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Abstract Attitudinal Network Graphs are signed graphs where edges capture an expressed opinion; two
vertices connected by an edge can be agreeable (positive) or antagonistic (negative). A signed graph is
called balanced if each of its cycles includes an even number of negative edges. Balance is often charac-
terized by the frustration index or by finding a single convergent balanced state of network consensus.
In this paper, we propose to expand the measures of consensus from a single balanced state associated
with the frustration index to the set of nearest balanced states. We introduce the frustration cloud as a
set of all nearest balanced states and use a graph-balancing algorithm to find all nearest balanced states
in a deterministic way. Computational concerns are addressed by measuring consensus probabilistically,
and we introduce new vertex and edge metrics to quantify status, agreement, and influence. We also
introduce a new global measure of controversy for a given signed graph and show that vertex status
is a zero-sum game in the signed network. We propose an efficient scalable algorithm for calculating
frustration cloud-based measures in social network and survey data of up to 80,000 vertices and half-a-
million edges. We also demonstrate the power of the proposed approach to provide discriminant features
for community discovery when compared to spectral clustering and to automatically identify dominant
vertices and anomalous decisions in the network.

Keywords Frustration cloud ⋅ Balanced Graph ⋅ Consensus ⋅ Status ⋅ Controversy ⋅ Signed Graph

1 Introduction

Signed graph network representations of socio-technical networks offer richer modeling of relations be-
tween people, AI agents, products, and content. Attitudes captured by edges between two vertices can be
agreeable (positive) or antagonistic (negative). Some social signed graph examples include team member
evaluations in a company, student evaluations of instructors, movie recommendations based on common
interests, or the “trustworthiness” of a product reviewer or seller in online stores. If there is a group
decision to be made, consensus or majority voting guides the decisions and the final outcome in such
networks. These sentiments have tangible real-world effects, such as annual performance scores and pro-
motions in a corporation. Graph decision algorithms are rarely scrutinized, as consensus and majority
voting are established social constructs (Leskovec and Krev, 2014). Only when the outcomes are known
can an individual’s status be perceived as elevated or diminished relative to their peers, and even then
only anecdotally questioned or explained. Such algorithms’ sensitivity to bias, fraud, and falsehood has
been put under a magnifying glass in the last couple of years, as state-of-art research examined the
controversy of decisions in cases of status quo (Li et al., 2005) or subgroup mobilization against other
groups (Kumar et al., 2018). Research in the domain of consensus in signed graphs focuses on frustration
index computation and algorithmic convergence to some balanced state (Altafini, 2019, She et al., 2020)
and is one dimensional, as described in Section 2.

In this paper, we focus on finding multiple balanced states of the signed graph, as they represent
different consensus outcomes. The main contribution of this paper is that it generalizes the notion of the
frustration index to the frustration cloud. The frustration cloud is a set of all balanced states obtained
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by a minimal number of edge sign inversions. In comparison, the frustration index characterizes the dis-
tance between the original signed graph and a single nearest balancing set. We also propose a spanning
tree-based graph balancing algorithm that focuses on finding balanced states from spanning trees. The
proposed approach works on any signed graph, avoids the NP-hardness of finding the frustration index,
and focuses on determining a basis of fundamental cycles to produce balanced states (Rusnak, 2013). A
greedy approach to finding a basis of fundamental cycles is NP-hard in general, and Deo et al. proposed
some polynomial-time algorithms (Deo et al., 1982). The graphB algorithm introduces a deterministic
methodology that finds all the nearest balanced states of a signed graph. To quantify levels of agreement
in the network, we sample the frustration cloud via the associated family of balanced matroidal bases
(spanning trees) (Zaslavsky, 1983). This statistically meaningful sampling of the frustration cloud pro-
duces a robust way to handle the brittleness of the data space for signed graph data and avoid challenges
presented in (Selbst et al., 2018).

The proposed spanning tree-based balancing method combines the requirement for statistical parity
across the nearest balanced states with the requirement to consider all vertices instead of few selected
ones; this method relies on the spanning trees, not random walks (Garimella et al., 2017). The sentiments
are reconstructed around a spanning tree to produce a set of nearest balanced states. The resulting
balanced states are generalizations of bipartite graphs (Berge, 1970, Harary, 1959), and the resulting
negative edge cut defines two consensus-based sets. We use these consensus-based sets to characterize
the importance of specific vertices and edges necessary to produce a majority consensus: status measures
an individual’s contribution to reaching consensus over the frustration cloud; agreement measures the
edge’s contribution to belonging to the majority consensus; and influence measures the vertex based on
its edge agreement scores.

1.1 Contribution

Social network analysis has not converged on how to assess the robustness, resilience, and reliability of
the network algorithm outcomes, or how to identify anomalies in large signed network graphs. There is
a clear need to measure the performance of algorithms that define outcomes, characterize consensus in
social or multi-agent attitudinal networks as a unit, and assess vertex and edge contributions to graphs
as a whole. We propose a process that characterizes the impact of every vertex and edge in its entirety,
and it may be used outside of social network analysis on any binary decision paradigm to examine the
reliability of decision-making processes relative to some given ground state. Researchers in multi-agent
networks have focused on techniques to produce a single convergent balanced state (Alemzadeh et al.,
2017, Altafini, 2019, Hu and Zheng, 2013, Jiang et al., 2016, Pan et al., 2016, She et al., 2020).

We propose a new discrete alternative to Laplacian dynamics, and we identify all nearest balanced
states of a signed graph. Our main contribution is a novel signed graph methodology that (1) determines
all the nearest balanced states via basis sampling via spanning trees, (2) quantifies the importance
of each balanced state relative to the likelihood it will be become the consensus state, (3) quantifies an
individual’s status relative to their peers, (4) characterizes the potential maximum status of an individual
over tie-break scenarios, (5) provides a constant metric of controversy for the entire network that is
subject to a Conservation Law, (6) quantifies an individual decision or opinion based on agreement,
(7) aggregates agreement to each individual to quantify influence over others, (8) compares status and
influence to quantify the positive/negative relationship of the entire network and provide a spectrum of
status-influence, and (9) scales the tree-based balancing algorithm to graphB: graph balancing using
statistically significant sample of spanning trees (Tešić et al., 2020).

In the event that the sentiment data provided is related to promotions, and the outcome of those
promotions are known, the research examines the efficacy of this new methodology by outcomes as
status separates “promoted” from “not promoted” and identifies any outliers in either case, and where
the influence separates “voters” from those “voted on”. We show proof-of-concept implementation results
on several large social networks and how status-influence measures of the vertex can discover contentious
outcomes on Wikipedia administrator promotions. We also identify anomalous actors when outcomes
are not known in the Slashdot dataset (Leskovec and Krev, 2014), and we analyze the approach on a
small survey dataset (Read, 1954) which shows that in new status-influence space, vertices can be fully
characterized in terms of community without the need to specify the number of clusters k for spectral
clustering.
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2 Background and Related Work

In this section, we describe the state-of-art work in mathematical sociology (2.1) and signed graph
frustration (2.2), and we present related work in the fields of social network analysis and control (2.3)
and signed graph clustering (2.4).

2.1 Related Work in Mathematical Sociology

A signed graph consists of a collection of vertices that are linked together with undirected edges; positive
sentiment between two vertices is modeled as positive edge “+1”, and negative sentiment between two
vertices is modeled as a negative edge “-1”. Fritz Heider introduced Balance Theory in 1948 (Heider,
1946). Balance theory examined consensus in triadic relationships in a signed triangle graph. Figure 1
shows all possible edge signs for a signed triangle graph. These eight graphs are different as they have
different edge signs between specific vertices. Each of the eight signings is a state of the triangle graph.
Balance Theory is the base model of attitude change analysis among three persons in a signed graph
(Heider, 1946). A triangle state is considered balanced if the product of the edge signs is positive and
unbalanced if the product of edge signs is negative. A balanced triadic relationship in a signed graph is
captured as “the enemy of my enemy is my friend” paradigm in mathematical social modeling (Leskovec
et al., 2010a).

Fig. 1: Sign graph triangle where the top row are balanced states, and the bottom row are unbalanced states.

There are four different ways to achieve a balanced state in the triangle, as depicted in Figure 1,
and we emphasize that there is more than one balanced state. These multiple consensus scenarios all
capture different aspects of reaching consensus. A specific balanced state is a snapshot of the balanced
assessment of the network, and it is not sufficient as all sentiments are not necessarily equal, as illustrated
in Figure 1 (top row). In this paper, we implement an algorithm that considers the collection of nearest
consensus states to characterize network graph behavior. This type of analysis considers all possible
consensus outcomes of attitudinal network graphs for a complete consensus characterization.

Mathematical sociology was introduced when Rashevsky characterized large social networks as graphs,
where vertices are persons and edges measure the level of acquaintanceship (Rashevsky, 1984). The math-
ematical foundation of signed graphs (Harary, 1953) and social balance theory (Abelson and Rosenberg,
1958, Heider, 1946) introduced the concepts of modeling balance and agreement in social networks using
more complex mathematical models. Harary introduced the frustration index of a signed graph as a
measure of how far the network graph is from a state of structural balance (Harary, 1959). Harary’s pro-
posed measure is the smallest number of edges whose negation in the network graph results in a balanced
signed graph. Harary’s attitudinal balanced model was formalized in graph-theoretic terms (Cartwright
and Harary, 1956) and fully characterized by Zaslavsky (Zaslavsky, 1983) in matroid-theoretic terms.
Davis (Davis, 1967) studied the necessary and sufficient conditions for clustering of attitudinal graphs.
Mathematical sociological modeling has evolved to address sociological phenomena in various fields of
social science and helps in understanding, evaluating, and predicting patterns of social relationships and
interactions (Hunter et al., 1984).

