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Abstract—We present an end-to-end machine learning
pipeline for aggregating, analyzing, and modeling National
COVID Cohort Collaborative (N3C) data on the Enclave system
as part of the NIH Long COVID Computational Challenge
(L3C). The challenge’s goal is to determine the probability
of patients who have tested positive for SARS-CoV-2 in an
outpatient or hospital setting (ICU or non-ICU) developing
PASC/Long COVID. To achieve this, we have utilized state-
of-the-art machine learning algorithms to process millions of
clinical observations and identify the most impactful attributes
that support accurate prediction modeling. The pipeline is
optimized for deployment on N3C Enclave and aims to inform
clinical decisions for managing and preventing PASC/Long
COVID by identifying the most relevant factors. The study
implements four state-of-the-art machine learning methods in
PySpark on the Enclave for processing noisy tabular data and
a novel robust cascaded fusion model. Results show improved
modeling performance for high noise levels in clinical data
sources and the highest number of true positives and the lowest
number of true negatives for the cascaded model. Multiple
conditions, observations, and drugs relevant to Long COVID
diagnoses and treatment were also identified.

Index Terms—gradient boosting, predictive modeling, noisy
data

I. INTRODUCTION

Since the first appearance of acute Coronavirus disease
(COVID-19), millions of deaths have occurred. Significant
advances have been made in identifying and treating this
disease; however, our understanding of the disease has only
begun. Scientists have found that in some cases, patients ex-
perience post-acute sequelae of SARS-CoV-2 infection (Long
COVID, PASC, post-COVID-19 condition), which appears as
lasting or new symptoms four weeks before or after being
diagnosed with COVID-19. The current definition of Long
COVID needs to be clarified due to the need for a greater
understanding of the disease. Long COVID is currently re-
ported to have heterogeneous signs and symptoms that can
make identifying the most important one difficult; many of
these symptoms can appear in other diseases and conditions.
Understanding the different conditions or combinations that
can lead to Long COVID will allow scientists to develop
specific treatments. Patients with autoimmune disorders have
shown significant differences in the symptoms they experi-
ence; [1] The severity of this disease is drastic for some
groups. In this study, we participated in the Long COVID
Computational Challenge hosted by the National COVID

Cohort Collaborative in the Enclave system (N3C), a National
Institute of Health (NIH) National Center for Advancing
Translational Sciences (NCATS). In the N3C system, we
have access to patient information provided by 75 healthcare
centers and 49/50 states in the United States. Data from this
challenge represent 15 million patients, including 5.8 million
cases of COVID positive and more than 17.5 rows of data.
[?].

This study compares and contrasts the multi-step statistical
learning pipeline with multiple state-of-the-art decision tree
modeling algorithms, including boost and bagging. We used
cross-entropy to compare these methods using clinical char-
acteristics selected from demographic, drugs, conditions, and
observation information provided by N3C.

Our initial data cleaning, data integration, and data analysis
reveal that the nature of the N3C data is typical tabular
data from multiple heterogeneous sources. Tabular data in the
wild are difficult to model due to the uneven distribution of
attributes, missing, overlapping, noisy values, and a mix of
categorical and numerical data attributes. We have already
shown that the intentional data science pipeline can auto-
matically uncover important attributes, reduce feature space,
and model prediction in a robust manner from multi-source
tabular data in [2]. We have also shown the effect of socio-
demographics on COVID mortality and the importance of
their interactions [3].

II. RELATED WORK

Machine Learning The most popular Machine Learn-
ing techniques (logistic regression, support vector machines,
Bayesian belief network, decision trees, and neural network)
for data in the wild generally offer an excellent classification
accuracy above 70% for simple classification tasks [4]. From a
data science perspective, the modeling approaches evaluated
need to be narrower in scope, and feature engineering al-
most guarantees poor domain/data translation results. Recent
findings show that state of the art in machine learning in
tabular data outperforms existing approaches and is not as
sensitive to input bias and noise as DNN [5]. State-of-the-
art gradient boosted decision trees (GBDT) models such
as XGBoost [?], LightGBM [6], and CatBoost [7] are the
most popular models of choice when it comes to tabular
data. In recent years, deep-pipeline learning models have



emerged as state-of-the-art techniques on tabular data. TabNet
[8], DNF-Net [9], and Neural Obvious Decision Ensembles
(NODE) [10]. There is no consensus that deep learning
exceeds GBDT in tabular data because standard benchmarks
have been absent and open source implementations need to
be improved [11], [12]. Recent studies provide competitive
examples that compare deep learning models and GBDT in
multiple tabular data sets [11], [13], [14]; however, all these
benchmarks indicate that there is no dominant winner and
GBDT models still outperform deep learning in general. It
has been shown that the intentional data science pipeline
automatically uncovers important attributes, reduces feature
space, and models robustly real tabular data, as demonstrated
in [2].

