discuss how to generate process schemas for

composite services and how to plan the execution of composite services. In this chap-

ter, we switch our attention to the execution of composite services. We will focus on

enabling adaptive service composition.

This chapter is organized as follows: Section 5.1 introduces the research issues and

outlines the proposed solutions. Section 5.2 presents an approach that handles excep-

tions occurring in component services. Section 5.3 focuses on handling unexpected

exceptions. Section 5.4 gives details on replanning the execution of composite ser-

vices. Finally, we discuss related work in Section 5.5 and provide a summary of this

chapter in Section 5.6.

112 Adaptive Service Composition

5.1 Introduction

Composite services operate in a highly dynamic environment as new component ser-

vices may become available at any time, and existing services may be removed, be-

come temporarily unavailable, offer better QoS properties, withdraw advertised QoS

properties, etc. Moreover, enterprises are changing constantly: entering into new mar-

kets, introducing new products and restructuring themselves through mergers, acquisi-

tions, alliances, and divestitures. Indeed, runtime modification of business processes is

necessary to correct errors or deficiencies in process schemas [22, 76], to meet changes

in application requirements and technologies, or to incorporate new business policies,

etc. Therefore, there is a need for adaptive composition techniques in which compos-

ite services will dynamically adjust their operations to respond rapidly to exceptions

(e.g., non-availability of a selected component service) and opportunities (e.g., a new

component service offering better QoS than existing ones).

Exceptions in workflows can be divided into four categories: basic failures, appli-

cation failure, expected exception, and unexpected exception [34]. The basic failures

correspond to failures at the system level (e.g., DBMS, operating system, or network

failure); the application failures correspond to failures at application level, i.e., the ap-

plications invoked by the WfMS in order to execute a given task; the expected excep-

tions correspond to predictable deviations from the normal behavior of a process; and

the unexpected exceptions correspond to inconsistencies between the business process

in the real world and its corresponding workflow schema. According to this classi-

fication, in this chapter, we focus on handling application failures1 and unexpected

exceptions for composite services. It should be noted that the expected exceptions can

be modelled as service composition rules in our framework, details can be found in

Chapter 3.

1In composite services, the application failures can be considered as component service execution
failures, violation of QoS constraints, etc.

5.2 Handling Component Exceptions for Composite Services 113

In the rest of this chapter, we present the design of an adaptive service composition

framework. Our solution can handle exceptions occurring in component services in

peer-to-peer fashion, as well as unexpected exceptions by dynamic modification on

process schemas of composite service. The salient features of our framework are:

• Adaptive service composition. We propose an adaptive service composition

approach in which composite services continuously monitor the behavior of

their components and adapt themselves to appropriately react to run-time ex-

ceptions on component services (e.g., component service failures, violation

of QoS constraints). The adaptive behavior of services is centered around the

concepts of service coordinators and control tuple spaces.

• Handling unexpected exceptions. We propose an approach that handles un-

expected exceptions by modifying process schemas of composite services.

During the execution of a composite service, the service composition man-

ager continuously checks the consistencies between business rules and the

process schema of a composite service and migrate the composite service to

a new process schema if any modifications on the current process schema are

required.

5.2 Handling Component Exceptions for Composite

Services

We take the view that in order to support adaptive execution of composite services

over the Internet, services should be self-managing: they should be capable of adapting

themselves to appropriately react to run-time exceptions. Expected exception events

are generated in response to changes in service execution states. Examples of such

events are: component service failure, violation of QoS constraints, and emergence

114 Adaptive Service Composition

of new services with better QoS. In our approach, exception handling is facilitated

by means of service coordinators. A coordinator is essentially an extensible object

attached to a service. It is responsible for:

• Orchestrating service executions based on an execution plan, i.e., receiving

service requests (i.e., SOAP request messages), creating and invoking service

instances.

• Tracing service executions, i.e., recording when service instances are created,

when service instances are completed, etc.

• Monitoring and controlling service executions, i.e., detecting, notifying, and

handling exceptions.

In this section, we focus on exception handling in composite services, where the ex-

ceptions occur in component services. The information required by a coordinator to

handle exceptions is represented in the form of a control tuple space. The notion of

control tuple space builds upon the traditional tuple space model [16] and extends it to

support exception handling in composite services. The tuple space model is recognized

as an appropriate model for managing interactions among loosely coupled entities [63].

In our approach, exception handling is facilitated via control tuples creation, notifica-

tion, and extraction. The control tuples of a coordinator are : (i) generated based on an

exception handling policy which is specified by the service provider, or (ii) provided

by other coordinators that have partnerships with the service (e.g., a coordinator of a

composite service may add tuples into the spaces associated with its components).

5.2.1 An Overview of Control Tuples

A control tuple is a rule of the form E[C]|A such that:

5.2 Handling Component Exceptions for Composite Services 115

• E is an execution exception or QoS exception event. Examples of exe-

cution exception events are: (i) failure(s,t), meaning that s is un-

able to execute the task t, (ii) delay(s,t), meaning that the execu-

tion of the task t by the service s will take longer than the estimated

time, and (iii) advance(s,t), meaning that the execution of the task

t by the Service s completed earlier than the estimated time. Exam-

ples of QoS exception events are (i) QoSImprovment(s,p) (respectively,

QoSDegradation(s,p)), meaning that the service s has advertised a bet-

ter (respectively, lower) value for the QoS property p (e.g., lower execution

price, higher execution price), (ii) unavailable(s,t), meaning that ser-

vice s that can be used to execute task t become unavailable.

• C is a conjunction of conditions on execution states including event parameter

values and service information (e.g., inputs and outputs of tasks).

• A is an exception handling action. Table 5.1 summarizes a list of exception

handling actions supported in our approach (action signatures are omitted for

clarity reasons). Some of the actions (e.g., timeout(), retry()) are based on

service combinators introduced in [17].

Assume that: (i) CS is a composite service, (ii) p1, p2 are the top two

execution plans of cs, (ii) p1 is the best execution plan and (iii) t1,

t2 are tasks of CS. The following are examples of control tuples in tu-

ple space of CS: {Failure(p1.t1.service, t1)[true]|Replan(CS),

[true]|Alternative(p1.t2.service, p2.t2.service)}. The first tu-

ple indicates that a re-planning is required whenever the corresponding service of t1

(i.e., the service selected to execute t1) fails to execute t1. The second tuple indicates

that if the service of p1, which is selected to execute t2 fails, the corresponding service

of p2 should be invoked.

116 Adaptive Service Composition

Actions Brief Explanation
Replan(BP) Generates a new optimal execution plan of a business process

BP based on the already completed service invocations and the
available services that can be used to execute the remaining tasks
of the business process.

Timeout(s,t) Allows a time limit t to be placed on the invocation of a service
s. If the service execution has not completed within that time, it
is considered as failure.

Retry(s) Allows to re-invoke a service s after a failure.
Forward(s1,s2) Allows a service s1 to forward an invocation message to another

service s2.
Alternative(s1,s2) Allows to invoke a second service s2 in case the invocation of

the primary service s1 fails.
Multiple(s1, s2, ..., sn) Allows to invoke multiple services (i.e., s1, s2, ..., sn) at

the same time and returns the results of the service that com-
pletes execution first.

Table 5.1: Exception Handling Actions

5.2.2 Multi-level Exception Handling Policies

Each coordinator possesses a set of exception handling policies (i.e., ECA rules) that

are used to generate control tuples for exception handling. In our framework, we clas-

sify these policies into three levels according to their usages:

1. Composite-level. Exception handling policies in this level are used by co-

ordinators of composite services to generate control tuples for handling ex-

ecution exceptions in component services and QoS exceptions in candidate

component services. An example of exception handling policy in this level is:

delay(s,t)[t ∈ CS]|Replan(CS), meaning that it will require the

coordinator of the composite service CS to replan the execution if a compo-

nent service s that are used to execute a task t in CS delays its execution.

2. Community-level. Exception handling policies in this level are used by co-

ordinators of communities to generate control tuples for reporting QoS ex-

ceptions in candidate component services. An example of exception handling

policy in this level is: unavailable(s,t)[t ∈ CS]|Notify(CS),

5.2 Handling Component Exceptions for Composite Services 117

meaning that it will require the coordinator of the community (where the ser-

vice s is a member of the community) to notify the composite service CS if a

service s that can be used to execute a task t in CS becomes unavailable.

3. Component-level. Exception handling policies in this level are used by co-

ordinators of component services to generate control tuples for handling the

execution exceptions in component services and reporting QoS exceptions in

candidate services. An example of exception handling policy in this level is:

failure(s,t)[t ∈ CS]|Notify(CS), meaning that it will require

the coordinator of the component service s to notify the composite service

CS if the service s fails to execute a task t in the composite service CS.

5.2.3 Control Tuples Generation

Tuple generation policies are set by service providers via multi-level exception han-

dling rules. Service coordinators generate control tuples and distribute them to relevant

spaces based generation policies. In this section, we present the details.

Generation of tuples is either explicit or implicit. In an explicit mode, the service

provider sets the collection of tuples that specify exception handling policies at service-

definition time. For example, when a composite service is created, the tuples that

specify how to handle situations when one or more components fails or is unavailable

are created and stored in the tuple space of the composite service coordinator. In an

implicit mode, tuples are automatically generated by a coordinator and injected into the

space of another coordinator to adapt it to the specific needs of service interactions2.

Implicit tuple generation is of three types: composite-community, community-member,

and composite-component and component-component.

2It should be noted that although access control, i.e., which coordinators can manipulate which tuples
in which spaces, is an important issue, it is outside the scope of this thesis because it is a challenging
issue by itself.

118 Adaptive Service Composition

• In a composite-community mode, the coordinator of the composite ser-

vice sets the collection of tuples to be added to tuple spaces of the

communities which are referenced in the statechart of the composite ser-

vice, at service-definition time. For instance, a coordinator of a com-

posite service may add a tuple (i.e., QoSImprovment(s,qprice)[qprice<

p.t.price]|Notify(CS)) to the tuple space of a community in order to

be notified about the availability of new members of the community offering

lower execution price than current price in execution plan p.

• In a community-member mode, the community coordinator sets the collection

of tuples to be added to the tuple space of a member at member-registration

time. This allows, for instance, a community to instruct its members to

notify changes regarding their QoS properties. An example tuple can be:

QoSImprovment(s,qduration)[] |Notify(C).

• In a composite-component mode, the coordinator of a composite service sets

the collection of tuples to be added to tuple spaces of services which are part

of a selected execution plan at service-execution time. This allows for in-

stance composite services to delegate exception handling tasks to component

services. In practice, it means that a coordinator of a composite service C

may add a tuple to a coordinator of a component service s1 and instruct it

to forward service invocation to another component service s2 in case s1 is

overloaded.

5.3 Handling Unexpected Exceptions

In the previous section, we presented adaptive features of our service composition ap-

proach, which mainly focus on handling exceptions that occur in component services

5.3 Handling Unexpected Exceptions 119

and assume that the process schema is static during the execution of a composite ser-

vice. However, business processes in real work are changing over the time. More

precisely, in our framework, during the execution of composite services, new rules

may be added into the repository, and existing rules may be updated or removed from

the repository. The process schemas that are used to create composite services may

not conform to the updated business rule repository. Therefore, it is necessary to check

whether the current executing composite services need to modify their process schemas

in order to adopt the changes in business rule repository. For example, the forward-

chain rule (see Table 5.2) is added into the rule repository after the execution of a

composite service is started. Assume that the composite service contains the task of

SafetyTesting and the task has not been completed when the rule is added into

the repository. Therefore, when execution of the task of SafetyTesting is com-

pleted, it is necessary to use the updated business rule repository to regenerate the

process schema. Also assume that in the task of SafetyTesting, the runtime value

of fatigue-Index is 28. Such an execution result will trigger the forward-chain

rule fcr2. Then there is a need to add the task of verifyTesting into the process

schema.