2.2 Balance and Frustration in Signed Graph

A signed graph Σ is a pair (G,σ) that consists of a graph G = (V,E) and an edge-signing function
σ ∶ E → {+1,−1}. For a set of edges E in a signed graph Σ, let E+ (resp. E−) denote the set of positive
(resp. negative) edges of G — the signs of the edges are regarded as sentiments between two vertices. The
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sign of a subgraph is the product of the signs of the edges in that subgraph. A signed graph is balanced
if the sign of every circle is positive (Cartwright and Harary, 1956, Harary, 1953). If the graph Σ is not
balanced, there exists a set of edges whose sign reversal produces a balanced signed graph, and that set
is called a balancing set.

Fig. 2: left: an underlying graph G; middle: an example balanced signing of G; right: an unbalanced signing of G, Σ. G
and Σ are used as signed graph examples in the rest of the paper.

A balancing set is minimal if no proper subset is a balancing set. The frustration index of a signed
graph Σ, denoted Fr(Σ), is the smallest number of edges whose change in sign can result in a balanced
signed graph (Harary, 1959). All balanced signed graphs necessarily have a frustration of 0. The frus-
tration index has applications in various areas including physics (Alava et al., 2001, Barahona, 1982),
economics (Yoshikawa et al., 2011), negative feedback loops in Boolean networks (Sontag et al., 2008),
and statistical mechanics (Sethna, 2006). Each balanced state represents a consensus outcome, meaning
all paths between two vertices have the same sign. These concepts are related by a Theorem of Harary
and motivate our proposed probabilistic consensus model to examine all the nearest balanced states.

Theorem 2.1 ((Harary, 1953, 1959)) For a signed graph Σ′, the following are equivalent:

1. Σ′ is balanced. (All circles are positive.)
2. For every vertex pair (vi, vj) with vi, vj ∈ V all (vi, vj)-paths have the same sign. (Agreement or

consensus)
3. There exists a bipartition of the vertex set into sets U and W such that an edge is negative if, and

only if, it has one vertex in U and one in W . The bipartition (U ,W ) is called the Harary-bipartition.)
4. Fr(Σ′) = 0. (0 frustration.)

Fig. 3: All 8 balanced signed graphs of the underlying graph G in Figure 2. Harary-cut of negative edges is represented by
dashed edges.

Figure 3 shows all possible balanced states Σ′ on the given underlying graph G from Figure 2 (left).
Each of the balanced states satisfies all conditions in Theorem 2.1. Once balanced, the set of negative
edges whose deletion produces the Harary-bipartition is called the Harary-cut of the balanced graph.
The Harary-cuts are emphasized by representing the negative edges with dashed edges.

The frustration index is the size of the smallest Harary-cut; for example in Figure 2, Fr(Σ) = 1.
Computing the frustration index of a signed graph is an NP-hard problem. There exist scenarios that
are solvable in polynomial time and for which exact large-scale solutions are possible. Wu and Chen
proposed a branch-and-bound algorithm to balance signed graphs by editing edges and deleting vertices,
demonstrating its efficiency over trivial and heuristic algorithms on inputs with up to n = 40 vertices
(Wu and Chen, 2013). In control of multi-agent systems, Altafini analyzed the convergence to a balanced
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state in the decision-making process and presented an effective way to compute the average consensus
for a network with up to 100 vertices (Altafini, 2019).

Aref et al. developed three binary linear programming models to compute the frustration index quickly
and exactly as the solution to a global optimization problem. They demonstrated the efficiency of their
techniques for inputs with up to 15,000 edges (Aref et al., 2016, 2020) with an extension that allows for
the incorporation of weights in the interval [−1,+1] to determine weighted minimum frustration (Aref
et al., 2020). The computational complexity of (Aref et al., 2016, 2020) algorithms is bounded by a
polynomial function of the size of the underlying graph.

As balancing only requires the sign (sentiment) of the edge, and not the intensity (weight), we
demonstrate that the balancing applications introduced in this paper produce a quantitative spectrum
of vertex and edge metrics that drive balanced/consensus outcomes. By maintaining the separation of
signs and weights, as suggested by Zaslavsky in (Zaslavsky, 2021), we are able to preserve the matroidal
structure, and our approach immediately generalizes to any edge weight value by replacing each tree
with the weight-product as in (Tutte, 1984), which is expected in future work. Another critical difference
in our approach is the relaxation on determining the frustration index (or weighted frustration index).
We are producing a set of balanced states with minimal (in containment) sign alterations, instead of
the minimum value (in cardinality) for frustration. We propose an approach in Section 3 that focuses
on multiple nearest balanced states to avoid the NP-hardness of determining the frustration index while
simultaneously analyzing multiple possible nearest consensus outcomes that scale with the size of social
network.

2.3 Related Work in Social Network Analysis and Cybernetics

Large virtual communities and decision networks of the 21st century initiated the explosive growth of
social network analysis and network science fields. The analysis of largely digital traces of social networks
at scale expanded well-studied mathematical algorithms for reinforcement, information processing, social
judgment, balance, and dissonance (Hunter et al., 1984). Wasserman et al. introduced social network
analysis as algebraic graph representations and proposed a series of statistical tests (Wasserman and
Faust, 1994). The domain research has focused on predicting the existence and/or sentiments of edges
in the graph, recommending content or a product, or identifying unusual trends. Baseline signed graph
theory was used to explain the relative status that individuals hold within in a social network (Leskovec
et al., 2010b,a) and focused on socially-conscious science to help understand bias, controversy, conflict,
and trust (Guha et al., 2004, Mishra and Bhattacharya, 2011). All mathematical models in network
science that model intents and trends in online social networks have relied on aspects of well-established
consensus-based models in signed graph theory (Chen et al., 2018, Garimella et al., 2017, Yuan et al.,
2017) and balanced modeling (Javed et al., 2018, Lu and Zhou, 2011, Ruby and Kaur, 2017, Tang et al.,
2016, Zhao et al., 2018, Zhou et al., 2018).

A multitude of measures have been proposed to access the rich information coded in signed graphs.
Mishra et al. (Mishra and Bhattacharya, 2011) introduces trustworthiness and deserve as local vertex-
based measures of bias to reflect the expected weights of out- and in-edges. Controversy was introduced
by Garimella et al. (Garimella et al., 2017) as the likelihood a random walk will return to the same side of
the network. This method improved the examination of triangles in (Leskovec et al., 2010b) by including
pendant vertices and proposed to reduce controversy by bridging opposing viewpoints. Conflict is defined
in Chen et al. (Chen et al., 2018) by examining the Laplacian matrix to produce a “Conservation Law
of Conflict” reminiscent of Kirchhoff’s laws — we provide our own Conservation Law of Controversy in
subsection 4.3. Kumar et al. (Kumar et al., 2018) discuss group mobilization against other groups to
describe conflict in intra-community interactions, and Guha et al. (Guha et al., 2004) examines trust
through an iterative build of belief matrix. Yuan et al. (Yuan et al., 2017) introduces a sign prediction
model for sparse data edge prediction in which they convert the original graph into a edge-dual graph
and apply machine learning to predict signs in sparse graphs. Established methods of network graph
analysis focus on endorsement analysis through local topology analytics and strive for agreement by
changing (Leskovec et al., 2010b), adding (Garimella et al., 2017) or removing (Guha et al., 2004) edges
in the graph. We propose to analyze the signed graph in its entirety and characterize the vertices and
edges through frustration cloud-based attributes.

In cybernetics, a multi-agent network dynamic is often too complex for existing tools to analyze the
entire network and collective dynamic reactions. It is known (Rusnak, 2013) that our methodology for
balancing a signed graph works on any signed graph and certain classes of hypergraphs. Altafini (Altafini,
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2013, 2019) proposes controllability and consensus algorithms in networks by examining the effects of the
bipartite consensus of Harary (Harary, 1953). Pan et al. (Pan et al., 2016) examine the bipartite structure
of Laplaican dynamics and node decomposition. Hu et al. show that the ideal state of the multi-agent
system can modeled as a balanced graph, and that the system converges to the optimal state through
the bipartite consensus iterations (Hu and Zheng, 2013), while uncontrollability and stabilizability is
examined by Alemzadeh et al. in (Alemzadeh et al., 2017). Algorithms for the characterization of the
status quo have been examined in (Li et al., 2005) for transitive graphs. Jiang et al. propose a sign-driven
consensus as a control protocol measured via Laplacian dynamics (Jiang et al., 2016). She et al. (She
et al., 2020) examine consensus in terms of graphical characterizations of the controllability of signed
networks and offers a heuristic algorithm for leader selection based on balance theory. This prior work
focuses on producing a single balanced state. In this paper, we propose a discrete alternative to find all
nearest balanced states of the network via frustration cloud graph analysis.

2.4 Related Work in Sign Graph Clustering

We compare the methods introduced in this paper to standard spectral clustering on only positive edges
for community detection. Researchers have only recently started mining negative links in networks for
community detection (Esmailian and Jalili, 2015). Spectral clustering for signed graphs was introduced
by Kunegis et. al (Kunegis et al., 2010) by the way of a positive semi-definite modified Laplacian matrix
approach. The approach essentially counts positive edges between clusters and negative edges within
clusters. Multiple signed graph clustering methods have been proposed since (Tang et al., 2016), normal-
izing Lapacian in different ways. A more recent survey is begin prepared that compares multiple signed
spectral clustering methods in terms of effectiveness for the community finding and scalability for large
network graphs.

3 The Frustration Cloud Graph Analysis

In this section, we expand the notion of the frustration index to frustration cloud analysis and propose
a tree-based graph balancing algorithm to discover the nearest balanced states of a signed graph. This
methodology improves on the singular focus of the frustration index while avoiding the tedious calcula-
tions of finding all balanced states, some of which are only present by passing through another balanced
state.