Data Science for Health In a similar study conducted in
March 2022 by various institutions, the N3C system con-
tained 2,909,292 patients and 5,645 patients diagnosed with
COVID of Long, following the U09.9 code. This provided
data set was found and further confirmed that a steeper risk
gradient for Long COVID increases depends on the severity
of COVID-19 infection [15]. Multi-source clinical tabular
data are increasingly challenging to tackle on large scales,
and Long COVID data are constantly expanding. This is
seen in a study conducted by the N3C Consortium in June
2022. At that time, the data consisted of 1,793,604 patients
and 97,995 patients diagnosed with Long COVID, following
the U09.9 code. Similarly to the March study, age and sex
resulted in high feature importance scores. [16] However, in
this study, they developed three XGBoost machine learning
models compared to adapting The Phenomizer, which is a web
application that generates ”a list of clinical characteristics that
are most specific for individual diagnoses in a set of selected
syndromes and can use this list to guide the further study”
[17].

III. N3C LONG COVID COMPUTATIONAL CHALLENGE
(L3C)

Considering the underlying heterogeneity of symptoms
in Long COVID and the impact of COVID-19 disease on
and predicted by NCATS, NCATS scientists developed the
Long COVID Computational Challenge (L3C). The challenge
objective was to create ”AI/ML models and algorithms that
serve as open source tools or use structured medical records
to identify which patients infected with SARS-CoV-2 have a
high probability of developing PASC / Long COVID” [18].
The challenge started in August and lasted five months. We
were assigned to develop, train, and test machine learning
algorithms to better understand susceptibility and the proba-
bility of developing Long COVID in patients with COVID-19
disease. The challenge question we are trying to answer in
this work is: ”Of patients who have tested positive for SARS-
CoV-2 in an outpatient or hospital setting (ICU or non-ICU),
what is the probability of developing PASC/Long COVID?”
[18].

Some patients in these records have been identified with
the U09.9 code of Diagnoses with Long COVID; others
could have undiagnosed Long COVID. The N3C Enclave
uses the standard data model of the observational medical
outcomes partnership (OMOP) (version 5.3) used in various
health centers. OMOP models facilitate the understanding of
relevant factors and serve as central identity management for
all patients in the database [19]. This allows a centralized vo-
cabulary to be used throughout organizations. Observational
Health Data Science and Informatics (OHDSI) has created an
open source web application, Athena [20], which facilitates
the interpretation of the OMOP common model. Currently,
health professionals have classified 30 standards concept id’s
that are relevant to ”post-acute COVID-19” [21].

TABLE I
L3C CHALLENGE TRAINING AND TESTING DATA FRAME SOURCES AND

PERCENTAGE OF MISSING DATA. WE HAVE USED THE BOLDED DATA
SOURCES.

Data Set Rows X Columns (% missing values)
Test Train

care site 8,367 x 8 (66) 26 x 8 (1)
condition era 2,484,521 x 8 (0) 13,639 x 8 0
condition occurrence 6,316,765 x 21 (37) 36,451 x 21 (35)
condition to macro 1,286,673 x 8 (6) 8,388 x 8 (5
device exposure 422,167 x 19 (44) 2,836 x 19 (45)
drug era 2,090,455 x 9 (0) 12,698 x 9 (0)
drug exposure 13,611,559 x 28 (42) 66,050 x 28 (39)
location 25,142 x 9 (57) 281 x 9 (60)
long COVID 57,675 x 2 (13) 300 x 2 (0)
manifest safe 69 x 6 (23) 300 x 13 (23)
measure 32,569,723 x 29 (33) 198,151 x 30 (33)
measure to macro 17,839,906 x 8 (0) 112,243 x 8 (2)
micro to macro 3,524,398 x 28 (54) 19,430 x 26 (54)
note 321,151 x 19 (59) 2,710 x 19 (66)
note nlp 7,580,262 x 21 (38) 60,486 x 21 (45)
observation 6,869,266 x 25 (49) 43,355 x 25 (43)
observation period 45,404 x 7 (0) 234 x 7 (0)
payer plan period 1,370,746 x 26 (69) 6,029 x 26 (69)
person 57,672 x 26 (29) 300 x 26 (28)
procedure occurrence 278,981 x 19 (22) 14,645 x 19 (23)
procedures to macro 991,579 x 8 (5) 5,247 x 8 (5)
provider 31,664 x 18 (51) 477 x 18 (56)
visit occurrence 350,934 x 23 (49) 19,411 x 23 (49)