FORWARD-CHAIN RULE fcr2
EVENT TaskEvent::executing task(SafetyTesting)
CONDITION (SafetyTesting::fatigue-Index < 30)
ACTION add task(verifyTesting)

Table 5.2: A New Forward-chain Rule

In our framework, unexpected exceptions are handled by re-generating new process

schemas and migrating composite services to the new schemas. Detail of the procedure

is as follows:

120 Adaptive Service Composition

Task is waiting to be
assigned to a service

¼,¼,¼,¼,¼¼,¼,¼,¼,¼½,½,½,½,½½,½,½,½,½

¾¿¾¿¾¿¾À¿À¿À¿ÀÁ,Á,Á,Á,ÁÁ,Á,Á,Á,ÁÂ,Â,Â,Â,ÂÂ,Â,Â,Â,Â Task is being executedLegend Task has sucessfully been
completed by a service

Ã,Ã,Ã,Ã,Ã,ÃÃ,Ã,Ã,Ã,Ã,ÃÄ,Ä,Ä,Ä,Ä,ÄÄ,Ä,Ä,Ä,Ä,Ä Å,Å,Å,Å,ÅÅ,Å,Å,Å,ÅÆ,Æ,Æ,Æ,ÆÆ,Æ,Æ,Æ,Æ
Ç,Ç,Ç,Ç,Ç,ÇÇ,Ç,Ç,Ç,Ç,ÇÈ,È,È,È,ÈÈ,È,È,È,È É¿É¿É¿É¿ÉÉ¿É¿É¿É¿ÉÊ¿Ê¿Ê¿ÊÊ¿Ê¿Ê¿Ê

Region BRegion A

PSfrag replacements

t1

t2 t3 t4

t5 t6 t7 t8

t9

Figure 5.1: Partition a Composite Service into Regions for Regenerating Process
Schema

1. Detect Events. In order to check the consistencies between process schemas

and business processes in real world, two kinds of events are interested by the

coordinator of composite services: task completion events and business rule

change events. The task completion event contains runtime values and can be

used to generate new process schemas. It should be noted that the task com-

pletion events are reported by the coordinator of component services. Another

type of event is related to changes in business rule repositories. The busi-

ness rule repository notifies the coordinator of composite services whenever a

change occurs (e.g., insert, delete or update business rules) in the repository.

2. Generating New Process Schema. When the coordinator of composite service

is notified of changes in the business repository, it invokes the process schema

generator to re-generate process schemas. In our framework, in order to gen-

erate new process schemas, we partition the tasks of a composite service into

two regions: one region contains the tasks that have been completed or are

currently being executed by the component services, another region contains

the tasks that are not yet assigned to any component services. An example can

be found in Figure 5.1, where region A contains tasks that have been com-

pleted or being executed by component services, region B contains tasks that

are not yet assigned to any component services. It should be noted that we

only check consistencies between the updated business rule repository and the

5.3 Handling Unexpected Exceptions 121

region of a composite service where the tasks are not yet assigned to any com-

ponent services for execution (e.g., region B in Figure 5.1). The tasks that

have been completed or are currently being executed by component services

are considered as the initial state to generate new process schemas. So, the

three inputs for the process schema generation become:

(a) Initial state and user’s context (i.e., user profile). Here the initial state

should be the current execution state of a composite service (e.g., execu-

tion result of tasks that had been completed by component services),

(b) The description of user’s business objectives, and

(c) The updated service composition rules

The details about process schema generation can be found in Chapter 3. If the

new generated process schema is different from the existing process schema,

then composite service migration is necessary.

3. Migration Composite Services. Business process migration is a very challenge

problem itself, especially when the changes affect the tasks that are currently

executing or have been completed by component services. More detail dis-

cussion can be found in [19]. In this work, we only consider the case that

changes only affect the tasks that have not been assigned to any component

service for execution. We focus on improving the QoS of composite services.

Since in our framework, a process schema is generated for a composite service

(instance), the changes in the process schema will only effect the composite

service that it associates with. The changes will not propagate to any other

composite services. Assume that a new process schema is generated, the co-

ordinator of the composite service will first suspend the service instance, then

generate an execution state based on the new process schema. After that, the

coordinator will invoke the global planner to generate a new optimal execution

122 Adaptive Service Composition

Ë,Ë,Ë,Ë,ËË,Ë,Ë,Ë,ËÌ,Ì,Ì,Ì,ÌÌ,Ì,Ì,Ì,Ì

Í¿Í¿Í¿ÍÎ¿Î¿Î¿ÎÏ,Ï,Ï,Ï,ÏÏ,Ï,Ï,Ï,ÏÐ,Ð,Ð,Ð,ÐÐ,Ð,Ð,Ð,Ð

Ñ,Ñ,Ñ,Ñ,Ñ,ÑÑ,Ñ,Ñ,Ñ,Ñ,ÑÒ,Ò,Ò,Ò,Ò,ÒÒ,Ò,Ò,Ò,Ò,Ò Ó¿Ó¿Ó¿ÓÔ¿Ô¿Ô¿Ô

Task is being executedLegend Task has sucessfully been
completed by a service

Õ,Õ,Õ,Õ,Õ,ÕÕ,Õ,Õ,Õ,Õ,ÕÖ,Ö,Ö,Ö,ÖÖ,Ö,Ö,Ö,Ö ×¿×¿×¿×¿××¿×¿×¿×¿×Ø¿Ø¿Ø¿ØØ¿Ø¿Ø¿Ø

Task is waiting to be
assigned to a service

Region Region Region

PSfrag replacements

t1

t2 t3 t4

t5 t6 t7 t8

t9

Rα Rβ Rγ

Figure 5.2: Partition a Composite Service into Regions for Replanning

plan for the composite service based on the new execution state, new process

schema and current available candidate component services. The coordinator

will resume the execution based on the new execution plan.

5.4 Replanning the Execution of Composite Services

In our framework, when handling exceptions that occur in component services or un-

expected exceptions, replanning the execution of composite services may be used to

guarantee that QoS of execution results for composite services is optimal. In this sec-

tion, we present details on how to conduct the replanning when applying linear pro-

gramming techniques to plan execution of composite services.

Assume that the composite service that needs to be replanned contains a set of task

T , where T = {t1, t2, ..., tn}. Based on the execution statues of tasks, T can be parti-

tioned into three regions: the first region (denoted as Rα) contains tasks that have been

completed by component services, the second region (denoted as Rβ) contains tasks

that are currently being executed, the third region (denoted as Rγ) contains tasks that

are not yet assigned to any component services. An example of partitioning a compos-

ite service can be found in Figure 5.2. As we discussed in Chapter 4, there are three

inputs in Linear Programming (LP): variables, an objective function and constraints on

the variables. When we replan the execution of composite service in runtime, the vari-

5.5 Related Work 123

ables and objective function remain the same as what we used in pre-execution time. In

addition to the constraints we have in pre-execution time, we add some constraints that

represent the current execution status. More precisely, each task’s execution results in

region Rα and each task’s assignment results in region Rβ are used to generate con-

straints for the LP. For example, assuming that the task t1 is completed by the service

s14, the actual task execution duration is 20 seconds and execution cost is 10 dollars,

then the following constraints can be generated:

y14 = 1, (5.1)

a14 = 1, b14 = 1, (5.2)

p14 = 20, c14 = 10 (5.3)

Constraint 5.1 indicates that the service s14 is selected to execute the task. Con-

straint 5.2 indicates the service s14 that had completed the task and availability and

reliability are set to 1. Constraint 5.3 indicates that LP use the actual execution dura-

tion and execution price of the task t1 to select the optimal execution plan. For another

example, assume that the task t3 is currently being executed by the service s39, then a

constraint y39 = 1 can be generated.

With the above constraints, the output of LP will give an optimal execution plan for

tasks in region Rγ .

5.5 Related Work

In this section, we review some related work on adaptive workflow, workflow excep-

tion handling and service composition frameworks and prototypes.

Adaptive workflow [53, 54] focuses on defining less prescriptive workflow models,

which aims for having more flexibility to execute workflow instances. It tries to prevent

124 Adaptive Service Composition

the occurrence of exceptions, instead of handling exceptions. CrossFlow [28] provide

a solution call FCC (flexible change control) which focuses on making the workflow

structure flexible. It identifies three kinds of flexible elements namely alternative activ-

ities, non-vital activities, and optional execution orders. When executing workflows,

it maps flexible elements to a static workflow schema, which focus on optimizing the

QoS of workflow, without considering the changes (e.g., exceptions) occurred at run-

time. In our framework, we consider adapting process schema to satisfy the business

constraints first and then optimize the QoS of composite services by re-planning. MO-

BILE is a modular workflow management system mainly addressing late modelling

adaptation. It consists of several modules for orthogonal workflow perspectives, such

as the so called behavior perspective (i.e., that which is executed in the control flow)

or the information perspective (i.e., what data is consumed and produced) [42, 50]. In

MOBILE, workflow definitions can be left incomplete in build time, for example, the

suitable activity, activity order or subworkflow can only be determined at execution

time. However, the user has to decide how a workflow shall be completed concern-

ing aspects left open at workflow definition time. ADEPT [76] concentrated on issues

regarding dynamic structure changes of workflow instances at runtime. Based on a

conceptual, graph-based workflow model, a complete and minimal set of change oper-

ations is introduced that supports users in modifying the structure (i.e., schema) of run-

ning workflow instances while preserving their correctness and consistency. However,

ADEPT does not provide algorithms that automatically decide under which circum-

stances which structural adaptations should be applied to a workflow instance. In our

framework, we focus on automatically generating new process schemas and migrating

composite services to new schemas.

Exception handling in workflows is widely discussed in literatures [19, 20, 40, 62]. In

[20], ECA rules are used to handle expected exceptions. A rich exception-specification

language is proposed. It also provides patterns to facilitate the designing of execution

5.5 Related Work 125

handling rules. In [62], justified ECA rules are used to handle the expected excep-

tions. Furthermore, a case-based reasoning (CBR) mechanism with integrated human

involvement is used to improve the exception handling capabilities. This involves col-

lecting cases to capture experiences in handling exceptions, retrieving similar prior

exception handling cases, and reusing the exception handling experiences captured in

those cases in new situations. However, most of these works use centralized excep-

tion handling techniques which are not appropriate in the context of composite Web

services. Given the highly dynamic and distributed nature of Web services, novel tech-

niques involving peer-to-peer exception handling will become increasingly attractive.

Currently, exception handling in current service composition frameworks and proto-

types focus on exceptions occurred in component services and expected exception. In

ebXML [33], a set of business protocol exceptions is predefined, which can be con-

sidered as expected exception. BPEL4WS [12] adopts approaches of active workflows

to handle excepted exceptions. It specifies exceptional conditions and their conse-

quences, including recovery sequences as part of process schemas. Both eFlow [22]

and CMI [38] proposed a centralized exception handling mechanism to handle ex-

pected exception. In addition, eFlow also handles unexpected exceptions by dynamic

modification on composite services. However, modification either conducted by users

or target process schemas needs to be predefined. We propose an adaptive service com-

position framework that supports peer-to-peer exception handling. In order to handle

unexpected exception, new process schemas are generated automatically. In addition,

we replan the execution to provide optimal QoS of execution results for composite

services.

126 Adaptive Service Composition

5.6 Summary

In this chapter, we presented a framework that supports adaptive service composition,

which includes:

• An adaptive service composition approach in which composite services con-

tinuously monitor the behavior of their components and adapt themselves to

appropriately react to run-time exceptions on component services.

• An approach that handles unexpected exceptions by runtime modification on

composite services.

In order to validate the framework introduced in this chapter, the service composition

manager and service coordinators have been implemented to enable adaptive service

composition. More details on the implementation can be found in Chapter 6.

Chapter 6

Prototype

In this chapter, we present the current implementation of the DYflow prototype to illus-

trate the key concepts and ideas in our approach. We also conduct some experiments

to verify our solutions.

This chapter is organized as follows: Section 6.1 gives an overview of the proto-

type. Section 6.2 briefly describes the implementation of service broker. Section 6.3

overviews the components of service composition manager. Section 6.4 presents the

result of experiments. Finally, we provide a summary of the chapter in Section 6.5.

6.1 System Architecture

DYflow is a service-oriented architecture (see Figure 6.1) that aims to integrate a large

number of distributed, autonomous services. The prototype composed of a service

composition manager, a business rule repository, a user profile repository, a pool of

services, and a service broker. All components communicate through SOAP messages

(XML documents).