We define frustration cloud as a set of all balanced states of an underlying graph that are achievable
by a minimal number of edge sign changes. If a balanced state belongs to the frustration cloud, that
means no subset of its edges can balance the underlying signed graph. While balanced states for an
underlying unsigned graph G are always the same, the nearest balanced states for a signed graph Σ
depend on the Σ and the minimal number of edge signs that need to be changed to achieve a balanced
state. Balanced states that produce the frustration index are those with a minimal number of edge
changes to reach a balance, and are always part of the frustration cloud. The nearness of these states for
discovery of the frustration index are discussed in (Aref et al., 2016). We use spanning trees as matroidal
bases to balance the signed graph. A spanning tree T of a graph G is a maximal acyclic subgraph that
contains all the vertices of G. For a spanning tree T in graph G and an edge e not in the spanning tree,
e ∈ E(G) ∖ E(T ), the fundamental cycle of e with respect to T in G is the unique cycle in T ∪ e. The
number of edges outside a spanning tree is a known constant called the cyclomatic number. Spanning
trees form a basis for the balanced signed-graphic matroid (Zaslavsky, 1983). A spanning tree plus an
additional edge whose fundamental cycle is negative is the base for the unbalanced signed graph.

3.1 Balancing via Spanning Trees

For a connected graph G, let Σ = (G,σ) be the signed graph of G, and TG be the set of spanning trees
of G. We propose the graph-balancing algorithm that constructs the nearest balanced states of Σ from
spanning trees of the underlying graph G. The underlying graph G is assumed to be connected. If it is
not, the algorithm is applied to connected components of G. Algorithm 1 produces one balanced state
ΣT per spanning tree T .

Algorithm 1 is illustrated in Figure 4, where the process is illustrated for the signed graph Σ (left)
and a single spanning tree (second left). Edges outside the spanning tree are dashed. As the fundamental
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Algorithm 1 Signed Graph Tree-Balancing Algorithm:
Input: Input signed graph Σ = (G,σ).

for all T ∈ T , T is a spanning tree of Σ do
for all edges e, e ∈ Σ ∖ T do

if fundamental cycle T ∪ e is negative then
change edge sign: e−− > e+; e+− > e−

end if
end for
Construct new balanced signed graph ΣT

end for
Output: Set of nearest balanced states ΣT , T ∈ T

cycles are found, the edges outside the spanning tree (grey) are examined. The edge sign is not changed
if the fundamental cycle is positive (top), and it is changed if the fundamental cycle is negative (bottom)
in Figure 4 (second right). The balanced signed graph is produced with these signing changes in Figure 4
(right).

→

↗

↗↘

↘

Fig. 4: The spanning tree balancing process via fundamental cycles. Changed edges appear lighter.

The base signed graph Σ in Figure 4 (left) has a total of 8 spanning trees, marked with darker edges
in Figure 5 (right). The edges outside each spanning tree are indicated by dashed edges. For any spanning
tree T and an edge e outside of that tree, the sub-graph T ∪ e contains a unique fundamental cycle C.
The sign of e is chosen so that C is positive. The Algorithm 1 result for 8 spanning trees and signed
graph Σ is in Figure 5 (right).

⇒

Fig. 5: The spanning trees of a signed graph (bold) produce balanced signed graphs. Edges outside each spanning tree are
dashed, and re-signed edges are labelled in orange and teal (lighter). The negative edges form a cut-set in each balanced
graph.

For an underlying graph G, there are 8 possible balanced graphs as shown in Figure 3. However, only
four of the eight balanced states are achievable by Algorithm 1, as shown in Figure 6. Not every balanced
signed graph is obtainable by a balancing algorithm that uses spanning trees, only the nearest balanced
states are.

Theorem 3.1 If Σ = (G,σ) is a signed graph of G, then the tree-balancing algorithm outlined in Alg. 1
produces a minimal balancing set for Σ.

Proof Let Σ be the signed graph of graph G, T ∈ T a spanning tree of Σ, and BT be the balancing
set produced by the tree-balancing algorithm (Alg. 1). If BT is not minimal, then there exists a smaller
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Fig. 6: Out of the eight balanced graphs for signed graph in Figure 5. The four in bold can be reconstructed using the
tree-balancing algorithm (Alg. 1).

balancing set S ⊂ BT and an element e ∈ BT ∖ S whose reversal is not necessary to balance Σ. However,
T ∪ e has a unique fundamental circle C, and the only edge of C outside of T is e, so e is required to
balance and BT ∖ S must be empty.

We explain the notion of nearest balanced states and the construction of the frustration cloud in
Section 3.2.

3.2 The Frustration Cloud and Consensus

In this section we formalize the notion of the frustration cloud as the set of nearest balanced states. See
Definition 3.1.

Definition 3.1 The frustration cloud of a signed graph Σ, denoted FΣ , is the set of all balanced signed
graphs obtained by graph B, the tree-balancing algorithm 1 on Σ.

All balanced states of the underlying signed graph have 0 frustration, per Theorem 2.1. They all
represent different views of graph consensus. The frustration index is the smallest number of edge sign
switches so the signed graph achieves a balanced state. If the frustration index of signed graph Σ is
Fr(Σ), that means that Σ is Fr(Σ) many sign changes from being balanced.

Let us extend that notion to all balanced states. For a signed graph Σ = (G,σ), the set of edge-signing
functions {+,−}E form a Boolean lattice L ordered by negative edge subset containment. Thus, the all
positive edge signing (G,+) is the 0 element, the all negative edge signing (G,−) is the 1 element, and
it is graded by the number of negative edges. Let Σ1 = (G,σ1) and Σ2 = (G,σ2) be two signings of the
same underlying graph G. The distance between Σ1 and Σ2, d(Σ1,Σ2) is the Hamming distance between
them in L. This is equivalent to the length of the shortest path between Σ1 and Σ2 in L when regarded
as a graph. The Boolean lattice for a signed triangle graph is illustrated in Figure 7.

Theorem 3.2 Let Σ be a signed graph, and let Σ′ be a balanced state of Σ. Σ′ ∈ FΣ if, and only if, Σ′

can be obtained by the minimal balancing set whose size is less than or equal to the cyclomatic number.

Proof If Σ′ ∈ FΣ , it is obtained by the tree-balancing algorithm, which cannot change more edge signs
than the cyclomatic number. By Theorem 3.1, this is a minimal balancing set.

Now, suppose Σ′ is obtained by the minimal balancing B set whose size is less than or equal to
the cyclomatic number. Observe that G ∖B is connected, and any spanning tree in G ∖B will also be
spanning in G. Thus, B is obtained by a spanning tree in G ∖B.

The frustration cloud is the set of balanced states resulting from Σ that have no more than the
cyclomatic number of edge sign changes. It has a simple interpretation using the Boolean lattice of the
signings of the underlying graph G. Consider the eight possible signings of the triangle graph in Figure
7 (left), ordered by negative edge set containment. Out of these eight signings, exactly four of them are
balanced; these are marked with black boxes in Figure 7 (center).

Consider the signed graph Σ to be the graph in Figure 7 (right) with a green circle around it. Since
the triangle graph has the cyclomatic number 1, we search for all balanced states that are distance 1 or
less away from Σ; these are marked with green squares. Observe that the balanced state in the black
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⇒⇒

Fig. 7: The Boolean lattice for a signed triangle graph (left); black boxes mark the balanced signed graphs (center); if the
underlying signed graph Σ is in green circle, then the green boxes mark a frustration cloud FΣ (right).

box in Figure 7 (right) is not in FΣ , as it requires a path that exceeds the cyclomatic number — one
must also travel through another balanced state to reach it.

More complicated graphs may produce balanced states of varying distance from the given signed
graph. Consider the underlying graph given in Figure 8 (left) and its corresponding Boolean lattice of
signings in Figure 8 (middle) where the negative edge sets are listed. Consider the signed graph Σ where
edges e2 and e5 are negative, and the rest are positive (Figure 5. This is marked with the open square
in Figure 8 (middle) labeled 25. All the balanced signings are marked with closed squares. Since the
cyclomatic number of the underlying graph is 2, we search for all balanced states of distance less than
or equal to 2 from the open square; these are indicated by the dark paths in Figure 8 (right).

⇒

e1

e2

e3

e4
e5 ⇒

12345

∅

1234 12351245 1345 2345

123 124 125134135145 234 235 245 345

12 13 14 15 23 24 25 34 35 45

1 2 3 4 5

Fig. 8: Left: The underlying graph G from Figure 5. Middle: The Hasse diagram of all signings of G, with balanced states
as closed squares, and the given signed graph from Figure 5 as the open square. Right: The four elements of FΣ and their
shortest paths to Σ from Figure 6 (bold).

The example in Figure 8 illustrates that the frustration index is obtainable by analyzing the frustration
cloud. The signed graph Σ from Figure 8 has Fr(Σ) = 1, as the balanced state of minimum distance is
of distance 1 away from Σ. It is trivial to verify that the frustration cloud of a balanced graph consists
only of itself.

4 Probabilistic Consensus Model

Consensus for social networks is community resolution when opposing parties set aside their differences
and barely agree on a statement (Hartnett, 2011). State-of-art consensus modeling in social network
analysis has focused on the locality of the agreement (Garimella et al., 2017, Guha et al., 2004), and it
did not consider an entire graph. As illustrated in Section 3, there can be multiple balanced states of the
same graph, meaning there are multiple ways to achieve global consensus. In this section, we formalize
the measures of vertices, edges, and the entire graph stemming from frustration cloud-based analysis.

There are multiple ways in which a minimum set of sentiments can be changed to result in identical
outcomes of consensus. Different spanning trees in the tree-balancing algorithm (Alg. 1) can result in the
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same nearest balanced state, as illustrated in Figure 5. We weigh each element of the frustration cloud
by the number of times it is produced by a basis, as spanning trees are bases for the balanced states of
a signed graph (Zaslavsky, 1983).

Definition 4.1 For a signed graph Σ = (G,σ) and balanced signed graph Σ′ ∈ L, let wΣ′ be weight of
Σ′ relative to Σ and defined to be the number of spanning trees of G that balance Σ into Σ′.