A. N3C requirements

N3C guidelines follow privacy regulations to ensure patient
anonymity. Organizations are required to sign a Data Use
Agreement (DUA) with N3C, and depending on the level of
deidentified clinical data, participants may be required to have
Institutional Review Board (IRB) approval. Next, all team
participants must register, join N3C and complete the data
security training. Finally, to participate in the challenge, each
participant in the group must submit a request for access to
a project workspace and the challenge. The processing time
of the requirements caused delays in development for our
team. Challenge data consist of COVID-19 patients’ cases and
include their demographics, medical conditions, medications
prescribed, consultation observations, procedures, laboratory
tests, physical measurements, and more. In N3C, there are



three levels of deidentified data; for the challenge, we were
granted access to level two data; this means that the dates are
algorithmically shifted, patient ZIP codes are limited to three
digits or removed if there are fewer than 20,000 individuals, or
the location represents tribal land. The challenge has provided
a set of Censored Training and Censored Test sets in which
we have 23 data sets in both sets, as described in Table I. In
this work, we refer to sets as training and testing sets. The
dates of the censored set range from the COVID index date
to four weeks after exposure. More details on data analysis
and aggregation are provided in Section IV.

Fig. 1. Top 20 conditions, drugs, and procedures used in the Early Fusion
frame and the average frequency of the record per patient.

IV. L3C DATA SOURCE AGGREGATION TO DATA FRAMES

Our base population is defined as patients with a history of
a COVID-19 Diagnoses code or positive post-acute sequelae
of SARS-CoV-2 PCR or antigen test. Long COVID Silver
Standard information provided for the challenge contains the
2 columns in a Long COVID frame described in Table I,
person id and covid index. The label provided for the training

Fig. 2. Distribution over aggregated gender, race, ethnicity, and age group
categories in the Demographics data frame

data is the pasc after four weeks column is a binary label on
who has tested positive again with COVID-19, and of 57,672
patients, of which 9,031 patients were recorded as testing
positive for Long COVID after four weeks after infection. We
use this column as the prediction label in Section VII to train
our models. Next, we describe in detail how we have used and
aggregated the information available in the bolded data frames
in Table I to produce Table IV data frames. The training set
includes 57,672 patient records and 11,446 patients diagnosed
with Long COVID before or after four weeks of the COVID
index. Since 2,415 records were taken four weeks before the
COVID index, we excluded these and used 9,031 to determine
prognostic factors leading to diagnoses. All final data frames
used in the analysis are listed in IV.

The Early Fusion data frame is our baseline data
frame. It was created from the data sources Long COVID
Silver Standard, condition occurrence, drug era, proce-
dure occurrence, described in Table I. The Early Fusion data
set uses the original person id as an index and covid index
is used to derive the numerical age column as the differ-
ence between the record date (computed as covid index OR
year of death OR 2021) and year of birth. The column of
the year of birth data set has 2,065 missing values and
is age 90 or older has 1,330 missing values. To fill the
missing year of birth values we decided if a patient was
recorded as older than 90 years, they were assigned as 1932
since it would be the minimum value possible (2021-89) as
their year of birth. We then predict the following missing
year of birth values using Ordinary Least Squares regression
on gender concept name, race concept name from person
data sets and the Long COVID Diagnoses binary training
label. All gender source value entries are aggregated into
3 binary categories, and all race concept name into 10
different categories. In total, three attributes were integrated
year of birth, gender source value, and race concept name



related to the demographics of the patient. Twenty attributes
were integrated for each of the conditions, drugs and pro-
cedures selected based on the evaluation of the amount of
information each attribute has on the uncertainty of the Long
COVID label through Lindley entropy [22]. The distribution
of the 60 conditions, procedures, and drugs for the Early
Fusion data frame is illustrated in Figure 1.

Fig. 3. The most frequent conditions per patient in the training data set (left)
and their average duration (right).

The data frame Demographics aggregates the information
provided in the person data set, described in Table I. The
aggregated three columns of gender concept name and one
column for age are the same as in the Early Fusion data frame.
Next, we aggregated 22 different race concept name and 7
different ethnicity concept name into eight different racial
binary columns, as illustrated in Figure 2. We also use the
age column to create seven additional binary columns for the
classification of age groups: infant (less than 2), toddler (more
than 2 and less than 4), adolescent (more than 4 and less than
14), young adult (more than 14 and less than 30), adult (more
than 30 and less than 50), older adult (greater than 50 and
less than 90) and elderly when is age 90 or older is true.
The Demographics data frame has 22 attributes: person id,
age, seven binary age groups, three binary gender, and 11
binary race and ethnicity attributes, and Figure 2 illustrates
the distribution of the attributes in the training set.