128 Prototype

Selection Rule
Service

Selection Rule
Service

Service Ontology
Repository

(UDDI Registry)

Service Repository

(UDDI Registry)

tModel tModel

Document
WSDL

Service Ontology
Repository

(UDDI Registry)

Service Repository

(UDDI Registry)

tModel tModel

Document
WSDL

Business Rule

Events

ÙÚÙÛÚÛ ÜÚÜÝÚÝÞÚÞÚÞßÚß àÚàáÚá âÚâãÚãäÚäÚäåÚåæÚæÚææÚæÚæçÚççÚç èÚèÚèéÚéÚéêÚêÚêëÚëÚëìÚìÚììÚìÚìíÚííÚí îÚîîÚîïÚïïÚï ðÚðñÚñòÚòòÚòóÚóóÚó ôÚôõÚõ öÚööÚö÷Ú÷÷Ú÷
øÚøÚøÚøøÚøÚøÚøùÚùÚùÚùùÚùÚùÚù

úÚúûÚûüÚüÚüüÚüÚüýÚýýÚýþÚþÚþÿÚÿÚÿ������ �������������� ������ 	�	
�
��������

�
�

�
�
������ ������������������������������������ ���
���
������ ������

������������ ������ ������������

�������������� � � � � � �

!�!"�"#�#�##�#�#$�$$�$%�%�%&�&�&

Composition Rule
Service

Business Rule

Component ServiceComponent ServiceComponent Service

Legend:

Reference

Interction

Data repository

Component

Generator

Plan
ExecutionRe−Planning

Plan
ExecutionRe−Planning

QoS
Information

Publish SubscribePublish Subscribe

Service Broker

Ontology Engineer

Publish

Composition Hierarchy

Process Schema

Schema
Process

Execution Planner

Service Composition Manager

Repository
Business Rule

Manages

Repository

User Profile

User Profile

Users

User ObjectiveInitiate State

Schema
Porcess

Service Coordinator

Composite Service

Figure 6.1: Architecture of the DYflow Prototype

The service broker has two repositories: service repository and service ontology repos-

itory. In order to participate to business processes, services need to subscribe to the

service ontology and register with the service broker. The ontology engineers are re-

sponsible for publishing service ontologies on the repository.

The service composition manager provides a GUI that allows users (e.g., business pro-

cess designers) to define business rules, specify initiate states and user objectives to

generate process schemas to build the composition hierarchy on-the-fly for compos-

ite services. Prior to executing composite services, the service composition manager

needs to plan execution. It contacts the service broker to retrieve the QoS information

of candidate services. It will generate an optimal execution plan for the composite

service based on current available services and their QoS properties. Then the ser-

vice composition manager will orchestrate the service execution on the execution plan.

During the execution, the service composition manager will trace service execution

and handling exceptions.

In the following sections, we present the implementation of the service broker and

the service composition manager. We present the details on how to use the UDDI

6.2 Implementing the Service Broker 129

registry to implement service ontology repository and Web service repository. We will

also describe the main components that are used for the implementation of the service

composition manager.

6.2 Implementing the Service Broker

There are two meta-data repositories in the DYflow system, namely the service ontol-

ogy repository and Web service repository. We adopt the UDDI registry to implement

both meta-data repositories (see Figure 6.2). The UDDI specification provides a plat-

form independent way of describing services and discovering businesses. The UDDI

data structures provide a framework for the description of basic business and service

information, and provide an architecture for an extensible mechanism (i.e., tModel) to

provide detailed service information using any description language.

service ontology’s tModel

 Name
 Description
 Binding Templates

Binding Template
 Description
 AccessPoint
 tModelInstance Details

tModelInstanceInfo
 tModelKey
 Description
 InstanceDetail

tModel
 Name
 Description
 OverviewDoc
 IndentifierBag
 CatagoryBag

Business Entry −− Service Ontology
 Name −− Service Ontology Name
 Description
 Business Services

Business Service
 Name
 Description
 Binding Templates

Binding Template
 Description
 AccessPoint
 tModelInstance Details

tModelInstanceInfo
 tModelKey
 Description
 InstanceDetail

tModel
 Name
 Description
 OverviewDoc
 IndentifierBag
 CatagoryBag

 Description
 Business Services

Business Entry −− Web service
 Name −− Web service Name

UDDI: Web Service RepositoryUDDI: Service Ontology Repository

Service Ontology tModels Web service tModels

Legend: reference parent service ontology’s tModel

Business Service

Figure 6.2: Service Ontology Repository and Web Service Repository

We define an XML schema for service ontologies. Each service ontology

is represented as an XML document. Table 6.1 shows an example of a

Trip-planning service ontology for the domain tourism. A separate tModel

of type serviceOntologySpec is created for each service ontology. The infor-

mation that makes up a serviceOntologySpec tModel is quite simple. There

130 Prototype

< ontology-service NAME=”Trip-planning-services” VERSION=”1.0” >
< domain > tourism < /domain >
< domainSynonym > leisure < /domainSynonym >
< domainSynonym > trip < /domainSynonym >
< domainSynonym > journey < /domainSynonym >
< domainSynonym > travel < /domainSynonym >
< superDomain > ROOT < /superDomain >
< variable NAME=BonusPoint TYPE=integer>
< variable NAME=DrivingTime TYPE=real>
< variable NAME=Discount TYPE=real>
<serviceclass NAME = ”FlightTicketBooking”

SUPERCLASS-OF=”domestic-ticket-booking-service, intl-ticket-booking-service” >
<serviceDescription > This is a service for booking the flight ticket </serviceDescription >
<attribute NAME = ”serviceProvider” TYPE= ”string” > </attribute>
<attribute NAME = ”url” TYPE=”string”> </attribute>
<operation NAME = ”FindTicket”>

< inputData NAME= ”DepartingAirport” TYPE=”String” </inputData>
< inputData NAME= ”ArrivalAirport” TYPE=”String” </inputData>
< inputData NAME= ”FromDate” TYPE=”Date” </inputData>
< inputData NAME= ”ToDate” TYPE=”Date” </inputData>
< inputData NAME= ”NumberOfPassenger” TYPE=”integer” </inputData>
< outputData NAME= ”Flight-schedule” TYPE=”XMLDoc” </outputData>
< outputData NAME= ”Price” TYPE=”float” </outputData>
< outputData NAME= ”availability” TYPE=”boolean” </outputData>

</operation>
<operation NAME = ”Book-ticket”>

< inputData NAME= ”Flight-schedule” TYPE=”XMLDoc” </inputData>
< inputData NAME= ”Credit-card” TYPE=”Credit-card” </inputData>
< inputData NAME= ”Traveler” TYPE=”Traveler” </inputData>
< outputData NAME= ”Ticket-receipt” TYPE=”XMLDoc” </outputData>
< outputData NAME= ”Confirmation-no” TYPE=”String” </outputData>

</operation>
</serviceclass>
<serviceclass NAME = ”AccomodationBooking”>

<attribute NAME = ”Hotel” TYPE=”Accomodation”> </attribute>
<attribute NAME = ”Url” TYPE=”string”> </attribute>
<operation NAME = ”HotelBooking”>

...
</serviceclass>
<serviceclass NAME = ”Car-rental-services”>

<operation NAME = ”CarRental”>
...

</serviceclass>
</ontology-service>

Table 6.1: Simplified Service Ontology for Trip Planning

6.2 Implementing the Service Broker 131

is a tModel key, a name (i.e., service ontology’s name), optional description, and a

URL that points to the location of the service ontology description document. In the

child service ontology, the cateloryBag should contain the parent service ontol-

ogy’s tModel key and the keyValue is parentServiceOntologySpec. In the

table 6.2, an example of service ontology’s tModel in UDDI registry is given.

<tModel tModelKey=”uuid: 84fe307a-fe3e-4fff-a9fb-79140b265177”>
<name>Trip-planning-services</name>
<description lang=”en”>XML specifications of service ontology</description>
<overviewDoc>

<description lang=”en”>Service Ontology</description>
<overviewURL>http://dyflow.cse.unsw.edu.au/ontology/trip-planning-services.xml</overviewURL>

</overviewDoc>
<categoryBag>

<keyedReference tModelKey=”uuid:C1ACF26D-9672-4404-9D70-39B756E62AB4”
keyName=”uddi: A specification” keyValue=”specification”/>

<keyedReference tModelKey=”uuid:C1ACF26D-9672-4404-9D70-39B756E62AB4”
keyName=”uddi: An XML specification” keyValue=”xmlSpec”/>

<keyedReference tModelKey=”uuid:7341164E-FC52-4813-9810-22270DB32E0E”
keyName=”uddi: An XML specification for Service Ontology” keyValue=”serviceOntologySpec”/>

<keyedReference tModelKey=”uuid:1FC3CA8C-1742-4EF5-B8F0-E93B5D84FDDB”
keyName=”uddi: An XML specification for Parent Service Ontology” keyValue=”parentServiceOntologySpec”/>

</categoryBag>
</tModel>

Table 6.2: tModel for a Service Ontology

In the Web service repository, we adopt WSDL (Web Service Description Lan-

guage) [93] to specify services. An example of a WSDL document can be

found in Table 6.3. It should be noted that the Web service’s tModel contains

the key of a service ontology’s tModel in categoryBag, the keyValue is

serviceOntologySpec. In Table 6.4, an example of Web service’s tModel in

UDDI registry is given.

Based on UDDI API, the service broker provides two kinds of interfaces for both

repositories: the publish interface and the search interface. For the service ontology

repository, the publish interface allows an ontology engineer to create a new service

ontology. It also provides methods to modify the service ontology such as add a new

service class, delete an existing service class, etc. The search interface allows service

providers and end users to search and browse the existing service ontologies. The

132 Prototype

<?xml version=”1.0” encoding=”utf-8”?>
<wsdl:definitions name=”flightBooking”
targetNamespace=”http://dyflow.cse.unsw.ede.au/services/flightBooking.wsdl”
xmlns=”http://dyflow.cse.unsw.ede.au/services/flightBooking.wsdl”
xmlns=”http://dyflow.cse.unsw.ede.au/ontology/Trip-planning-services.xml”
xmlns:soap=”http://schemas.xmlsoap.org/wsdl/soap/”
xmlns:wsdl=”http://schemas.xmlsoap.org/wsdl/”
xmlns:xsd=”http://www.w3.org/2001/XMLSchema”>

<wsdl:types>
<xsd:schema targetNamespace=”http://dyflow.cse.unsw.ede.au/services/flightBooking.wsdl”>
<xsd:element name=”Flight-schedule” type=”xsd:string”/>
... ...
<xsd:element name=”NumberofPassenger” type=”xsd:integer”/>
<xsd:complexType name=”FlightTicketBooking outParametersType”>

<xsd:sequence>
<xsd:element name=”Flight-schedule” type=”xsd:XMLDoc”/>
<xsd:element name=”Price” type=”xsd:long”/>
<xsd:element name=”Availability” type=”xsd:string”/>

</xsd:sequence>
</xsd:complexType>
<xsd:element name=”FlightTicketBooking outParameters” type=”FlightTicketBooking outParametersType”/>
<xsd:complexType name=”FlightTicketBooking inParametersType”>

<xsd:sequence>
<xsd:element name=”DepartingAirport” type=”xsd:string”/>
... ...
<xsd:element name=”NumberofPassenger” type=”xsd:integer”/>

</xsd:sequence>
</xsd:complexType>
<xsd:element name=”FlightTicketBooking inParameters” type=”FlightTicketBooking inParametersType”/>

</xsd:schema>
</wsdl:types>
<wsdl:message name=”FlightTicketBookingSoapOut”>

<wsdl:part element=”FlightTicketBooking outParameters” name=”Parameters”/>
</wsdl:message>
<wsdl:message name=”FlightTicketBookingSoapIn”>

<wsdl:part element=”FlightTicketBooking inParameters” name=”Parameters”/>
</wsdl:message>
<wsdl:portType name=”flightBookingPortType”>

<wsdl:operation name=”FlightTicketBooking”>
<wsdl:input message=”FlightTicketBookingSoapIn” name=”FlightTicketBookingInput”/>
<wsdl:output message=”FlightTicketBookingSoapOut” name=”FlightTicketBookingOutput”/>

</wsdl:operation>
</wsdl:portType>
<wsdl:binding name=”flightBookingSOAP” type=”flightBookingPortType”>

<soap:binding style=”document” transport=”http://schemas.xmlsoap.org/soap/http”/>
<wsdl:operation name=”FlightTicketBooking”>

<soap:operation soapAction=”http://dyflow.cse.unsw.ede.au/services/FlightTicketBooking” style=”document”/>
<wsdl:input name=”FlightTicketBookingInput”>

<soap:body use=”literal”/>
</wsdl:input>
<wsdl:output name=”FlightTicketBookingOutput”>

<soap:body use=”literal”/>
</wsdl:output>

</wsdl:operation>
</wsdl:binding>

</wsdl:definitions>

Table 6.3: Simplified WSDL Document for a Web Service

6.3 Implementation of Service Composition Manger 133

<tModel tModelKey=”uuid: 9760f81e-badd-492b-99ee-77ea408f6645”>
<name>FlightTicketBooking</name>
<description lang=”en”>XML specifications of a Web service </description>
<overviewDoc>

<description lang=”en”>Web service description</description>
<overviewURL>http://dyflow.cse.unsw.edu.au/services/flightBooking.wsdl</overviewURL>

</overviewDoc>
<categoryBag>

<keyedReference tModelKey=”uuid:C1ACF26D-9672-4404-9D70-39B756E62AB4”
keyName=”uddi: A specification” keyValue=”specification”/>

<keyedReference tModelKey=”uuid:C1ACF26D-9672-4404-9D70-39B756E62AB4”
keyName=”uddi: An XML specification” keyValue=”xmlSpec”/>

<keyedReference tModelKey=”uuid:C1ACF26D-9672-4404-9D70-39B756E62AB4”
keyName=”uddi: types” keyValue=”wsdlSpec”/>

<keyedReference tModelKey=”uuid:84FE307A-FE3E-4FFF-A9FB-79140B265177”
keyName=”uddi: An XML specification for Service Ontology” keyValue=”serviceOntologySpec”/>

</categoryBag>
</tModel>

Table 6.4: tModel for a Web Service

search can be based on a service ontology’s domain name, synonyms, service class,

etc. For the Web service repository, the publish interface allows service providers to

publish or advertise their service descriptions. While the search interface allows the

user to discover services by service class name, operation name, input and output data.