An unbalanced signed graph is always assigned a weight of 0. Figure 9 illustrates the balanced signed
graphs in Figure 5 grouped by identical balanced states. The weights of these balanced states are equal
to 3, 3, 1, and 1, as indicated by the boxed groupings of the balanced states. The weight captures the
frequency of appearance of each balanced state using different underlying spanning trees. The weight
of the balanced state is a measurement of the likelihood a given consensus will occur, as illustrated in
Figure 10.

⇒

Fig. 9: Tree-balancing algorithm (Alg. 1) on signed graph Σ produces 4 balanced states. Different spanning trees can
produce same balanced state. The edges outside each spanning tree are indicated as dashed lines.

⇒

Fig. 10: Harary cuts per balanced state: The deletion of the negative edges in each balanced state in the frustration cloud
of the signed graph in Figure 9.

4.1 Global Vertex Status

Let G be a graph whose set of spanning trees is TG. Given a signed graph Σ = (G,σ) and a spanning
tree T ∈ TG, recall that Σ′

T is a balanced signed graph obtained by the tree-balancing algorithm (Alg. 1).
The bipartition (UT ,WT ) from Theorem 2.1 results in two induced subgraphs, as illustrated in Figure
10, Σ′

UT
and Σ′

WT
. The subgraphs are named so that ∣UT ∣ ≤ ∣WT ∣; thus, Σ′

WT
always has the majority of

vertices. Status (Defn. 4.2) is the likelihood that a majority of the vertices in a network can be convinced
to agree with a specific node’s position over all nearest balanced states, with multiplicity determined by
the weight.

Definition 4.2 The status of a vertex v in Σ = (G,σ) is defined as the normalized sum of step functions
if vertex v is in the larger subgraph Σ′

WT
:

status(v) = 1
∣TG∣ ∑T ∈TG

δΣ′
WT

(v), where δΣ′
WT

(v) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 if v ∈ Σ′
WT

0.5 ∣WT ∣ = ∣UT ∣ tie-break
0 otherwise.
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Lemma 4.1 Let Σ = (G,σ) be a signed graph with frustration cloud FΣ. Status can be defined as a sum
of step function if vertex v is in larger balanced sub-graph Σ′

WT
, weighted by wΣ′ , the number of spanning

trees of G that balance Σ into Σ′.

status(v) = 1
∣TG∣ ∑Σ′∈FΣ

wΣ′δΣ′
WT

(v).

Proof From Defn. 4.1, wΣ′ counts the number of spanning trees that contribute to a given balanced
state. Separating these into individual spanning trees and using Defn. 4.2 gives the result.

Figure 11 uses the components of Figure 10 to determine the status.

⇒

6.5
8

5.5
8

6.5
8

3.5
8

Fig. 11: Harary-cut for the nearest balanced states weighted by their occurrence (left) and the calculated status values for
signed graph Σ.

The top-left vertex of Figure 11 has status [3(1) + 1(1) + 3(0.5) + 1(1.0)]/8 = 6.5/8; the bottom-
left is the same at 6.5/8; the top right is [3(1) + 3(0.5) + 1(1)]/8 = 5.5./8; and the bottom-right is
[1(1)+3(0.5)+1(1.0)]/8 = 3.5/8. Next, let us consider a sum of all statuses of all vertices in a graph and
Definition 4.2.

Lemma 4.2 For signed graph Σ = (G,σ), vertex set V , and tree-spanning set TG, the sum of statuses
of all vertices in Σ equals the normalized sum of cardinality of the larger component of the Harary-cut
over all spanning trees T ∈ TG.

∣TG∣∑
v∈V

status(v) = ∑
T ∈TG

∣V (Σ′
WT

)∣.

Proof Summing both sides of the definition of status over all vertices gives

∑
v∈V

status(v) = ∑
v∈V

1
∣TG∣ ∑T ∈TG

δΣ′
WT

(v) = 1
∣TG∣ ∑v∈V

∑
T ∈TG

δΣ′
WT

(v)

= 1
∣TG∣ ∑T ∈TG

∑
v∈V

δΣ′
WT

(v) = 1
∣TG∣ ∑T ∈TG

∣V (Σ′
WT

))∣.

The last equality holds even in the event of having two components of equal size, as we have defined
status. Since δΣ′

WT
(v) treats them as an equal split (0.5), there are the same number of vertices in both

the new majority as well as the minority — which is equivalent to counting the size of the tied majority.
The proof is completed by multiplying by ∣TG∣.

4.2 Global Vertex Influence

We now consider the variation of attitudinal strength captured by edge signs in attitudinal networks.
When students assign a strong rating score for an instructor evaluation, it is hard to separate affective,
behavioral, and cognitive components of the attitude expressed in that one sentiment. Did the student
take all of their other instructors into consideration? What is the subjective evaluation range? How much
of the rating is based on students’ own subjective performance in the class? How likely is the student
to change his mind when he talks to his peers? We examine the strength of the beliefs held within
these edges. We propose another new measure for edges similar to status, termed agreement, to measure
how strongly held a given edge-sentiment is. It is likely that an edge will be positive and contribute
to the consensus decision in all near balanced states produced by the tree- balancing algorithm. See
Definition 4.3.
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Definition 4.3 The agreement of an edge e in a signed graph is a normalized sum of all occurrences of
an edge in the largest component of a Harary-cut over all spanning trees.

agreement(e) = 1
∣TG∣ ∑T ∈TG

δΣ′
WT

(e), where δΣ′
WT

(e) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 if e ∈ Σ′
WT

0.5 ∣WT ∣ = ∣UT ∣ tie-break
0 otherwise.

Figure 12 shows agreement for the given example. The larger agreement an edge has, the more likely
it will appear in the final, majority decision.

5.5
8

1
8

3.5
8

5.5
8

2
8

⇒

Fig. 12: Left: Harary-cut; Right: Edge Agreement values.

Agreement is calculated dually to status. Figure 11 demonstrated that the bottom-left and top-left
vertices both have the largest status values. However, the agreement in Figure 12 helps to quantify the
differences between them.

Parallel to Lemma 4.2 we immediately have:

Lemma 4.3 For signed graph Σ = (G,σ), edge set E, and tree-spanning set TG, the sum of the agreement
of all edges e, e ∈ E, in Σ equals the normalized sum of edge cardinality of the larger component of the
Harary-cut over all spanning trees T ∈ TG.

∣TG∣∑
e∈E

agreement(e) = ∑
T ∈TG

∣E(Σ′
WT

)∣.

Edge agreement is now averaged around each vertex to compare to status. This metric is called
influence.

Definition 4.4 The influence of a vertex v in a signed graph is the average agreement of all edges
incidental to the vertex v,

influence(v) = 1
deg(v) ∑e∼v

agreement(e).

Comparing the influence to the status in our examples, we see that the influence is always less than
or equal to status.

Status and influence provide two measures of vertex influence in the attitudinal network graph, as
illustrated in Figure 13. The relationship of status and influence measures for vertex v as outlined in
Lemma 4.4. Their relation stems from Defn. 4.2, Defn. 4.4, and from comparing the totality of edge
counts around each vertex.

Lemma 4.4 For an unbalanced signed graph influence(v) ≤ status(v). Moreover, equality holds when
v is a pendant vertex whose edge is positive; influence is 0 when v is a pendant vertex whose edge is
negative.
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8

5.5
8

6.5
8

3.5
8

⇒

4.33
8

3.25
8

4.5
8

2.67
8

Fig. 13: For the signed graph Σ in Figure 5, its edge agreement values (left) and vertex influence (center) are compared to
its vertex status (right).

4.3 Conservation of Controversy

Consensus is a general agreement that can be achieved without unanimous voting. If consensus in the
signed graph is unanimous, then the Harary-cut produces one partition consisting of the entire connected
graph; the nearest balanced state has all positive edges. On the other end of the spectrum, the nearest
balanced state can result in a Harary-cut that has bipartitions of equal size, and the entire graph is
deadlocked in indecision. Controversy (from Latin controversia meaning ”turn in opposite direction”)
occurs anytime there are conflicting opinions in the group. Controversy in balanced graph states occurs
when consensus is achieved but the voting was not unanimous. Every balanced state but one (the all
positive signed graph) has a certain level of controversy associated with it. The measure of the average
status of the nearest balanced states can quantify controversy for the underlining signed graph, and the
graph status definition is Definition 4.5.

Definition 4.5 Let status(Σ) denote the graph status measure, and ∣V (G)∣ is the number of vertices
in the graph. Then, an average status of a signed graph Σ is defined as

status(Σ) = 1
∣V (G)∣ ∑v∈V

status(v).

Lemma 4.5 Let Σ = (G,σ) be a signed graph, then 0.5 ≤ status(Σ) ≤ 1.

Proof This lemma sets the bounds of status sum in Lemma 4.2. From the definition of majority, we have
that for every spanning tree T we have

∣V (G)∣
2

≤ ∣V (Σ′
WT

)∣ ≤ ∣V (G)∣.

Summing over all spanning trees and normalizing the sum using Lemma 4.2, we get the result.

From Theorem 4.2 we know ∣TG∣∑v∈V status(v) is a sum of the sizes of the majority, so it must be
an integer. The bounds are from Theorem 4.5 and multiplying by ∣TG∣. Combining Lemmas 4.2 and 4.5
we have:

Theorem 4.1 For a signed graph Σ = (G,σ) and for all spanning trees T of Σ:

1. status(Σ) is minimal (= 0.5) if, and only if, ∣V (Σ′
WT

)∣ = ∣V (Σ′
UT

)∣,∀T ,
2. status(Σ) is maximal (= 1) if, and only if, ∣V (Σ′

WT
)∣ = ∣V (G)∣,∀T .