Conditions per patient and their occurrence and duration
records were obtained from condition occurrence, condi-
tion era, and condition to macrovisits (see Table I) result-
ing in aggregated 38,044 patient records with at least one
condition in the training set, and 200 of 300 patients in the
test set. Each patient had at least one condition out of 14,764
unique conditions, lasting from 1 to 409 days. We selected 96
unique conditions from the set of 14,764 as the intersection of
unique conditions in 3 sets: (1) 30 conditions previously found
to be related to secondary symptoms of COVID-19 [21]; (2)
20 conditions from the Early Fusion set; and (3) 66 most
distinct (not trivial) frequent conditions in the training set
associated with the second COVID label of the patient. These
96 unique conditions were aggregated into 24 total attributes,
for example, all attributes containing the phrase ’brain injury’

Fig. 4. The most frequent observations per patient in the training data set
(left) and their average duration (right).

are integrated into one column, and the distribution of the
conditions and their cumulative time per patient is illustrated
in Figure 3. Two data frames were created: the Condition
data frame, whose entries capture the cumulative duration
(days) for the patient (row) who experienced the condition
(column), and the ConditionsB data frame captures the binary
relationship between the patient and the condition: 1 if the
patient experienced the condition, 0 if they did not).

Observation records are aggregated from two data sources:
observation period and observation (Table I), and the records
were recovered for 38,340 patients in the training set and
208 in the test set (Table IV) for 2,744 unique observations.
Each observation can last from 1 to a ’long-term stay’ in
the hospital, and multiple observations can be observed in
a single patient as illustrated in Figure 4. For this feature
selection, we consider the 34 observations we found to be
most frequent in the patients in training set diagnosed with
second COVID. Then, we aggregate the observations by
common keyword into 34 groups, as illustrated in Figure 4.
Finally, two numerical data frames were created: Observation
captures the cumulative duration (days) the patient (row) has
the observation (column) in their record, and ObservationB
captures the binary relation between patient and the observa-
tion (1 if the patient has the recorded observation, 0 if they
did not).

Fig. 5. Most frequent drugs per unique patient in the training data set (left)
and their average duration (right).

Drugs drug era and drug exposure data sources, described
in Table I. We integrated records for 35,872 patients and



14,159 unique drug values and aggregated the drug values
along 23 drug indices about those most frequently prescribed
for patients. We integrated all those records that can be
observed in a single patient as illustrated in Figure 5. Note two
data frames were created: Drugs-prepare captures the binary
relation between the patient and the drug (1 if the patient
was taking the drug, 0 if they were not) and Drugs-prepare1
captures the cumulative duration (days) the patient (row) was
taking the drug (column). The drugs data frame was integrated
into the diagnoses data frame and the models were not run
on drugs. The Diagnoses integrates the 22 Demographics, 24
Conditions, and 18 Drug attributes per 38,340 patients in the
training set and 200 in the test set (Table IV). Note two data
frames were created: DiagnosesB cell value is 1 if the patient
(row) ever had the Diagnoses (column), 0 if they never not,
and Diagnoses frame numerical cell captures the cumulative
duration in days that the patient (row) had the Diagnoses
(column).

TABLE II
AGGREGATED DATA FRAMES PER PATIENT (57,672 PATIENTS IN TEST

AND 300 PATIENTS IN TRAINING), AND THE FINAL COLUMN DIMENSION.

Data Frame Unique patient record Attribute
Train Test Count

Early Fusion 57,562 300 64
Demographics 57,562 300 22
Conditions 38,044 200 24
ConditionsB 38,044 200 24
Observations 38,340 208 32
ObservationsB 38,340 208 32
Diagnoses 33,899 200 64
DiagnosesB 33,899 200 64

V. DATA MODELING

In this section we introduce four modeling strategies for the
challenge: statistical multi-step logistical regression, random
forests, decision trees, and gradient boosting.