6.3 Implementation of Service Composition Manger

The service composition manager consists of three modules, namely the process

schema generator, the execution planner and the service coordinator. All the com-

ponents of the service composition manager have been implemented in Java.

The process schema generator receives end users’ initiate state (i.e., initiate task) and

business objectives (i.e., the target task) as input. It locates the user’s profile in the

repository and consults business rules to dynamically generate a set of independent

process schemas (Statecharts) in XML documents. There are two generation modes:

interactive and automatic. In the interactive mode, a process schema (either top level

or task level process schema) is generated step by step, allowing end users to refine

their business objectives and constraints during the generation of process schemas. In

134 Prototype

the automatic mode, all the possible process schemas based on the user’s business

objectives are generated. In this mode, users supply a value indicating how many

inference steps the generator is to use to generate the process schemas. This avoids

the problem of the process schema generator spending excessive computation time

generating complex and unusable process schemas. The generator may also cache

some generation results for frequently used business objectives. These cached process

schemas are reused if the business rules or conditions have not been modified.

The execution planner is the module that plans the execution of a composite service

using the global planning based approach. The planner is implemented as a linear

programming solver based on IBM’s Optimization Solutions and Library (OSL) [48].

The advantage of using linear programming is that it can select an optimal execution

plan of a composite service without enumerating all the possible execution plans.

The service coordinator orchestrates the execution of composite services. When it re-

ceives an execution plan, it creates an instance of composite services. It manages the

service instance lifecycle and enables state control, service collaboration and moni-

toring by executing business rules. It assigns tasks to component services based on

the execution plan. It orchestrates the coordination among the component services

by executing control and data flows. To be adaptive, whenever exceptions occur in

component services, it cooperates with component coordinators to handle exceptions

based on exception handling policies. When it receives event notification messages

that are initiated by component services, it invokes runtime inference algorithms to

check whether there is a need to modify the process schemas. When the service coor-

dinator is notified that there is a change has occurred in the business rule repository, it

will invoke the process schema generator to re-generate process schemas for compos-

ite services. If the new generated schema is different from the existing one, then the

service coordinator will migrate the service instance into to the new process schema.

The service composition manager GUI (see Figure 6.3) provides a single point-of-

6.3 Implementation of Service Composition Manger 135

Figure 6.3: GUI of Service Composition Manager

access to the DYflow system. Using the Business Rule Manager, users can edit, mod-

ify, and delete business rules. Using the Exception Handling Policy Editor, users can

edit, modify and delete exception handling policies. The GUI also provides a Profile

Manager that allows users to manage their profile. The lower panel shows the tool for

displaying the diagram of a statechart graphically.

6.3.1 An Application

To illustrate the viability of our approach, we have implemented an automobile R&D

application. We used about 100 business rules in this application. The application in-

crementally generates composite services to manage the replacing engineR&D

product process (see Section 3.2). The detailed scenario is as follows:-

• Step 1: Creating top level composite service schema

In this step, the chief engineer provides a description of his/her business ob-

jective (i.e., replacing engine) as input to the process schema genera-

tor. The process schema generator locates the user’s profile and appropriate

136 Prototype

business rules to generate an XML document that represents a statechart of

service. The graphical presentation of the statechart is shown in Figure 6.3.

After creating the top level composite service, the chief engineer will initiate

the R&D product process. The task of new engine development will

be assigned to an engine designer.

• Step 2: Creating task level composite service schema

Assuming that an engine designer is assigned to execute the first task new

engine development in the top level composite service. The process

schema generator needs to generate a composite service for the engine de-

signer to execute this task, since there is a set of service composition rule

associates with it. Having the business objective and the engine designer’s

profile as initial context, the process schema generator can create a task level

composite service schema as shown in Figure 6.4. It should be noted that,

for a task in a composite service, either an elementary service is used to exe-

cute it, or the process schema generator creates a statechart to execute it. For

example, for the task of Cost Evaluation, since there is no service com-

position rule for it, an elementary service is used to execute it. However, for

the task of Outsourcing Engine, since there is a set of service composi-

tion rules, the process schema generator create a composite service to execute

it.

The above scenario shows that the system only creates the necessary composite service

schemas for the R&D product process. It does not enumerate all the possible tasks,

control flows, and data flows. Instead of using a single large one-level schema to rep-

resent the whole R&D product process, we use composition hierarchy that consists of

multiple nested composite services to represent the R&D product process. This modu-

lar approach allows distinct processes to be encapsulated in a composite service. This

representation is more scalable and makes it easy to implement runtime modification

6.4 Experimentation 137

Figure 6.4: Task Level Composite Service for New Engine Development

on composite services.

6.4 Experimentation

We conducted experiments using the implemented prototype system. In order to eval-

uate the performance of both service selection approaches, we developed a travel plan-

ning application, which is evolved from [100]. It should be noted that in our system, the

performance of service selection approaches is independent of application domains. In

this application, a collection of services are created based on the service ontology given

in Table 6.1. It should be noted that some QoS information of services are retrieved

via generic operations (e.g., execution duration (resp. execution cost) is retrieved

via getExecutionDuration() (resp. getExecutionDuration()); some QoS information of

services are calculated by the service composition manager (e.g., service reputation,

reliability and availability) using the formulas that are presented in Section 4.3.1. Ser-

vices are deployed on a cluster of PCs. All PCs have the same configuration of Pentium

138 Prototype

III 933MHz with 512M RAM. Each PC runs Windows 2000, Java 2 Edition V1.3.0,

and Oracle XML Developer Kit (Oracle XDK, for XML parsing). They are connected

to a LAN through 100Mbits/sec Ethernet cards.

We simulate both static and dynamic environments. In a static environment, there is

no change in any component services’ QoS properties during executing a composite

service and all the component services are able to execute the tasks successfully con-

forming to their QoS properties. In a dynamic environment, when executing composite

services, QoS of component services may undergo changes: existing component ser-

vices may become unavailable, new component services with better QoS properties

may become available, component services may not be able to complete the execution

of tasks, etc.

We conduct experiments in each environment. In the experiment, we created several

composite services with different numbers of basic states. The composite services

were created by randomly adding states to the composite service shown in Figure 4.1.

The number of states ranges over the values 10, 20, 30, 40, 50, 60, 70, and 80.

In the experiments, we vary the configuration parameters such as the number of tasks

in process schemas, the number of candidate component services per task, the number

of execution paths in process schemas to execute composite services using both service

composition approaches. We compare both approaches by measuring: (1) computation

cost (in seconds) of selecting component services; (2) bandwidth cost (in KBytes, i.e.,

total network bandwidth between the execution planner and the service broker as well

as between the execution planner and services) for selecting and executing component

services. For each testing case, we execute composite services 10 times and compute

the average computation or bandwidth cost. The aim of this experiment is to investigate

the system costs of executing composite services using the LP-based global planning

and local optimization approaches.

6.4 Experimentation 139

6.4.1 Experiments in Static Environments

Under static environments, using a global planning approach, once a process execution

plan is created, the execution planner does not need to re-plan the process execution.

So, the global planner is invoked only once for a composite service. For the local

optimization approach, in a composite service, if we assume the number of tasks that

are executed is N , then the service selector in the execution planner needs to be invoked

N times to select component services. In the following subsection, we present the

detail experiment results on system cost respectively.

Experiment Results on System Cost in Static Environments

In this subsection, we present the experiment results on computation cost and band-

width cost respectively in static environments.

140 Prototype

 0

 0.5

 1

 1.5

 2

 2.5

 3

 10 20 30 40 50 60 70 80

C
om

pu
ta

tio
n

C
os

t (
in

 s
ec

on
ds

)

Number of Tasks in Process Schemas

Process schema has one execution path

Global Planning
Local Optimization Selection

(a) Each Task has 5 candidate component
services

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 10 20 30 40 50 60 70 80

C
om

pu
ta

tio
n

C
os

t (
in

 s
ec

on
ds

)

Number of Tasks in Process Schemas

Process schema has one execution path

Global Planning
Local Optimization Selection

(b) Each Task has 10 candidate component
services

 0

 1

 2

 3

 4

 5

 6

 10 20 30 40 50 60 70 80

C
om

pu
ta

tio
n

C
os

t (
in

 s
ec

on
ds

)

Number of Tasks in Process

Process schema has one execution path

Global Planning
Local Optimization Selection

(c) Each Task has 20 candidate component
services

 0

 1

 2

 3

 4

 5

 6

 7

 8

 10 20 30 40 50 60 70 80

C
om

pu
ta

tio
n

C
os

t (
in

 s
ec

on
ds

)

Number of Tasks in Process

Process schema has one execution path

Global Planning
Local Optimization Selection

(d) Each Task has 40 candidate component
services

Figure 6.5: Experimental Results (computation cost) in a Static Environment, Varying
the Number of Tasks in Process Schemas and the Number of Candidate Component
Services for Each Task.

1. Experiment Results on Computation Cost in a Static Environment

Figure 6.5 presents computation cost (in seconds) of selecting services for

process schemas that have only one execution path, where we vary the num-

ber of tasks in process schemas and the number of candidate services for each

task. As expected, in both approaches, the computation cost increases when

the number of tasks increases and the number of candidate services increases.

Also as expected, the computation cost of global planning is higher than that of

local optimization selection. When there are 80 tasks in a process schema and

40 candidate Web services for each task, the computation cost of the global

6.4 Experimentation 141

planning (1.6 seconds) is almost 1.5 times higher than the local optimization

approach (0.7 seconds). However, the global planning approach is very ef-

ficient, it only spends about 8 seconds when selecting services for a process

schema that has 80 tasks and each task has 40 candidate services.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 3 4 5 6 7 8

C
om

pu
ta

tio
n

C
os

t (
in

 s
ec

on
ds

)

Number of Execution Paths in Process Schemas

Process schemas have 80 tasks

Global Planning
Local Optimization Selection

(a) Each task has 20 candidate services

 0

 2

 4

 6

 8

 10

 1 2 3 4 5 6 7 8

C
om

pu
ta

tio
n

C
os

t (
in

 s
ec

on
ds

)

Number of Execution Paths in Process Schemas

Process schemas have 80 tasks

Global Planning
Local Optimization Selection

(b) Each task has 40 candidate services

Figure 6.6: Experimental Results (computation cost) in a Static Environment, Varying
Number of Execution Paths in Process Schemas and the Number of Candidate Services
for Each Task.

Figure 6.6 represents computation cost (in seconds) of selecting services for

process schemas that have 80 tasks, where we vary the number of execution

paths in process schemas and the number of candidate services for each task.

As expected, in both approaches, the computation cost decreases when the

number of execution paths increases, since given a fixed number of tasks in

process schemas, when the number of execution paths increases, there are less

tasks need to be executed in composite services.