We define average status over all vertices in the graph as a measurement of controversy (Theorem
4.1). The maximum value of status(Σ) is 1.0; this is the case when all nearest balanced states have
all positive edges, and everyone agrees all the time. The minimum value of status(Σ) is 0.5, and the
balancing consistently splits the set in two equally sized subsets. In between, if status(Σ) is closer to 1,
the entire graph has low controversy, and if it is trending to 0.5, the entire graph has higher controversy.
One way to resolve a tie-break in Section 4.1 is to assign status and agreement values of 0.5 if the
Harary-cut bipartitions are equal size. In the Human Resource Scenario, consider that a “reliable” or
“reputable” vertex exists, and have that person (vertex in signed graph) break all ties in its own favor
when the Harary-cut bipartitions are of equal size. We define vertical status in Definition 4.6.
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Definition 4.6 The vertical status of a vertex v in Σ = (G,σ) with respect to designated vertex t is

statust(v) =
1

∣TG∣ ∑T ∈TG
δtΣ′

WT

(v), δtΣ′
WT

(v) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 if v ∈ Σ′
WT

,

1 ∣WT ∣ = ∣UT ∣, and v, t in the same partition,
0 otherwise.

Definition 4.6 states that all tie-breaks increase the status of vertex t and vertices in the same subset
as t. Figure 14 illustrates how vertical status compares to status for the signed graph from Figure 5.
Let us consider the top-left vertex (now a closed box) as the tie-breaker in Figure 14 in case 1, and
the bottom-right vertex (now an open box) as the tie-breaker in case 2. Case 1 : the top-left vertex is
used to break any ties, and the vertical status values are now (8/8,7/8,2/8,5/8), as illustrated in Figure
14(middle). Case 2 : the bottom-right vertex is used to break ties, and the vertical status values are now
(5/8,4/8,5/8,8/8). In both cases, the status of the chosen vertex increased over the original status in
Figure 11.

⇒

5
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4
8

8
8
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8

8
8
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8
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8

Fig. 14: Calculating the vertical status using the top-left vertex (middle); and bottom-right vertex (right).

Lemma 4.6 For a signed graph Σ = (G,σ) and vertex v ∈ V , the statust(v) is maximized when t = v.

Proof If t = v, vertex determines its own tie-breakers, and every 0.5 in δΣ′
WT

(v) is replaced with a 1 in
δtΣ′

WT

(v).

Definition 4.7 Let statust(Σ) denote the average vertical status of a signed graph Σ with distinguished
vertex t ∈ V .

statust(Σ) = 1
∣V (G)∣ ∑v∈V

statust(v)

The average status and the average vertical status over the whole signed graph is a constant, called
the controversy of the signed graph. This constant provides the following Conservation of Controversy
Law.

Theorem 4.2 (Conservation of Controversy Law:) For a signed graph Σ = (G,σ), graph contro-
versy is equal to its status and any vertical status:

controversy(Σ) = status(Σ) = statust(Σ),∀t ∈ V (G).

Proof As in Theorem 4.2,

∑
v∈V

statust(v) = ∑
v∈V

1
∣TG∣ ∑T ∈TG

δtΣ′
WT

(v) = 1
∣TG∣ ∑v∈V

∑
T ∈TG

δtΣ′
WT

(v)

= 1
∣TG∣ ∑T ∈TG

∑
v∈V

δtΣ′
WT

(v) = 1
∣TG∣ ∑T ∈TG

∣V (Σ′
WT

)∣ = ∑
v∈V

status(v).

The second to last equality is a strict count of the size of the majority, while the last equality is from
Lemma 4.2. The proof is completed by dividing by ∣V ∣.
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The Conservation of Controversy Law in Theorem 4.2 states that the average status is equal
to any average vertical status. Interpreting average status as controversy, we can conclude that the level
of controversy is independent of vertex preference, but the individual status values may change. The
controversy in Figure 11 (right) is 0.6875, in Figure 14 (middle) is 0.6875, and in Figure 14 (right) is
0.6875. The vertical status increase of the chosen vertex in Figure 14 is at the cost of status values of other
vertices, so the overall controversy stays the same. Controversy is one of the most important concepts
in this paper, as it quantifies the level of controversy in a graph as a whole and does not depend on the
tie-breaker decision, as proven by the Conservation of Controversy Law.

5 graphB: Spanning Tree-Sampling Balancing Algorithm

The proposed measures of status 4.2, agreement 4.3, and controversy 4.1 of a signed graph require the
computation of all spanning trees for the underlying unsigned graph G. For a real life socio-technical
network, this is computationally prohibitive. In this section, we propose to utilize existing spanning tree
graph discovery and sampling methods to accurately model measures derived from all spanning trees as
outlined in Section 4 with a sample of spanning trees (Russell and Norvig, 2009). Note that the Con-
servation of Controversy Law (Theorem 4.2) holds for any fixed subset of spanning trees; while different
subsets of trees may produce different controversy values, the conservation is in tie-break scenarios within
the sample.

The upper limit on the number of spanning trees is computed by Cayley’s theorem: the complete graph
with v vertices has vv−2 spanning trees, and a complete bipartite graph with v, q vertices has vq−1 ⋅ qv−1

spanning trees (Buekenhout and Parker, 1998, Rusnak et al., 2018). For a small social network such as
the Highland Tribes (Read, 1954) in Figure 30 with 16 vertices and 29 positive and 29 negative edges,
that number is quite high 1614 = 7.21e+ 16. The exact number of spanning trees for any graph G can be
calculated in polynomial time as the determinant of a matrix derived from the graph, using Kirchhoff’s
matrix-tree theorem (Tutte, 1984). The Tutte polynomial of a graph can be defined as a sum, over the
spanning trees of the graph, of terms computed from the ”internal activity” and ”external activity” of the
tree. Its value at the arguments (1,1) is the number of spanning trees (Tutte, 1984), and the computed
number of spanning trees for the Highland Tribes is 402,506,278,163. Computing probabilistic consensus
measures as outlined in Section 4 will require running Algorithm 1 over 400 billion trees, and that is
computationally prohibitive. We examine statistical samples of spanning trees to approximate modeling
of balanced state coverage with k sampled spanning trees. We propose scaled adjustment of Alg. 1 termed
graphB: Spanning Tree-Sampling Balancing Algorithm, and we implement the proof-of-concept (Tešić
et al., 2020). The efficiency improvements on the tree-based balancing algorithm are outlined in Alg. 2,
and its implementation complexity is addressed in Sec. 5.1. We model the frustration cloud and balanced
state weights using n spanning trees to compute status, influence, and controversy.

Algorithm 2 graphB: Spanning Tree-Sampling Balancing Algorithm:
Input: Input signed graph Σ = (G,σ).
Input: Sample n spanning trees T to T set using BFS, random or DFS.

for all i ∈ [1, n], Σi, Ti ∈ T do
for all edges e, e ∈ Σ ∖ T do

if fundamental cycle Ti ∪ e is negative then
change edge sign: e−− > e+; e+− > e−

end if
end for
Construct new balanced signed graph Σi
Create Harary cutset for Ti, (Ui,Wi)

end for
Output: Compute status for each vertex and agreement for each edge

Algorithm 2 includes sampling a tree step; instead of looping over all spanning trees, we select a subset
of spanning trees T that contains n spanning trees of signed graph Σ. Given a fixed number of vertices
and edges, path-like trees have minimal eigenvalues while star-like trees have maximal eigenvalues, per
Lovasz’ eigenvalue characterization for trees (Lovász and Pelikán, 1973). Next, we analyze three strategies
for sampling spanning trees in the graphB algorithm (Alg. 2) w.r.t. eigenvalues and the frustration cloud.
A breadth-first sampling search favors star-like spanning trees (max eigenvalues), a depth-first spanning
tree search favors path-like spanning trees (min eigenvalues), and a random tree selection is used as a
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baseline as it is the most efficient (random). We examine the sensitivity of our proposed method using
random, breadth-first, and depth-first spanning tree samplings and demonstrate how status, influence,
and controversy can be perceived in different paradigms.

Random Sampling Baseline: A uniform spanning tree is a tree chosen randomly from among all
the spanning trees with equal probability, and there are multiple known implementation algorithms. We
assumed that a random sample will best represent the frustration cloud and multiplicity. The fastest
implementation is a random minimal spanning tree algorithm; it generates random trees, but cannot
guarantee sampling uniformity. The edges of the graph are assigned random weights, and then the min-
imum spanning tree of the weighted graph is constructed. We compared the implementation of three
different algorithms in NetworkX (Hagberg et al., 2008) for discovery of the minimal spanning tree,
namely DJP, Boruvka, and Kruskal’s algorithms (Hagberg et al., 2008, Russell and Norvig, 2009). They
are all greedy algorithms that run in polynomial time, and we have not observed much difference in
speed or randomization when selecting a specific one.
Breadth-first search (BFS): BFS searches for spanning trees by progressively exploring all the neigh-
borhood vertices from the starting vertex (search key) at present depth before moving to next depth level.
As a result, breadth-first spanning trees are the most star-like trees in the graph, and they represent the
classes of trees that have maximal eigenvalues (Lovász and Pelikán, 1973). The BFS algorithm has been
used to find the shortest path between two vertices in a graph measured by number of edges, as it allows
for the discovery of the shortest fundamental cycles in a graph. Thus, spanning trees resulting from a
breadth-first search have the maximal number of pendant vertices and fundamental cycles of minimal
length (Russell and Norvig, 2009). We use NetworkX (Hagberg et al., 2008) implementation of BFS for
proof-of-concept.
Depth-first search (DFS): DFS searches for spanning trees by exploring the branch to the highest
depth level possible before backtracking and expanding (Russell and Norvig, 2009), effectively delaying
cycle feedback as long as possible. Trees determined by a depth-first approach are the most path-like
trees with the minimal number of pendant vertices. The process maximizes the length of the fundamental
cycle. The DFS algorithm has been used in determining the number of connected components in a graph
(Russell and Norvig, 2009). Also, the DFS spanning tree search algorithm maximizes the sampling of
path-like trees, the classes of trees that have minimal eigenvalues (Lovász and Pelikán, 1973), and the
fundamental cycle length.