142 Prototype

 0

 100

 200

 300

 400

 500

 600

 700

 800

 10 20 30 40 50 60 70 80

B
an

dw
id

th
 C

os
t (

in
 K

B
yt

es
)

Number of Tasks in Process Schemas

process schema has one execution path

Global Planning
Local Optimization Selection

(a) Each Task has 5 candidate services

 0

 200

 400

 600

 800

 1000

 1200

 10 20 30 40 50 60 70 80

B
an

dw
id

th
 C

os
t (

in
 K

B
yt

es
)

Number of Tasks in Process Schemas

Process schema has one execution path

Global Planning
Local Optimization Selection

(b) Each Task has 10 candidate services

 0

 500

 1000

 1500

 2000

 10 20 30 40 50 60 70 80

B
an

dw
id

th
 C

os
t (

in
 K

B
yt

es
)

Number of Tasks in Process Schemas

Process schema has one execution path

Global Planning
Local Optimization Selection

(c) Each Task has 20 candidate services

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 10 20 30 40 50 60 70 80

B
an

dw
id

th
 C

os
t (

in
 K

B
yt

es
)

Number of Tasks in Process Schemas

Process schema has one execution path

Global Planning
Local Optimization Selection

(d) Each Task has 40 candidate services

Figure 6.7: Experimental Results (bandwidth cost) in a Static Environment, Varying
the Number of Tasks in Process Schema and the Number of Candidate Services for
Each Task.

2. Experiment Results on Bandwidth Cost in Static Environments

Figure 6.7 presents the bandwidth cost (in KBytes) of selecting and executing

Web services for composite services that have only one execution path, where

we vary the number of tasks in process schemas and number of candidate

services for each task. As expected, in both service selection approaches, the

linear increase in the number of tasks increases and the number of candidate

services leads almost a linear increase in bandwidth cost. Also as expected,

the bandwidth cost of global planning is a little bit higher than that of the local

optimization selection approach. When executing composite services with 80

tasks, and there are 40 candidate services for each task, the bandwidth cost of

6.4 Experimentation 143

the global planning (3710 KBytes) requires about an extra 200 KBytes more

than the local optimization approach (3503 KBytes) in a static environment.

 0

 500

 1000

 1500

 2000

 1 2 3 4 5 6 7 8

B
an

dw
id

th
 C

os
t (

in
 K

B
yt

es
)

Number of Execution Paths in Process Schemas

Process schemas have 80 tasks

Global Planning
Local Optimization Selection

(a) Each task has 20 candidate services

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 1 2 3 4 5 6 7 8

B
an

dw
id

th
 C

os
t (

in
 K

B
yt

es
)

Number of Execution Paths in Process Schemas

Process schemas have 80 tasks

Global Planning
Local Optimization Selection

(b) Each task has 40 candidate services

Figure 6.8: Experimental Results (bandwidth cost) in a Static Environment, Varying
the Number of Execution Paths in Process Schemas and the Number of Tasks in Pro-
cess Schemas.

Figure 6.8 presents the bandwidth cost (in KBytes) of selecting and execut-

ing Web services for composite services that have 80 tasks, where we vary

the number of execution paths in process schemas, the number of candidate

services that can be used to execute each task. As expected, in both service

selection approaches, the bandwidth cost decreases when the number of exe-

cution paths increases.

6.4.2 Experiments in Dynamic Environments

We also conduct experiments in dynamic environments. In such environments, using

a global planning approach, execution of a composite service needs to be replanned

whenever a task in the composite service is completed. Assuming the number of tasks

in a composite service is N , in order to optimize the service selection, the global

planner in execution planner needs to be invoked N times during the execution of

a composite service. At the same time, the execution planner needs to monitor the

144
Prototype

changes
in

services,w
hich

requires
extra

bandw
idth

cost.
For

the
localoptim

ization

approach,servicesare
selected

and
executed

in
the

sam
e

w
ay

asin
static

environm
ents,

thus
there

is
no

extra
system

cost
involved.

In
the

follow
ing,

w
e

present
the

detail

experim
entresults

on
system

cost.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 10
 20

 30
 40

 50
 60

 70
 80

Computation Cost (in seconds)

N
um

ber of Tasks in P
rocess S

chem
a

P
rocess schem

a has one execution path

G
lobal P

lanning
Local O

ptim
ization S

election

(a)E
ach

Task
has

5
candidate

services

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 10
 20

 30
 40

 50
 60

 70
 80

Computation Cost (in seconds)

N
um

ber of Tasks in P
rocess S

chem
as

P
rocess schem

a has one execution path

G
lobal P

lanning
Local O

ptim
ization S

election

(b)E
ach

Task
has

10
candidate

services

 0

 20

 40

 60

 80

 100

 120

 140

 10
 20

 30
 40

 50
 60

 70
 80

Computation Cost (in seconds)

N
um

ber of Tasks in P
rocess S

chem
as

P
rocess schem

a has one execution path

G
lobal P

lanning
Local O

ptim
ization S

election

(c)E
ach

Task
has

20
candidate

services

 0

 50

 100

 150

 200

 10
 20

 30
 40

 50
 60

 70
 80

Computation Cost (in seconds)

N
um

ber of Tasks in P
rocess S

chem
as

P
rocess schem

a has one execution path

G
lobal P

lanning
Local O

ptim
ization S

election

(d)E
ach

Task
has

40
candidate

services

Figure
6.9:E

xperim
entalR

esults(com
putation

cost)in
a

D
ynam

ic
E

nvironm
ent,V

ary-
ing

the
N

um
berofTasksin

Process
Schem

a
and

the
N

um
berofC

andidate
Services

for
E

ach
Task.

E
xperim

entR
esultson

System
C

ostin
D

ynam
ic

E
nvironm

ents

In
this

subsection,w
e

presentthe
experim

entresults
on

com
putation

costand
band-

w
idth

costrespectively
in

dynam
ic

environm
ents.

1.
E

xperim
entR

esults
on

C
om

putation
C

ostin
D

ynam
ic

E
nvironm

ents

6.4
E

xperim
entation

145

Figure
6.9

presents
com

putation
cost

(in
seconds)

of
selecting

services
for

process
schem

as
thathave

only
one

execution
path,w

here
w

e
vary

the
num

-

beroftasks
in

process
schem

as
and

the
num

berofcandidate
services

foreach

task.A
s

expected,in
both

service
selection

approaches,the
com

putation
cost

increases
w

hen
the

num
ber

of
tasks

increases
and

the
num

ber
of

candidate

services
increases.

T
he

com
putation

costof
the

globalplanning
approach

is

m
uch

higherthan
thatof

the
localoptim

ization
selection.

W
hen

there
are

80

tasks
in

a
process

schem
a

and
40

candidate
services

for
each

task,the
com

-

putation
costof

the
globalplanning

(190
seconds)

is
alm

ost40
tim

es
higher

than
the

localoptim
ization

approach
(4.8

seconds).H
ow

ever,the
globalplan-

ning
approach

is
stillvery

efficient,itonly
spends

about190
seconds

w
hen

selecting
services

fora
process

schem
a

thathas
80

tasks
and

each
task

has
40

candidate
services.

146
Prototype

 0

 20

 40

 60

 80

 100

 120

 140

 1
 2

 3
 4

 5
 6

 7
 8

Computation Cost (in seconds)

N
um

ber of E
xecution P

aths in P
rocess S

chem
as

P
rocess schem

as have 80 tasks

G
lobal P

lanning
Local O

ptim
ization S

election

(a)E
ach

task
has

20
candidate

services

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 1
 2

 3
 4

 5
 6

 7
 8

Computation Cost (in seconds)

N
um

ber of E
xecution P

aths in P
rocess S

chem
as

P
rocess schem

as have 80 tasks

G
lobal P

lanning
Local O

ptim
ization S

election

(b)E
ach

task
has

40
candidate

services

Figure
6.10:E

xperim
entalR

esults(com
putation

cost)in
D

ynam
ic

E
nvironm

ent,V
ary-

ing
the

N
um

berofE
xecution

Paths
in

Process
Schem

as
and

the
N

um
berofC

andidate
Services

forE
ach

Task.

Figure
6.10

represents
the

com
putation

cost(in
seconds)ofselecting

services

for
process

schem
as

thathave
80

tasks,w
here

w
e

vary
the

num
berof

execu-

tion
paths

in
process

schem
as

and
the

num
ber

of
candidate

services
for

each

task.
A

s
expected,in

both
approaches,the

com
putation

costdecreases
w

hen

the
num

berofexecution
paths

increases
in

process
schem

as.

6.4
E

xperim
entation

147

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 10
 20

 30
 40

 50
 60

 70
 80

Bandwidth Cost (in KBytes)

N
um

ber of Tasks in P
rocess S

chem
as

P
rocess schem

a has one execution path

G
lobal P

lanning
Local O

ptim
ization S

election

(a)E
ach

Task
has

5
candidate

services

 0

 500

 1000

 1500

 2000

 10
 20

 30
 40

 50
 60

 70
 80

Bandwidth Cost (in KBytes)

N
um

ber of Tasks in P
rocess S

chem
as

P
rocess schem

a has one execution path

G
lobal P

lanning
Local O

ptim
ization S

election

(b)E
ach

Task
has

10
candidate

services

 0

 500

 1000

 1500

 2000

 2500

 3000

 10
 20

 30
 40

 50
 60

 70
 80

Bandwidth Cost (in KBytes)

N
um

ber of Tasks in P
rocess S

chem
as

P
rocess schem

a has one execution path

G
lobal P

lanning
Local O

ptim
ization S

election

(c)E
ach

Task
has

20
candidate

services

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 10
 20

 30
 40

 50
 60

 70
 80

Bandwidth Cost (in KBytes)

N
um

ber of Tasks in P
rocess S

chem
as

P
rocess schem

a has one execution path

G
lobal P

lanning
Local O

ptim
ization S

election

(d)E
ach

Task
has

40
candidate

services

Figure
6.11:E

xperim
entalR

esults
(bandw

idth
cost)in

a
D

ynam
ic

E
nvironm

ent,V
ary-

ing
the

N
um

ber
of

Tasks
in

Process
Schem

as
and

the
N

um
ber

of
C

andidate
Services

forE
ach

Task.

2.
E

xperim
entR

esults
on

B
andw

idth
C

ostin
D

ynam
ic

E
nvironm

ents

Figure
6.11

presentsthe
bandw

idth
cost(in

K
B

ytes)ofselecting
and

executing

W
eb

services
forcom

posite
services

thathave
only

one
execution

path,w
here

w
e

assum
e

that30%
ofservices

are
changing

theirSL
A

s.
In

the
experim

ent,

w
e

also
vary

the
num

beroftasksin
processschem

as
and

the
num

berofcandi-

date
services

foreach
task.A

s
expected,in

both
service

selection
approaches,

the
linear

increase
in

the
num

ber
of

tasks
increases

and
the

num
ber

of
can-

didate
services

leads
alm

osta
linear

increase
in

the
bandw

idth
cost.

A
lso

as

expected,the
bandw

idth
costof

the
globalplanning

approach
is

higher
than

thatof
the

localoptim
ization

selection
approach.

W
hen

there
are

80
tasks

in

148
Prototype

a
process

schem
a

and
40

candidate
services

foreach
task,the

bandw
idth

cost

ofthe
globalplanning

(4602
K

B
ytes)requires

aboutextra
1000

K
B

ytes
m

ore

than
the

local
optim

ization
approach

(3608
K

B
ytes)

in
a

dynam
ic

environ-

m
ent.

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0
 20

 40
 60

 80
 100

Bandwidth Cost (in KBytes)

P
ercentages of W

eb S
ervices C

hange S
LA

s (%
)

P
rocess schem

as have 80 tasks

G
lobal P

lanning
Local O

ptim
ization S

election

(a)E
ach

task
has

20
candidate

services

 3500

 4000

 4500

 5000

 5500

 6000

 6500

 0
 20

 40
 60

 80
 100

Bandwidth Cost (in KBytes)

P
ercentages of W

eb S
ervices C

hange S
LA

s (%
)

P
rocess schem

as have 80 tasks

G
lobal P

lanning
Local O

ptim
ization S

election

(b)E
ach

task
has

40
candidate

services

Figure
6.12:

E
xperim

entalR
esults

(bandw
idth

cost)in
a

Static
E

nvironm
ent,V

arying
the

Percentage
Services

C
hange

SL
A

s
and

the
N

um
berofC

andidate
Services

forE
ach

Task.

Figure
6.12

presentsthe
bandw

idth
cost(in

K
B

ytes)ofselecting
and

executing

W
eb

services
for

com
posite

services
that

have
80

tasks,
w

here
w

e
vary

the

percentage
ofservices

thatchange
SL

A
sand

the
num

berofcandidate
services

foreach
task.A

sexpected,in
the

globalplanning
approach,the

linearincrease

in
percentage

of
services

thatchange
SL

A
s

leads
to

alm
osta

linear
increase

in
the

bandw
idth

costincrease.
W

hile
in

the
localoptim

ization
approach,the

bandw
idth

costrem
ains

alm
ostthe

sam
e

w
hen

m
ore

services
change

SL
A

s.

6.5
Sum

m
ary

149

 0

 500

 1000

 1500

 2000

 2500

 3000

 1
 2

 3
 4

 5
 6

 7
 8

Bandwidth Cost (in KBytes)

N
um

ber of E
xecution P

aths in P
rocess S

chem
as

P
rocess schem

as have 80 tasks

G
lobal P

lanning
Local O

ptim
ization S

election

(a)E
ach

task
has

20
candidate

services

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 1
 2

 3
 4

 5
 6

 7
 8

Bandwidth Cost (in KBytes)

N
um

ber of E
xecution P

aths in P
rocess S

chem
as

P
rocess schem

as have 80 tasks

G
lobal P

lanning
Local O

ptim
ization S

election

(b)E
ach

task
has

40
candidate

services

Figure
6.13:

E
xperim

entalR
esults

(bandw
idth

cost)in
a

Static
E

nvironm
ent,V

arying
the

N
um

ber
of

E
xecution

Paths
in

Process
Schem

as
and

the
N

um
ber

of
C

andidate
Services

forE
ach

Task.

Figure
6.13

presentsthe
bandw

idth
cost(in

K
B

ytes)ofselecting
and

executing

W
eb

services
for

com
posite

services
that

have
80

tasks,
w

here
w

e
vary

the

num
ber

of
execution

paths
in

process
schem

as
and

the
num

ber
of

candidate

services
foreach

task.
A

s
expected,in

both
service

selection
approaches,the

bandw
idth

costdecreases
w

hen
the

num
berofexecution

paths
increases.

6.5
Sum

m
ary

In
this

chapter,
w

e
present

the
im

plem
entation

of
D

Y
f
lo

w
and

som
e

experim
ents

on

it.
In

order
to

validate
the

feasibility
and

benefits
of

the
proposed

approaches,
T

he

D
Y

f
lo

w
platform

has
been

used
to

develop
an

application
forthe

autom
obile

industry.

T
he

application
illustrates

thatthe
system

can
efficiently

generate
process

schem
as

for

com
posite

services.
In

the
experim

ents,relatively
large

num
ber

of
services

has
been

integrated
using

this
platform

.T
he

results
have

been
encouraging:planning

com
puta-

tion
costfor

integrating
80

com
ponentservices

to
execute

com
posite

service
is

about

8
seconds

in
static

environm
ents

and
about190

seconds
in

dynam
ic

environm
ents.

C
hapter

7

C
oncluding

R
em

arks

In
the

previous
chapters,the

D
Y

f
lo

w
fram

ew
ork

for
dynam

ic
service

com
position

has

been
presented,

starting
from

generating
process

schem
as,

then
optim

al
execution

planning
and

finally
adaptive

execution.
In

this
chapter,

w
e

sum
m

arize
the

contri-

butions
and

identify
directions

forpossible
future

w
ork.

7.1
C

ontributions

W
ith

the
proliferation

of
the

Internetand
the

w
ide

acceptance
of

e-com
m

erce,an
in-

creasing
num

ber
of

distributed
and

heterogeneous
W

eb
services

are
being

offered.

T
hese

W
eb

servicesare
com

m
only

com
posed

and
coordinated

to
execute

businesspro-

cesses,using
process-based

approaches.C
urrentprocess

m
odelling

provides
adequate

supportforstatic
business

processes.H
ow

ever,ithas
severe

lim
itations

on
com

posing

W
eb

services
fore-business.T

here
are

tw
o

m
ajorrequirem

ents
forW

eb
service

com
-

position.First,frequently
changing

business
conditions

im
ply

thatbusiness
processes

need
to

be
com

posed
and

refined
on

the
fly.

Second,the
volatile

and
dynam

ic
nature

of
W

eb
environm

ents
also

leads
to

the
dynam

ic
availability

of
W

eb
service

offerings.

7.1
C

ontributions
151

In
this

w
ork,w

e
propose

a
dynam

ic
W

eb
service

com
position

fram
ew

ork.
T

he
m

ajor

contributions
ofthis

w
ork

are:

1.
D

ynam
ic

creation
of

process
schem

as
via

runtim
e

business
rules

inference.

Instead
ofstatically

defining
w

orkflow
s

to
accom

m
odate

an
explosive

num
ber

of
possibilities,w

e
advocate

a
rule-directed

approach
to

dynam
ically

gener-

ate
and

execute
com

posite
services.

A
s

a
result,end

users
can

focus
on

the

business
goals

to
be

achieved
and

the
business

policies
that

should
be

fol-

low
ed,w

ithoutw
orrying

aboutdetailed
description

of
controland

data
flow

constraints.

2.
Q

uality-driven
and

dynam
ic

service
selection.

Instead
of

fixed
association

of

tasks
to

W
eb

services
atbuild

tim
e,w

e
have

devised
a

quality-driven
service

selection
m

echanism
thatm

akes
use

ofservice
quality

inform
ation,inter-task

constraintsin
businessprocessesasw

ellaspreferences
setby

the
requester.In

this
approach,quality

constraints
and

preferences
are

assigned
to

com
posite

services
rather

than
to

individualtasks
w

ithin
a

com
posite

service.
Service

selection
is

then
form

ulated
as

an
optim

ization
problem

and
a

linear
program

-

m
ing

m
ethod

isused
to

com
pute

optim
alservice

execution
plansforcom

posite

services.

3.
A

daptive
Service

C
om

position.
W

e
propose

an
adaptive

service
com

position

approach
to

handle
both

com
ponent

and
unexpected

exceptions.
In

our
ap-

proach,com
posite

services
continuously

m
onitor

the
behavior

of
their

com
-

ponents
and

adapt
them

selves
to

appropriately
react

to
run-tim

e
exceptions.

A
tthe

sam
e

tim
e,com

posite
services

also
continuously

check
the

consisten-

cies
betw

een
their

process
schem

as
and

the
business

processes
in

realw
orld,

and
m

odify
process

schem
as

ifchanges
occurin

business
processes.

152
C

oncluding
R

em
arks

7.2
D

irectionsfor
Future

W
ork

D
Y

f
lo

w
proposes

an
initialsolution

addressing
dynam

ic
service

com
positions.

Such

an
area

is
currently

heavily
investigated

by
both

industries
and

research
institutions,as

itis
a

key
solution

to
enable

business
process

m
anagem

ent.
In

the
follow

ing,several

directions
forpossible

future
w

ork
are

identified.

•
M

obile
Services

and
W

ireless
E

nvironm
ent.

In
this

thesis,w
e

focus
on

ser-

vices
thatare

statically
hosted

in
one

site.
C

urrent,there
is

a
trend

to
enable

m
obile

services
so

thatservice
can

m
ove

from
one

hostto
another.

Itw
illbe

a
big

challenge
to

optim
ally

selectcom
posite

m
obile

services.
A

notherissue

is
thatservices

m
ay

be
operated

in
a

w
ireless

environm
ent.

Itis
possible

that

services
are

disconnected
from

the
netw

ork
atruntim

e.T
his

posts
a

challenge

on
how

to
provide

a
robustcom

position
solution.

•
Q

oS
N

egotiation.
In

this
thesis,

Q
oS

is
non-negotiable.

H
ow

ever,
in

real

w
orld,negotiation

is
very

com
m

on
w

hen
people

conductbusiness
activity.It

is
necessary

to
enable

services
to

conductQ
oS

negotiation.
A

nother
issue

is

how
com

posite
services

should
negotiate

w
ith

com
ponentservices

in
orderto

achieve
optim

alexecution
resulton

Q
oS.

•
K

now
ledge

M
anagem

ent.
C

om
posite

services
are

operated
in

dynam
ic

envi-

ronm
ents.Foreach

execution
instance,com

posite
servicescan

log
the

runtim
e

data,such
as

Q
oS

ofeach
com

ponentservices,the
contextinform

ation
ofex-

ception
handling,etc.

T
hese

data
contain

usefulknow
ledge

thatcan
be

used

for
future

execution
of

com
posite

services.
H

ow
ever,the

challenge
is

how
to

log
the

runtim
e

data
and

how
to

m
ine

the
know

ledge
from

logs.

7.2
D

irections
for

Future
W

ork
153

B
ibliography

[1]
M

.A
iello,M

.Papzoglou,J.Y
ang,M

.C
arm

an,M
.P.an

d
L

.Serafini,and

P.Traverso.A
R

equestL
anguage

forW
eb-services

B
ased

on
Planning

and

C
onstraintSatisfaction.

In
V

LD
B

w
orkshp

on
Technologies

for
E

-Services

(TE
S),L

N
C

S,pages
76–86.Springer,2002.

[2]
A

.A
nkolekar,M

.B
urstein,J.R

.H
obbs,O

.L
assila,D

.M
cD

erm
ott,D

.M
artin,

S.A
.M

cIlraith,S.N
arayanan,M

.Paolucci,T.Payne,and
K

.Sycara.

D
A

M
L

-S:W
eb

Service
D

escription
forthe

Sem
antic

W
eb.

In
P

roc.1stInt’l

Sem
antic

W
eb

C
onf.(ISW

C
02),2002.

[3]
E

.A
shcroftand

Z
.M

anna.T
he

translation
ofgoto

program
s

into
w

hile

program
s.In

P
roceedings

ofIF
IP

C
ongress

71.

[4]
D

.B
aker,D

.G
eorgakopoulos,H

.Schuster,A
.R

.C
assandra,and

A
.C

ichocki.

Providing
C

ustom
ized

Process
and

Situation
A

w
areness

in
the

C
ollaboration

M
anagem

entInfrastructure.
In

C
onference

on
C

ooperative
Inform

ation

System
s,pages

79–91,1999.

[5]
V.B

elton
and

T.Stew
art.

M
ultiple

C
riteria

D
ecision

A
nalysis:

A
n

Integrated

A
pproach.K

luw
erA

cadem
ic

Publishers,2002.

[6]
B

.B
enatallah

and
F.C

asati,editors.
D

istributed
and

ParallelD
atabase,

Specialissue
on

W
eb

Services.
K

luw
erA

cadem
ic

Publishers,2002.

B
IB

L
IO

G
R

A
PH

Y
155

[7]
B

.B
enatallah,M

.D
um

as,and
Z

.M
aam

ar.
D

efinition
and

E
xecution

of

C
om

posite
W

eb
Services:T

he
SE

L
F-SE

RV
Project.

B
ulletin

ofthe
IE

E
E

TechnicalC
om

m
ittee

on
D

ata
E

ngineering,25(4):47–52,2002.

[8]
B

.B
enatallah,M

.D
um

as,Q
.Z

.Sheng,and
A

.N
gu.D

eclarative
C

om
position

and
Peer-to-PeerProvisioning

ofD
ynam

ic
W

eb
Services.In

P
roc.ofIC

D
E

’02,

IE
E

E
C

om
puter

Society,pages
297–308,San

Jose,2002.

[9]
B

.B
enatallah,M

.D
um

as,and
Q

.Z
.Sheng.

T
he

SE
L

F-SE
RV

E
nvironm

entfor

W
eb

Services
C

om
position.IE

E
E

InternetC
om

puting,Jan/Feb
issue

2003.

[10]
E

.B
estand

J.D
esel.

PartialO
rderB

ehaviourand
Structure

ofPetriN
ets.

Form
alA

spects
ofC

om
puting,2:123–138,1990.

[11]
C

.B
ettini,X

.W
ang,and

S.Jajodia.Tem
poralR

easoning
in

W
orkflow

System
s.

D
istributed

and
ParallelD

atabases,11(3):269–306,2002.

[12]
B

usiness
Process

E
xecution

L
anguage

forW
eb

Services,V
ersion

1.0,2000.

http://w
w

w
-106.ibm

.com
/developerw

orks/library/w
s-bpel/.