Random spanning tree sampling provides a straightforward way to analyze the frustration cloud, as
context-driven algorithms such as breadth- or depth-first alter the resolution of the data. We conjecture
that breadth-first tree sub-sampling will provide the greatest data resolution for computing measures in
Section 4, while depth-first tree sub-sampling will produce a noisy interpretation of the same data. We
demonstrate the validity of this assumption on a larger Wikipedia administrator dataset in Section 6.1.

5.1 graphB Implementation and Complexity Analysis

The graphB algorithm implementation in Python is released as open source (Tešić et al., 2020). The
algorithm implementation has the overall complexity of O(n ⋅ v ⋅ e) for run time and O(v2v) for memory
consumption, where kn is the number of sampled trees, v is the number of vertices in the signed graph,
and e is the number of edges. We keep the adjacency matrix in memory for the entire process (O(v2)). In
the pre-process step, we symmetrize the adjacency matrix (O(v2)), find connected components (O(v+e)),
sort by the number of neighbors in the largest connected component, and write it to a file (O(v2)). In
the process step, we find n trees (O(n ⋅ e)). Then for each tree, we find all fundamental cycles in the
graph, as there exists a cycle containing e if, and only if, there exists a fundamental cycle with respect
to the selected spanning tree T that contains e. We have adopted a linear time algorithm for finding
articulation points (Farina, 2015) in (O(v + e)) time for a single spanning tree. The complexity of the
entire processing step is O(n ⋅v ⋅e). Note that algorithm implementation does not make any assumptions
on the signed graph (sparsity, planarity). The only assumption graphB implementation makes is that
the graph edge weights are either +1 or -1.

6 Proof of Concept

The computation of frustration cloud-based measures for signed graphs is implemented using Python and
Python libraries, and the code used for proof-of-concept is released on GitHub (Tešić et al., 2020). The
analysis of the largest connected component, spanning tree search methods, and statistics is computed
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using the NetworkX (Hagberg et al., 2008) package. Experiments are run on the Texas State University
LEAP system (LEAP, 2020): Dell PowerEdge C6320 cluster node consists of two (14-core) 2.4 GHz E5-
2680v4 processors 128 GB of memory each, and two 1.5TB memory vertices with four (18-core) 2.4 GHz
E7-8867v4 Intel Xeon processors (LEAP, 2020). The LEAP system allows us to scale the data analysis
to support the sampling of n = 1000 spanning tree computations and to demonstrate the feasibility of
computation on larger graph datasets (Leskovec and Krev, 2014). In the graphB Alg.2 pipeline, spanning
trees are generated over the dataset and saved in h5 format; we use the NetworkX (Hagberg et al.,
2008) implementation of random minimal tree, breadth-first, and depth-first tree discovery. Next, for
each generated spanning tree, the balancing algorithm is executed on the edges not in the spanning tree
(Alg. 2) for more details. We obtained a list of unique paths encompassing the spanning tree and given
edge and checked for fundamental cycles. If the product of the cycles is −1, then the given edge completing
the cycle by changes signs, resulting in a balanced cycle. We repeat the process for each edge. Once all
edges outside the spanning tree were visited and edge signs persisted or flipped, the resulting state was
a balanced state of the graph. Next, we take a Harary-cut and split the graph into two components. We
repeat the process for k = 1000 trees (Alg. 2). The final step is computing the status for each vertex and
the agreement for each edge as the normalized sum over k sampled trees, per Defn. 4.2 and Defn. 4.3.
Vertex influence is then computed as the normalized sum over the sampled 1000 trees per Defn 4.4 and
the controversy of the entire graph per Theorem 4.1.

6.1 Wikipedia Administratorship Election Data

Stanford Network Analysis Project’s (SNAP) repository of network data provides good proof-of-concept
access to attitudinal network graphs (Leskovec and Krev, 2014). Wikipedia administrator election data
represents votes by Wikipedia users in elections for promoting individuals to the role of administrators
from July 2004 to January 2008. Wikipedia administrators are editors who have been granted the ability
to perform special tasks. The dataset contains 7118 users (vertices) and 103,747 votes (edges) over 2794
elections with one election per candidate, and the outcome of the elections. Out of 2794 elections, 1235
resulted in the promotion to administrator (44.2%), and 1,559 elections did not result in the promotion
of the candidate. On the editorial side, 3464 editors cast zero or 1 vote over all elections, 5506 editors
cast under 10 votes, and 1612 editors voted 10 times or more. Administrators are chosen through a
community review process that seeks consensus is not a majority rule, as the editor in charge reviews
editors’ votes and rationale.

The signed graph is constructed from Wikipedia administrator election data so that each vertex
represents an editor or nominee; if both are running for multiple administrator positions (this is possible
as there are different Wikipedia sections), we represent one user with multiple vertices, where each vertex
has a final outcome (winner, loser, editor). The edges in the graph model the vote of support or initial
nomination (+1) or a vote of opposition (−1). We ignore the neutral votes as they are equivalent to no-
vote or ambivalent votes per (Abelson and Rosenberg, 1958). For k spanning trees and balanced states,
k Harary cutsets are found from balanced states as in Alg. 2. Sampled status and influence are computed
as follows:

Definition 6.1 For a signed graph Σ = (G,σ) and subset of size k of spanning trees T ⊆ TG, the sampled
status, agreement, influence, and controversy are computed as:

1. status(v) = 1
k∑T ∈TδΣ′

Wi

(v), where δΣ′
Wi

(v) is defined in Defn. 4.2,

2. agreement(e) = 1
k∑T ∈TδΣ′

Wi

(e) where δΣ′
Wi

(e) is defined in Defn. 4.3,

3. influence(v) = 1
deg(v)∑e∼v agreement(e),

4. controversy(Σ) = 1
∣V ∣∑v∈V status(v).

Connected components: 7066 users (vertices), or 99.3% of all vertices, and 103663 of all votes (edges),
or 99.97% of all edges, belong to the largest connected component of the constructed attitudinal graph.
Only 52 users and 26 votes are not in largest connected component, and they represent unsuccessful
nominations that fail to gather significant votes. We examine the Wikipedia dataset using a sample size
of k spanning trees, where k ∈ {10,100,1000}.
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6.1.1 Experiment: Spanning Tree Discovery

First, we measure the status and influence for three different spanning tree discovery techniques on the
Wikipedia dataset, for k = 1000 spanning trees are compared: random trees as determined by minimal
spanning trees with random edge weights, breadth-first trees with a random initial vertex, and depth-first
trees with a random initial vertex. We compute status and influence scores for all participants (vertices)
in the Wikipedia election data. First, we analyze the data in id-status and id-influence space, and we
color editors as black triangles and nominees as yellow circles. Whether a vertex is an editor or nominee
is not used to determine status and influence scores; this information is only used in data analysis and
the visualization step.

Results for status and influence for Wikipedia data editors and nominees for three spanning tree
discovery techniques are shown in Figures 15 and 16. Both the editor and nominee means coupled with
a 1 standard deviation band are shown as solid and dashed lines, respectively. The computed status of
the editors (black triangles) and nominees (yellow circles) appear in Figure 15.

Fig. 15: Status of editors (black triangles) and nominees (yellow circles) in Wikipedia administrative election dataset
resulting from different tree sampling methods: Random minimal spanning tree (left), breath-first (center), and depth-first
(right).

Status score distribution for each sampling methodology in Figure 15 produces similar score distri-
bution for editors and for nominees, as 1-SD bands for editors and nominees are close for each sampling
method. By observing status measure only, one may conclude the Wikipedia election processes are fair
based on the likelihood of landing in a majority (evenly spread out between voters and votees). Status
does not discriminate between voters and nominees in Figure 15. Next, let us examine the influence
measure of the editors (grey) and nominees (yellow) in Figure 16. The editors display a much larger in-
fluence value than the nominees. The influence score clearly separates high influence individuals (voters)
from low influence individuals (votees) in the network. Note that the conjecture from Section 5 is shown
valid in practice, as the breadth-first search provides the highest resolution of status and influence metric
analysis in both figures. The depth-first experiment consistently produces a biased sample in terms of
balanced states and the frustration cloud, and our experiments on other datasets consistently confirm
the conjecture.

Table 1: Spanning three discovery methods comparison on Wiki data:

Type Mean Status (Controversy) St.Dev status Mean Influence St. Dev influence

breadth-first 0.6693 0.2564 0.5178 0.2823
random 0.54446 0.06117 0.3465239 0.15985
depth-first 0.5149 0.0547 0.3067 0.1528

Overall data statistics are summarized in Table 1. Note that by design, depth-first (DPS) and breadth-
first (BFS) represent lower and upper bounds of controversy (mean status) that the experiment confirms.
Controversy is computed for all three tree discovery strategies, and the breadth-first value is 0.6693
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while the depth-first value is 0.5159. Controversy, as defined in Theorem 4.1, is a constant value when
all spanning trees are accounted for, and breadth-first and depth-first give us the range estimate of the
actual value if all spanning trees are considered. Controversy is a relative measure of the attitudinal
network graph, and if compared to another graph, the same spanning tree sampling method must be
used for valid comparison.

Fig. 16: Influence of editors (black triangles) and nominees (yellow circles) in Wikipedia administrative election dataset
resulting from different tree sampling methods: Random minimal spanning tree (left), breadth-first (center), and depth-first
(right).