[13]
T

he
B

usiness
Process

M
anagem

entInitiative,2003.

http://w
w

w
.bpm

i.org/initiative.esp.

[14]
T

he
B

usiness
Process

M
anagem

entL
anguage,2003.

http://w
w

w
.bpm

i.org/bpm
l.esp.

[15]
H

.C
.-L

and
K

.Y
oon.

M
ultiple

C
riteria

D
ecision

M
aking.L

ecture
N

otes
in

E
conom

ics
and

M
athem

aticalSystem
s,Springer-V

erlag,1981.

[16]
G

.C
abri,L

.L
eonardi,and

F.Z
am

bonelli.E
ngineering

M
obile

A
gent

A
pplications

via
C

ontext-dependentC
oordination.IE

E
E

Transactions
on

Softw
are

E
ngineering,28(11):1040–1056,2002.

156
B

IB
L

IO
G

R
A

PH
Y

[17]
L

.C
ardelliand

R
.D

avies.Service
C

om
binators

forW
eb

C
om

puting.Softw
are

E
ngineering,25(3):309–316,1999.

[18]
J.C

ardoso.
Q

uality
ofservice

and
sem

antic
com

position
ofw

orkflow
s.

P
h.D

Thesis,U
niversity

ofG
eorgia,2002.

[19]
F.C

asati.
M

odels,sem
antics

and
form

alm
ethods

forthe
design

ofw
orkflow

s

and
theirexceptions.P

h.D
Thesis,Politecnico

diM
ilano,1998.

[20]
F.C

asati,S.C
eri,S.Paraboschi,and

G
.Pozzi.

Specification
and

Im
plem

entation
ofE

xceptions
in

W
orkflow

M
anagem

entSystem
s.

TO
D

S,

24(3):405–451,1999.

[21]
F.C

asati,S.Ilnicki,L
.Jin,and

M
.-C

.Shan.
A

n
O

pen,Flexible,and

C
onfigurable

System
forE

-Service
C

om
position.TechnicalR

eport

H
PL

-2000-41,H
P

L
aboratoris

Palo
A

lto,2000.

[22]
F.C

asati,S.Ilnicki,L
.-J.Jin,V.K

rishnam
oorthy,and

M
.-C

.Shan.
A

daptive

and
D

ynam
ic

Service
C

om
position

in
eFlow

.
TechnicalR

eportH
PL

-2000-39,

H
P

L
aboratoris

Palo
A

lto,2000.

[23]
F.C

asati,S.Ilnicki,L
.-J.Jin,V.K

rishnam
oorthy,and

M
.-C

.Shan.
eFlow

:a

Platform
forD

eveloping
and

M
anaging

C
om

posite
e-Services.

Technical

R
eportH

PL
-2000-36,H

P
L

aboratoris
Palo

A
lto,2000.

[24]
F.C

asati,M
.-C

.Shan,and
D

.G
eorgakopoulos,editors.

V
LD

B
Journal,Special

issue
on

E
-Services.

Springer-V
erlag,2001.

[25]
S.C

eri,P.W
.P.J.G

refen,and
G

.Sanchez.
W

ID
E

:A
D

istributed
A

rchitecture

forW
orkflow

M
anagem

ent.In
Seventh

InternationalW
orkshop

on
R

esearch

Issues
in

D
ata

E
ngineering.

B
IB

L
IO

G
R

A
PH

Y
157

[26]
A

.C
ichocki,A

.H
elal,M

.R
usinkiew

icz,and
D

.W
oelk.

W
orkflow

and
P

rocess

Autom
ation:

C
oncepts

and
Technology.K

luw
eracadem

ic
publishers,1998.

[27]
O

M
G

C
O

R
B

A
/IIO

P
specifications,2003.

http://w
w

w
.om

g.org/technology/docum
ents/corba

spec
catalog.htm

.

[28]
C

rossFlow
projectw

eb
page,2000.http://w

w
w

.crossflow
.org.

[29]
F.C

urbera,M
.D

uftler,R
.K

halaf,W
.N

agy,N
.M

ukhi,and
S.W

eeraw
arana.

U
nraveling

the
W

eb
Services:an

Introduction
to

SO
A

P,W
SD

L
,and

U
D

D
I.

IE
E

E
InternetC

om
puting,M

arch/A
prilIssue

2002.

[30]
D

A
M

L
Services,2002.http://w

w
w

.dam
l.org/services/.

[31]
A

.D
ogac,editor.AC

M
SIG

M
O

D
R

ecord
27(4),Specialissue

on
E

lectronic

C
om

m
erce.

A
C

M
,D

ecem
ber1998.

[32]
A

.D
ogac,editor.AC

M
SIG

M
O

D
R

ecord
31(1),SpecialSecttion

on
D

ata

M
anagem

entIssues
in

E
-C

om
m

erce.
A

C
M

,M
arch

2002.

[33]
ebX

M
L

(E
lectronic

B
usiness

using
eX

tensible
M

arkup
L

anguage),2002.

http://w
w

w
.ebxm

l.org/.

[34]
J.E

derand
W

.L
iebhart.T

he
W

orkflow
A

ctivity
M

odelW
A

M
O

.In
P

roceeding

ofth
3th

C
onference

on
C

ooperative
Inform

ation
System

s,pages
87–98,1995.

[35]
J.E

der,E
.Panagos,and

M
.R

abinovich.Tim
e

C
onstraints

in
W

orkflow

System
s.

Lecture
N

otes
in

C
om

puter
Science,1626,1999.

[36]
M

.-C
.Fauvet,M

.D
um

as,and
B

.B
enatallah.

C
ollecting

and
Q

uerying

D
istributed

Traces
ofC

om
posite

Service
E

xecutions.In
P

roceeding
ofthe

10th

InternationalC
onference

on
C

ooperative
Inform

ation
System

s
(C

oopIS),Irvine

C
A

,U
SA

,2002.

158
B

IB
L

IO
G

R
A

PH
Y

[37]
D

.G
eorgakopoulos,M

.F.H
ornick,and

A
.P.Sheth.A

n
O

verview
ofW

orkflow

M
anagem

ent:From
Process

M
odeling

to
W

orkflow
A

utom
ation.D

istributed

and
ParallelD

atabases,3(2):119–153,1995.

[38]
D

.G
eorgakopoulos,H

.Schuster,A
.C

ichocki,and
D

.B
aker.

M
anaging

Process
and

Service
Fusion

In
V

irtualE
nterprises.

Inform
ation

System
,Special

Issue
on

Inform
ation

System
Supportfor

E
lectronic

C
om

m
erce,24(6):429–456,

1999.

[39]
A

.G
eppertand

D
.Tom

bros.E
vent-based

D
istributed

W
orkflow

E
xecution

w
ith

E
V

E
.

Technicalreport,1998.

[40]
C

.H
agen

and
G

.A
lonso.Flexible

E
xception

H
andling

in
the

O
PE

R
A

Process

SupportSystem
.In

InternationalC
onference

on
D

istributed
C

om
puting

System
s,pages

526–533,1998.

[41]
D

.H
areland

A
.N

aam
ad.

T
he

STA
T

E
M

A
T

E
Sem

antics
ofStatecharts.

AC
M

Transactions
on

Softw
are

E
ngineering

and
M

ethodology,5(4):293–333,1996.

[42]
P.H

einl,S.H
orn,S.Jablonski,J.N

eeb,K
.Stein,and

M
.Teschke.

A

C
om

prehensive
A

pproach
to

Flexibility
in

W
orkflow

M
anagem

entSystem
s.In

P
roceedings

ofthe
InternationalJointC

onference
on

W
ork

A
ctivities

C
oordination

and
C

ollaboration,pages
79–88.A

C
M

Press,1999.

[43]
S.H

elal,S.Su,J.M
eng,R

.K
rithivasan,and

A
.Jagatheesan.T

he
Internet

E
nterprise.

In
P

roceedings
ofthe

Second
IE

E
E

/IP
SJ

Sym
posium

on

A
pplications

and
the

Internet(SA
IN

T’02),Jan/Feb
2002,N

ara,Japan.

[44]
S.H

elaland
M

.W
ang.

Service-C
entric

B
rokering

In
D

ynam
ic

E
-B

usiness

A
gentC

om
m

unities.In
P

roceedings
ofthe

fifth
InternationalSym

posium
on

Autonom
ous

D
ecentralized

System
s

(ISA
D

S)W
ith

an
E

m
phasis

on
E

lectronic

C
om

m
erce,M

arch
26-28,2001,D

allas,Texas.

B
IB

L
IO

G
R

A
PH

Y
159

[45]
J.H

opkins.C
om

ponentPrim
er.

C
om

m
unications

ofthe
AC

M
,43(10):27–30,

O
ct.2000.

[46]
R

.H
ull,B

.K
um

ar,G
.Z

hou,F.L
lirbat,G

.D
ong,and

J.Su.
O

ptim
ization

Techniques
forD

ata-intensive
D

ecision
Flow

s.In
P

roceeding
of16th

InternationalC
onference

on
D

ata
E

ngineering,2000.

[47]
IB

M
M

Q
series

W
orkflow

,2002.

http://w
w

w
-3.ibm

.com
/softw

are/ts/m
qseries/w

orkflow
/.

[48]
IB

M
O

ptim
ization

Solutions
and

L
ibrary,2002.

http://w
w

w
-3.ibm

.com
/softw

are/data/bi/osl/index.htm
l.

[49]
T

he
InternetE

nterprise:C
om

posable
e-Services,2003.

http://w
w

w
.harris.cise.ufl.edu/projects/e-services.htm

.

[50]
S.Jablonski,K

.Stein,and
M

.Teschke.
E

xperiences
in

W
orkflow

M
anagem

ent

forScientific
C

om
puting.In

E
ighth

InternationalW
orkshop

on
D

atabase
and

E
xpertSystem

s
A

pplications,D
E

X
A

’97.IE
E

E
C

om
puterSociety

Press,199.

[51]
H

.K
arloff.

Linear
P

rogram
m

ing.B
irkhauser,1991.

[52]
A

.K
ellerand

H
.L

udw
ig.T

he
W

SL
A

Fram
ew

ork:Specifying
and

M
onitoring

Service
L

evelA
greem

ents
forW

eb
Services.

TechnicalR
eportR

C
22456,IB

M

research,N
ew

Y
ork,2002.

[53]
M

.K
lein,editor.

C
SC

W
-98

W
orkshop

Tow
ards

A
daptive

W
orkflow

System
s.

1998.

[54]
M

.K
lein,C

.D
ellarocas,and

A
.B

ernstein.Introduction
to

the
SpecialIssue

on

A
daptive

W
orkflow

System
s.

C
om

puter
Supported

C
ooperative

W
ork,

9(3/4):265–267,2000.

160
B

IB
L

IO
G

R
A

PH
Y

[55]
J.K

lingem
ann,J.W

sch,and
K

.A
berer.

D
eriving

Service
M

odels
in

C
ross-O

rganizationalW
orkflow

s.In
N

ineth
InternationalW

orkshop
on

R
esearch

Issues
in

D
ata

E
ngineering:

VirtualE
nterprise,R

ID
E

-V
E

’99,

Sydney,A
ustralia,M

arch
1999.

[56]
C

.A
.K

noblock,S.M
inton,J.L

.A
m

bite,N
.n

A
shish,I.M

uslea,A
.Philpot,

and
S.Tejada.

T
he

A
riadne

A
pproach

to
W

eb-B
ased

Inform
ation

Integration.

InternationalJournalofC
ooperative

Inform
ation

System
s,10(1-2):145–169,

2001.

[57]
P.K

oksal,I.C
ingil,and

A
.D

ogac.A
C

om
ponent-B

ased
W

orkflow
System

w
ith

D
ynam

ic
M

odifications.In
N

extG
eneration

Inform
ation

Technologies

and
System

s,pages
238–255,1999.

[58]
R

.K
rithivasan

and
S.H

elal.
B

izB
uilder-A

n
e-Services

Fram
ew

ork
Targeted

forInternetW
orkflow

.
In

P
roceedings

ofthe
third

W
orkshop

on
Technologies

for
E

-Services,Springer
Lecture

N
otes

in
C

om
puter

Science
series,VO

L.2193.

In
conjunction

w
ith

V
LD

B
2001,Sept2001,R

om
e,Italy.

[59]
M

.K
ksalan

and
S.Z

ionts,editors.
M

ultiple
C

riteria
D

ecision
M

aking
in

the

N
ew

M
illennium

.Springer-V
erlag,2001.

[60]
F.L

eym
ann,D

.R
oller,and

A
.R

euter.
P

roduction
W

orkflow
:

C
oncepts

and

Techniques.Prentice
H

all,1999.

[61]
H

.L
udw

ig,A
.K

eller,A
.D

an,and
R

.P.K
ing.A

Service
L

evelA
greem

ent

L
anguage

forD
ynam

ic
E

lectronic
Services.

In
The

4th
IE

E
E

International

W
orkshop

on
A

dvanced
Issues

ofE
C

om
m

erce
and

W
eb

B
ased

Inform
ation

System
s

(W
E

C
W

IS
2002),Los

A
lam

itos,C
A

,IE
E

E
C

om
puter

Society,,pages

25–32,2002.

B
IB

L
IO

G
R

A
PH

Y
161

[62]
Z

.L
uo,A

.P.Sheth,K
.K

ochut,and
J.A

.M
iller.E

xception
H

andling
in

W
orkflow

System
s.

A
pplied

Intelligence,13(2):125–147,2000.

[63]
M

.M
am

ei,F.Z
am

bonelli,and
L

.L
eonardi.Tuples

O
n

T
he

A
ir:a

M
iddlew

are

forC
ontext-A

w
are

C
om

puting
in

D
ynam

ic
N

etw
orks.TechnicalR

eport

D
ISM

I-U
N

IM
O

-2002-23,U
niversity

ofM
odena

and
R

eggio
E

m
ilia,2002.

[64]
S.M

artello
and

P.Toth.
K

napsack
P

roblem
s

:
A

lgorithm
s

and
C

om
puter

Im
plem

entations.John
W

iley
and

Sons,2001.

[65]
D

.M
cderm

ott.E
stim

ated-R
egression

Planning
forInteractions

w
ith

W
eb

Services.
In

6th
Int.C

onf.on
A

Iplanning
and

scheduling,2002.

[66]
M

.M
ecella,M

.Scannapieco,A
.V

irgillito,R
.B

aldoni,T.C
atarci,and

C
.B

atini.M
anaging

D
ata

Q
uality

in
C

ooperative
Inform

ation
System

s.In

P
roc.ofthe

10th
InternationalC

onference
on

C
ooperative

Inform
ation

System
s

(C
oopIS),Irvine

C
A

,U
SA

,2002.

[67]
B

.M
edjahed,B

.B
enatallah,A

.B
ouguettaya,A

.H
.H

.N
gu,and

A
.E

lm
agarm

id.B
usiness-to-B

usiness
Interactions:Issues

and
E

nabling

Technologies.
The

V
LD

B
Journal,to

appear.

[68]
J.M

eng,S.Y.Su,H
.L

am
,and

A
.H

elal.
A

chieving
D

ynam
ic

Inter-organizationalW
orkflow

M
anagem

entby
Integrating

B
usiness

Processes,

E
vents,and

R
ules.In

P
roceedings

ofthe
Thirty-Fifth

H
aw

aiiInternational

C
onference

on
System

Sciences
(H

IC
SS-35),2002.

[69]
W

orkflow
and

Sem
antic

W
eb

Processes:Q
uality

ofService,D
iscovery

and

C
om

position,2003.http://lsdis.cs.uga.edu/proj/m
eteor/SW

P.htm
.

[70]
C

.M
ohan.D

ynam
ic

E
-business:Trends

in
W

eb
Services.

In
V

LD
B

w
orkshp

on
Technologies

for
E

-Services
(TE

S),L
N

C
S.Springer,2002.

162
B

IB
L

IO
G

R
A

PH
Y

[71]
T.M

urata.PetriN
ets:Properties,A

nalysis
and

A
pplications.P

roceedings
of

the
IE

E
E

,77(4):541–580,1989.

[72]
F.N

aum
ann,U

.L
eser,and

J.C
.Freytag.

Q
uality-driven

Integration
of

H
eterogenous

Inform
ation

System
s.In

P
roceedings

ofthe
International

C
onference

on
Very

Large
D

atabases
(V

LD
B

),pages
447–458,E

dinburgh,U
K

,

1999.

[73]
T

he
O

bjectM
anagem

entG
roup,2003.http://w

w
w

.om
g.org/.

[74]
J.O

’Sullivan,D
.E

dm
ond,and

A
.terH

ofstede.W
hat’s

in
a

Service.

D
istributed

and
ParallelD

atabases,12(2–3):117–133,Septem
ber2002.

[75]
M

.Pinedof.
Scheduling:

Theory,A
lgorithm

s,and
System

s
(2nd

E
dition).

Prentice
H

all,2001.

[76]
M

.R
eichertand

P.D
adam

.
A

D
E

P
T

f
lex

-Supporting
D

ynam
ic

C
hanges

of

W
orkflow

s
W

ithoutL
osing

C
ontrol.

JournalofIntelligentInform
ation

System
s,10(2):93–129,1998.

[77]
Q

.Z
.Sheng,B

.B
enatallah,M

.D
um

as,and
E

.M
ak.SE

L
F-SE

RV
:A

Platform

forR
apid

C
om

position
ofW

eb
Services

in
a

Peer-to-PeerE
nvironm

ent.In

P
roc.ofthe

28th
V

LD
B

C
onference,H

ong
K

ong,C
hina,A

ugust2002.

[78]
Sim

ple
O

bjectA
ccess

Protocol(SO
A

P).
http://w

w
w

.w
3.org/T

R
/SO

A
P.

[79]
S.Y.Su,C

.H
uang,J.H

am
m

er,Y.H
uang,H

.L
i,L

.W
ang,Y.L

iu,

C
.Pluem

pitiw
iriyaw

ej,M
.L

ee,and
H

.L
am

.A
n

Internet-based
N

egotiation

ServerforE
-C

om
m

erce.
The

V
LD

B
Journal,Vol.10,N

o.1,A
ug.2001,pp.

72-90.

[80]
C

.Szyperski.
C

om
ponentSoftw

are
B

eyond
O

bject-O
riented

P
rogram

m
ing.

A
ddison-W

esley
and

A
C

M
Press,ISB

N
0-201-17888-5,1998.

B
IB

L
IO

G
R

A
PH

Y
163

[81]
U

niversalD
escription,D

iscovery
and

Integration
ofB

usiness
forthe

W
eb,

2000.http://w
w

w
.uddi.org.

[82]
W

.van
derA

alst.W
oflan:A

Petri-net-based
W

orkflow
A

nalyzer.
System

s

A
nalysis

-M
odelling

-Sim
ulation,35(3):345–357,1999.

[83]
W

.van
derA

alst,A
.terH

ofstede,B
.K

iepuszew
ski,and

A
.B

arros.
W

orkflow

Patterns.
TechnicalR

eportQ
U

T
Technicalreport.FIT-T

R
-2002-02

(To
appear

in
D

istributed
and

ParallelD
atabases.),Q

ueensland
U

niversity
ofTechnology,

B
risbane,,2002.

[84]
A

.van
M

oorsel.M
etrics

forthe
InternetA

ge:Q
uality

ofE
xperience

and

Q
uality

ofB
usiness.TechnicalR

eportH
PL

-2001-179,H
P

L
abs,A

ugust2001.

A
lso

published
in

5th
Perform

ability
W

orkshop,Septem
ber2001,E

rlangen,

G
erm

any.

[85]
T

he
W

orld
W

ide
W

eb
C

onsortium
(W

3C
),2003.http://w

w
w

.w
3.org.

[86]
D

.D
.W

ackerly,W
.M

endenhall,and
R

.L
.Scheaffer.

M
athem

aticalStatistics

w
ith

A
pplication.D

uxbury
Press,1996.

[87]
D

.S.W
eld.

R
ecentA

dvances
in

A
IPlanning.

A
IM

agazine,20(2):93–123,

1999.

[88]
T

he
W

orkflow
M

anagem
entC

oalition,2003.http://w
w

w
.w

fm
c.org/.

[89]
W

orkflow
M

anagem
entC

oalition
Term

inology
&

G
lossary,2003.

http://w
w

w
.w

fm
c.org/standards/docs/T

C
-1011

term
glossary

v3.pdf.

[90]
G

.W
inskel.PetriN

ets,A
lgebras,M

orphism
s

and
C

om
positionality.

Inform
ation

and
C

om
putation,72(3):197–238,1987.

[91]
W

eb
Service

C
horeography

Interface
(W

SC
I)1.0

Specification,2002.

http://w
w

w
s.sun.com

/softw
are/xm

l/developers/w
sci/.

164
B

IB
L

IO
G

R
A

PH
Y

[92]
W

eb
Services

C
onversation

L
anguage

(W
SC

L
)1.0,2002.

http://w
w

w
.w

3.org/T
R

/w
scl10/.

[93]
W

eb
Services

D
escription

L
anguage

(W
SD

L
).

http://w
w

w
.w

3.org/w
sdl.

[94]
W

eb
Services

Flow
L

anguage
(W

SFL
)V

ersion
1.0,2002.

http://w
w

w
-3.ibm

.com
/softw

are/solutions/w
ebservices/pdf/W

SFL
.pdf.

[95]
X

L
A

N
G

:W
eb

Services
forB

usiness
Process

D
esign,2002.

http://w
w

w
.gotdotnet.com

/team
/xm

lw
sspecs/xlang-c/default.htm

.

[96]
W

orkflow
Process

D
efinition

Interface
–

X
M

L
Process

D
efinition

L
anguage

(X
PD

L
),2003.

http://w
w

w
.w

fm
c.org/standards/docs/T

C
-1025

10
xpdl

102502.pdf.

[97]
L

.Z
eng,B

.B
enatallah,M

.D
um

as,J.K
alagnanam

,and
Q

.Z
.Sheng.

Q
uality

D
riven

W
eb

Services
C

om
position.In

P
roceedings

ofthe
12th

international

conference
on

W
orld

W
ide

W
eb

(W
W

W
),B

udapest,H
ungary.A

C
M

Press,M
ay

2003.

[98]
L

.Z
eng,B

.B
enatallah,H

.L
ei,A

.N
gu,D

.Flaxer,and
H

.C
hang.

Flexible

C
om

position
ofE

nterprise
W

eb
Services.

E
lectronic

M
arkets

-The

InternationalJournalofE
lectronic

C
om

m
erce

and
B

usiness
M

edia,2003,to

appear.

[99]
L

.Z
eng,B

.B
enatallah,and

A
.H

.H
.N

gu.O
n

D
em

and
B

usiness-to-B
usiness

Integration.In
P

roceedings
ofN

inth
InternationalC

onference
on

C
ooperative

Inform
ation

System
s,Trento,Italy,2001.

[100]
L

.Z
eng,B

.B
enatallah,A

.H
.H

.N
gu,and

P.N
guyen.

A
gFlow

:A
gent-based

C
ross-E

nterprise
W

orkflow
M

anagem
entSystem

(dem
onstration

paper).
In

P
roceedings

of27th
InternationalC

onference
on

Very
Large

D
ata

B
ases,

R
om

a,Italy,2001.

B
IB

L
IO

G
R

A
PH

Y
165

[101]
L

.Z
eng,B

.B
enatallah,F.A

.R
abhi,and

J.K
alagnanam

.Tow
ards

a
Scalable

and
A

daptive
Infrastructure

forW
eb

Services
C

om
position

(subm
itted

for

publication).Technicalreport,SchoolofC
om

puterScience
and

E
nginnering,

U
niversity

ofN
ew

South
W

ales,2003.

[102]
L

.Z
eng,D

.Flaxer,H
.C

hang,and
J.-J.Jeng.

P
L
M

f
lo

w –
D

ynam
ic

B
usiness

Process
C

om
position

and
E

xecution
by

R
ule

Inference.
In

V
LD

B
w

orkshp
on

Technologies
for

E
-Services

(TE
S),L

N
C

S.Springer,2002.

[103]
L

.Z
eng,D

.Flaxer,H
.C

hang,and
J.-J.Jeng.

M
ethod

and
A

pparatus
for

ProductL
ivecycle

M
anagem

entin
a

D
istributed

E
nvirom

entE
nabled

by

D
ynam

ic
B

usiness
Process

C
om

position
and

E
xecution

using
R

ule
Inference,

2003.U
S

patentpending.