Next, we provide analysis of only the nominees (yellow circles). While restricted to the nominees
and using the known outcomes of the votes, we examine the efficacy of our method. We re-color the id-
status and id-influence graphs with nominee outcomes to illustrate the effectiveness and difference in the
metrics as follows: blue triangles represent a positive outcome (promoted to administrator) and red circles
represent a negative outcome (not promoted or withdrew its nomination). This is depicted in Figure 17
and captures the different measures of influence and status present. High status individuals are mostly
the nominees that won the administrator elections, and low status individuals are mostly the nominees
that did not win the elections for random and BFS spanning tree sampling. The sensitivity of status
measure for nominees and its strong relation to outcome makes status a good predictor of promotability
in random and breadth-first spanning tree discoveries. For DFS, the resolution of the status is too low
to make any conclusion.

Fig. 17: Status of winners (blue triangles) and losers (red circles) in Wikipedia administrative election dataset resulting
from different spanning tree discovery methods: Random minimal spanning tree (left), breadth-first (center), and depth-first
(right).
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Influence score distribution colored by outcome in Figure 18 provides a better separation of winners
and losers, even for the DFS sampling method. In a promotional network such as a Wikipedia election,
status does not distinguish between editors and nominees, but influence does. Nominee-only analysis
(people that have been voted on) illustrates a high correlation between status and influence scores
prediction. Upon further analysis of Figure 17 and Figure 18, we identify clear promotional outliers:
nominees with high status/influence that did not win the nomination. This deserves further study on
anomalous promotion and case-by-case analysis.

Fig. 18: Influence of winners (blue triangles) and losers (red circles) in Wikipedia administrative election dataset resulting
from different spanning tree discovery methods: Random minimal spanning tree (left), breadth-first (center), and depth-first
(right).

Depth-first spanning tree discovery strategy does not allow for a reliable representation of the sta-
tistical significance of balanced states. We exclude the depth-first spanning tree search in subsequent
experiments for status and influence measure and focus on random and breadth-first search spanning
tree sampling.

6.1.2 Experiment: Sufficient Number of Spanning Trees

In this experiment, we offer a heuristic answer to the complex estimation of the sufficient number of
spanning trees (n in Defn. 6.1) that will produce reliable modeling of balanced state representation.
We evaluate the sensitivity of status and influence scores to the number of spanning trees sampled for
random minimal tree and breadth-first search spanning tree for n = 10, n = 100, and n = 1000 trees using
random minimal sampling and breadth-first search techniques. The results for random spanning tree
sampling for status is illustrated in Figure 19 and for influence in Figure 20. For both figures, random
samples are on top and the breadth-first samples are on the bottom.

Status for n = 10 can only take one of 11 different values (as the vertex in majority or not for each
of the 10 sampled balanced states), as illustrated in Figure 19. A shelving effect is visible due to so few
samples. Influence (Defn. 6.1) has a higher resolution, as it is based on the average of agreement for each
vertex, and vertex measure differs. A shelving effect is visible in Figure 20 for a tight group of editors that
behave in a similar fashion. Higher n allows for more diverse samples to contribute to status, and while
the overall resolution of both discovery strategies is smaller, it provides better results. Figures 19 and
20 show that the status values have the higher resolution. They also show that n = 100 of breadth-first
and random sampling spanning trees achieves similar separation results in nominee outcome status as
n = 1000 trees.

What is the guiding principle for larger graphs? We have tested the method on a larger signed graph
for Slashdot, and n = 1000 seems to be a good sampling rate for breadth-first spanning tree sampling, as
illustrated in Figure 25.

6.1.3 Experiment: Outcome Analysis

Measures of status and influence can be used to access the outcome for a vertex in an attitudinal graph.
Requests for adminship (RfA) is the process by which the Wikipedia community decides to promote
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Fig. 19: Status score distribution for random (top row) and breadth-first (bottom row) search tree sampling to number of
n sampled trees, n = 10, n = 100 and n = 1000 for editors and nominees for status.

nominees into administrators (Wikipedia, 2020). Here, we use RfA as the ratio of total votes for the
nominee overall votes. Election outcomes are colored by blue triangles representing candidates that won
the election and red circles representing candidates that lost the election. Nominee status is obtained by
users submitting their own requests for adminship or being nominated by editors.

The final outcome for Wikipedia is a complex process that involves majority voting (RfA in Figure 21
and a vetting process. In general, if the number of positive votes is under 65%, the nominee is rejected;
if the number of votes is over 75%, the nominee is selected. A vetting process and discussion determine
the final outcome. Burke proposed a model of the behavior of candidates for promotion to administrator
status in Wikipedia (Burke and Kraut, 2008). He analyzes multiple measurable features of the nominee
(strong edit history, varied experience, user interaction, helping with scores) and highlights similarities
and differences in the community’s stated criteria for promotion decisions to those criteria that actually
correlated with promotional success. In this experiment, we examine the use of status and influence scores
per vertex as vertex features. Status and influence do not consider any of Burke’s candidates’ features,
only their position in the signed graph. The relationship of status and influence to RfA is illustrated in
Figure 21.

Figure 21 shows that both status and influence are highly positively correlated with RfA, and all
measures are highly correlated to the outcome as well. A summary of aggregate findings is in Table 2.
Next, we study the nominees whose status and influence scores are different.

6.1.4 Experiment: Status/Influence Cone

We now analyze outcomes and RfA in a status-influence feature space. The vertices only appear under
x = y line in the graph, as shown in Figure 23 and Lemma 4.4. Editors, the black triangles in Figure 23
(left) have the higher status and influence as leaders in swaying opinions. In Figure 23 (right), we restrict
the analysis to nominees and color by outcome only: blue triangles are elected and red circles are rejected.
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Fig. 20: Influence score distribution for random (top row) and breadth-first (bottom row) search tree sampling to number
of N sampled trees, N = 10, N = 100 and N = 1000 for editors and nominees for influence.

Table 2: Measure distribution in Wiki adminship dataset for N = 1000 breadth-first spanning tree discovery:

Mean (St.Dev) Nominees Promoted Not Promoted

RfA 0.9476 (0.0742) 0.3055 (0.2826)
Status 0.6097 (0.2962) 0.8632 (0.0719) 0.4009 (0.2433)
Influence 0.4414 (0.2579) 0.6721 (0.0803) 0.2514 (0.1898)

Mean (St.Dev) All Editors

RfA 0.5958 (0.3852) N/A
Status 0.6693 (0.2564) 0.7041 (0.2226)
Influence 0.5178 (0.2823) 0.5624 (0.2864)

Significant separation between the elected and rejected nominees is apparent. Note they are further away
from the 45○ line representing the most influential users, which are almost exclusively editors.

Next, we analyze RfA values in the status-influence space in Figure 24. The left graph shows continu-
ous scores, while the right one uses the Wikipedia admin score scale. Here, we flag spam users, privileged
users, narrow domain users and all anomalies by examining red circle distribution, the RfA in [65,75)%
over status-influence graph in Figure 24 (right).

Our algorithm for Wikipedia adminship uncovered several interesting cases. Wiki ID 80-man had a
status of 0.919, an influence of 0.622, and lost the elections. The user primarily edited a lot of music
pages, and was deemed “not ready” for adminship yet based on other criteria. Wiki ID bozmo had a
status of 0.405, an influence of 0.277362637, and won the elections. He self-nominated after around 3
years of contributions, and he received a fair amount of opposition due to being less active around the
time of nomination. It is unclear why he won. Wiki ID tjstrf had a status of 0.905, an influence of 0.649,
and lost. Due to some discussion of sensitive topics, he rejected the promotion. Wiki ID dmn had a status
of 0.448, an influence of 0.279753623, and won the election. Further research showed they have been on
Wikipedia for over 16 years, made regular edit contributions for a year, and have a history of conflicts
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Fig. 21: Wikipedia data analysis of the request for adminship (RfA) (Wikipedia, 2020). Blue triangles are users that won
the election, and red circles are users that lost the election.

Fig. 22: Wikipedia data analysis of (left) status vs RfA and (right) influence vs RfA

and controversial comments. All four cases show that our algorithm uncovered atypical promotion or lack
thereof, even if RfA was within guiding limits. The Wikipedia administrator election outcome analysis
using the graphB approach allows for a fast, objective snapshot of the outcome, as it allows users to flag
nominees whose outcome is not in balance with the rest of the attitudinal network. If the outcome is
known, as it is in Wikipedia adminship, graphB is used to flag unexpected outcomes for editor review.

6.2 Slashdot Zoo

Slashdot Zoo is a signed social network with 82,144 users (vertices) and 549,202 edges; 77.4% edges are
positive (Leskovec and Krev, 2014). Edge direction and weight annotates that the origin user tagged the
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Fig. 23: Wikipedia data analysis of the voting process from status vs. influence perspective: (left) editors (black triangles)
vs. nominees (yellow circles); (right) by Wikipedia nominee outcome: blue triangles are elected, red circles are rejected.

Fig. 24: Wikipedia data analysis of the voting process from status vs. influence perspective. Left: RfA score for nominees
ramped from yellow to blue (light-to-dark). Right: Binned by < .65% in yellow, [.65, .75) red, and [.75,1] blue.

target user as a friend (weight +1) or foe (target -1) (Leskovec and Krev, 2014). The largest connected
component of this data contains 82,052 (99.89%) users. The type of analysis presented in Section 6.1
can be expanded to any attitudinal dataset in light of status and influence, with or without the outcome.
There is no outcome for Slashdot Zoo data.

We construct the attitudinal graph from the friend-foe relationships and analyze the status and
influence of users. Results are presented in Figures 25 and 26, with the frustration cloud and n = 1000
breadth-first balance tree discovery. In the Slashdot analysis, we consider vertex degree and remove
normalization from Defn. 4.4 to analyze cumulative influence. Figure 25 shows the density distribution
of the status and cumulative influence over the entire network. The second image in Figure 25 clearly
shows higher influence for early adopters of the network.

Figure 26 illustrates Lemma 4.4 for the influence and status relation. The vertices on the slope
status = influence line are a single pendant vertex whose edge is positive (RfA is one, degree is 1);
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Fig. 25: Slashdot friend-foe network analysis using frustration cloud approach and N = 1000 breadth-first spanning trees:
status density and influence density.

the slope influence = 0 line is a single pendant vertex whose edge is negative (RfA is 0, degree is 1);
the influence is always smaller than the status value by Defn. 4.2 and Defn. 4.4. The angular outliers
corresponding to single-decision outcomes (positive slope 1, and negative slope 0) and the radial outliers
are the most/least influential nodes in the network. This influence-status cone analysis allows us to
analyze the measurements as a function of node degree. See Figure 26 colored by node degree. The users
with high node degree, overwhelmingly positive votes, mid-range influence, and high status are excellent
moderator candidates in this set.

Fig. 26: Slashdot friend-foe network analysis using the frustration cloud approach and N = 1000 breadth-first spanning
trees: influence vs. status by RfA, and influence vs. status by log vertex degree.
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6.2.1 Scaling graphB Implementation to Large Signed Graphs

The overall complexity of the implemented graphB algorithm (https ∶ //github.com/DataLab12/graphB)
is O(n ⋅ v ⋅ e) for run time and O(v2) for memory consumption, where n is number of spanning trees, v
is number of vertices, and e is number of edges. The Slashdot dataset (Leskovec and Krev, 2014) is the
largest dataset we have processed to date with over 82,000 vertices. The memory requirement to keep
and process O(v2) matrices required us to upgrade to high memory nodes on HPC (LEAP, 2020) to run
the code for Slashdot data.

Scaling bottleneck in our graphB implementation (Tešić et al., 2020) was the tree discovering and
tree balancing step with O(n ⋅v ⋅e) complexity. The number of discovered cycles is linear with the number
of edges and vertices, and the time to balance a graph per spanning tree became prohibitively high. We
have implemented Apache Spark parallelization for finding spanning trees and fundamental cycles (as the
process is independent for each spanning tree) to utilize the computing cluster and overcome computing
issues. The released graphB code (Tešić et al., 2020) allows the user to measure the timing of each step,
and with Apache Spark parallelization we have achieved speedup of 22.3 times, as shown in Figure 27.

Fig. 27: Timing of balancing graphs using 20 spanning trees and Slashdot data on LEAP cluster.

6.3 Highland Tribes

The frustration cloud-based approach allows for a more robust way to analyze the perceived outcome in
an attitudinal network graph, as it is based on the mathematical sociology model for a balanced system.
The Highland Tribes datasets captures the alliance structure of a network of tribes in the Eastern
Central Highlands of New Guinea (Read, 1954). The network contains sixteen tribes (vertices), and the
edges represent agreement (“rova”) or animosity (“hina”) between two tribes, as illustrated in Figure 28
with solid lines for agreement and dashed lines for animosity. Read’s ethnography portrayed an alliance
structure among three tribal groups containing balance as a special case, as the enemy of an enemy can
be either a friend or an enemy (Hage and Harary, 1983). There are 16 vertices (tribes) and 58 signed
edges (tribe relations): 29 positive (sign +1) and 29 negative (sign -1). The signed graph Σ for the
Highland tribes dataset is constructed by adding the two provided matrices.

6.3.1 Experiment: Vertical Status

The Highland Tribes graph has 402,506,278,163 spanning trees, and we sample 1000 spanning trees
using the breadth-first approach for this experiment. Highland Tribes relations in Figure 28 separate
two groups of tribes. The gray shade and size of the vertex circle correspond to the computed status
per Defn. 4.2 and Defn. 4.6 vertices 0, 1, 14, and 15 form a smaller group, and it is reflected in the
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Fig. 28: Highland Tribe Status computation for breadth-first sampled 1000 trees: solid circles are tribes, solid lines are
agreeable relations, dashed lines are antagonistic relations between two tribes, the size of the vertex circle illustrates
computed status for that circle.

lowest status scores for those 4 vertices and lower overall status. This agrees with the spectral clustering
analysis in Section 6.3.2. We also examine the Conservation Law of Controversy from Section 4.3 by
examining tie-break rule changes and calculating the status of the vertices: one for vertex 0, which has
minimum status, and one for vertex 6, which has maximum status. These new status values represent
the hypothetical maximum that vertex 0 or vertex 6 may achieve. The corresponding temperature graph
shows how the vertical status maximizes status for the selected vertex and connected vertices in Figure 29.
Figure 29 (left) illustrates the change in status when the tie-break node is from the smaller cluster. While
the status of all 4 nodes in that community grows significantly at the expense of the reduced status of
vertices in the majority group, Figure 28 (right) illustrates the maximization of the status in the majority
group if vertex 6 is selected as a tie breaker.

Figure 30 illustrates the status difference per vertex ID for each of status6, status0, and status. The
solid black line demonstrates the Conservation Law, as controversy for the Highland graph is constant at
10/16. Also, the status/influence correlation for the Highland dataset has an R2 = 0.81. This may indicate
an isolated system, as demonstrated in Figures 15 and 17 on the Wikipedia dataset — the correlation
between status and influence is high when restricted to just the nominees. This means there is no tribe
outside of the system acting in a supervisory role.

6.3.2 Experiment: Signed Spectral Clustering vs. Frustration Cloud

Figure 30 shows influence as a function of vertex ID, and the same 4 nodes have the lowest computed
influence under each tie-break scenario. An interesting observation on nodes 4, 6, and 7 is that they all
have high status; the influence of vertex 4 (Nagam tribe) is less than its status in the network, and the
influence of vertices 6 and 7 (Masil and Ukudz tribes) is higher than their status in the network. graphB
analysis provides a simple, unbiased view into Highland data and flags 3 out of 16 tribes to be re-examined
more deeply by anthropology experts. The clusters in Figure 31 are calculated only using positive edge
spectral clustering to detect nearly-connected non-adversarial relationships. We demonstrate that status
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Fig. 29: Highland Tribe Verticial Status computation for breadth-first sampled 1000 trees. Left: Vertex 0 breaks ties; Right:
Vertex 6 breaks ties. Blue circles represent an increased status and red squares represent a decreased status relative to the
original status.

Fig. 30: Left: The status of each vertex for no-tie-break (red circle), vertex 0 breaks ties (green triangle), and vertex 6
breaks ties (blue square). Tie-break vertices are outlined with an open triangle. Right: Highland Tribes status/influence
correlation for no 0 tiebreak.

is a spectrum of spectral clustering, as anticipated in Section 5. The circled blue cluster is the same as the
low status group we originally identified. The inclusion of the negative edge information for meaningful
signed spectral clustering must be examined (Kunegis et al., 2010), especially in highly adversarial
networks. For a dataset like Highland, signed spectral clustering (Kunegis et al., 2010) produces the
same result for k = 2 and k = 3, as illustrated in Figure 32.

Figure 32 marks vertices by cluster belongings (color and shape) in status/influence space. Clusters
are computed using signed spectral clustering implementation, and it is clear that status and influence
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Fig. 31: Spectral clustering of Highland Tribes data using positive edges for k = 2 and k = 3;

capture spectrum of spectral clustering, as illustrated in Figure 32. This experiment indicates that the
robustness of our status/influence model means we do not need the matrix or the eigenvalues to cluster
vertices. Moreover, here is no need to specify k for spectral clustering, as the status/influence cone groups
nodes in 2-D space. A study on more degenerate, adversarial networks is necessary to determine if status
can provide insight into networks where spectral clustering fails.

Fig. 32: Signed spectral clustering (Kunegis et al., 2010) using symmetric Laplacian results for Highland Tribes data for
k = 2 and k = 3 in status/influence space demonstrate correspondence of radial distance in status/influence space to
clustering. Each clusters is represented with a different shape/color.
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7 Conclusion and Future Work

In this paper, we propose consensus-based quantification of the vertices and edges in a graph. Nearest
balanced states of a given network model attitudinal strength and influence in the network through
various measures of a network’s ability to reach a balanced state with a minimal number of edge sign
changes. We introduce the concept of ”frustration cloud” and vertex scores that capture vertex relation
to the nearest balanced state of the network. The frustration cloud replaces the necessity of determining
a balanced state with the least number of sentiment changes by determining a set of nearest states with
minimal sentiment disruption. This also trades the NP-hardness of the frustration index for determining
fundamental cycles and spanning trees.

We introduce new metrics that quantify the importance of each balanced state relative to the likeli-
hood it will be become the consensus state. The tree-search methods are shown to provide resolution to
the data, while the quality of the resolution appears to be indistinguishable beyond n = 1000 spanning
trees, as seen in Figures 19 and 20. The measures of vertex status and influence both demonstrate differ-
ences in power dynamics when they are not correlated, as seen in Figure 15 and Figure 17. These vertex
scores provide an alternative to examine existing promotional practices, as indicated in Figure 21, and
flag anomalous users.

The status/influence cone provides a view of fairness and power for the data as shown in Figure 23.
The social network at scale produces a different shaped status/influence cone in Figure 26 that indicates
a large separation of power as status remains relatively constant when compared to influence. The
smaller dataset of Highland Tribes demonstrates quickly reproducible results for the Conservation Law
of Controversy (average status is constant regardless of tie-break node) in Figure 30, as well as the
efficacy of our proposed method for spectral clustering in Figure 32.

Consensus modeling has gained traction as a way to model agreement in multi-agent networks in
the presence of antagonistic interactions (Altafini, 2013, She et al., 2020). We plan to apply proposed
balancing theory to a multi-agent network agreement to see if we can identify and tune existing policies
and detect biased agents (AI modules) in the network. Future research will also focus on comparison
of proposed approach to signed and weighted sign graph spectral clustering (Aref et al., 2016, Mercado
, 2019). We are developing metrics to measure the strength of vertex and edge interactions, a measure
that utilizes known promotional outcomes to detect and quantify bias for the majority/minority, and a
toolkit for deeper analysis of the proposed metrics.
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