A. Multi-Step Logistical Regression

We used three additional data frames for logistic regression
modeling: conditions, drugs, and procedures. These involve
the patient’s history of diagnosed conditions, prescribed
drugs, and procedures performed. In the first stage of logistic
regression, we fit all the characteristics of the model, gen-
der source value, is age 90 or older, race concept name,
age and the top 20 characteristics selected from conditions,
drugs, and procedures. The second step uses the first logistic
regression model as a starting point. It performs a step-wise
search method to eliminate variables that do not improve
the Bayesian Information Criterion (BIC) [23]. We used
the remainder of the identified features in a second-stage
logistic regression model search that involves interactions
between these features. The threshold probability for the
binary outcomes was simulated for various values and 0.3 was
chosen because it subjectively provided the best trade-off be-
tween accuracy, sensitivity, and precision. Next, the selected
model is used as a base, and we test possible interactions

between these features through a step-wise regression using
Bayesian information criterion (BIC) [23]. The final model
used 64 features with 35 identified interactions. The Akaike
information criterion (AIC) decreases from 44737 to 43640
from the second to third logistic regression, which makes up
for the loss in degrees of freedom. Logistic regression with
interactions takes approximately 17 hours, and Table III has
information on the evaluation of Model 3 on the training
dataset, a third stage of the pipeline with a cutoff point of
the probability of 0.3.

B. Decision Tree Models

Decision Tree Modeling of the L3C data Decision Trees
are an easily understood classification approach that closely
mirrors human decision-making, they can represent data
graphically and are easily interpreted even by a non-expert.
Decision trees also handle categorical variables well, and
their performance can be improved using ensemble modeling.
Taking into considering that a single decision tree improves
predictions for a particular data set but poorly for others
we implement. They are slower to build and are difficult to
interpret at this. Four parameters can be tuned in this model:
the depth of the trees, the minimum number of instances
required per node, the minimum information gain, and the
impurity.

C. Random Forests Models

A Random Forests model is made up of multiple decision
trees and is an extension of the bagging method. Using a
random selection of decision trees ensures low correlation
since the models perform better as a group rather than alone.
A single decision tree is likely to produce errors but by
selecting the most common predictions we are able to reduce
the risk of over-fitting and determine feature importance.
Random Forest can also handle estimating missing data. The
algorithm is made up of a set of trees, which each ensemble
has a data sample from the training set called the bootstrap
sample. This is trained using bootstrap aggregation (bagging),
which conducts row and feature sampling from the data for
the data frames for the model. Random Forest models show
the different tree combinations that are seen with only small
changes in the data and features. Considering the Enclave
system limitations in scaling by using a random forest model
we can benefit from their ability to handle large data bases
without variable deletion. Two parameters can be tuned in
this model: the number of trees and the number of features
per node.

D. Gradient Boosting Models

In comparison, Gradient Boosting provides an explainable
ensemble of relatively small trees that sequentially model the
error, and offer an easy way to retrieve importance scores for
each attribute. The decision trees are build one after another,
Gradient boosting approaches handle tricky observations well
and are optimized for faster and more efficient fitting using
a data sparsity-aware histogram-based algorithm. Next, we



constrain the tree structures to reduce the growth of complex
and longer trees by optimizing parameters such as the number
of trees, the depth of trees, and the number of leaves per
tree. The more an attribute is used to make key decisions
with decision trees, the higher its relative importance.Three
parameters can be tuned in this model: the number of trees,
the depth of trees and learning rate. The difference between a
Random Forest and Gradient Boosting model lies in how the
ensemble of trees are trained, RF trains each tree individually
while in GB each tree helps the previously trained trees
errors. These models were tested with different parameters
and the best performing hyper-parameters can be seen in
Section VII-C.

E. Late Fusion Cascade Modeling

Algorithm 1: Cascade Model Fusion
Data: Set of models Mk, k ∈ 0, 2, ..K − 1(Tab. VII)
Data: Set of patients P , pi ∈ i ∈ 1, ...N
Result: Tuple (L,P ) where L is a label set for P

1 k=0; P0 = P , L = ∅ ;
2 while k < N OR all |Pk| = 0 do
3 Apply model Mk to all N patients ;
4 Lk is set of patient labels that have coverage in

the model Mk ;
5 Pk+1 = P \ Pk ;
6 L = L ∪ Lk ;
7 k++;
8 end

In this section we propose a cascade fusion of different data
models based on their effectiveness and on the coverage. N3C
data is clinical data, and we do not have the data on every
patient in every frame. We only have the information for every
patient in the training and test set in the Demographics data
frame, see Table IV. To mitigate for the varying degree of
data coverage we propose the late fusion cascade model. First,
we rank all the available models in terms of their effectiveness
on the training dataset, and assign ranking in order as M1 the
most effective, M2 right after, and so on. Next, we evaluate
the model in the ranking order on the target dataset. For each
patient int he dataset we assign the label of the model with
the highest ranking that covers that patient data in one of
the data frames. Thus, we guarantee that the best model gets
the largest coverage, but also that every patient in the dataset
has a prediction label. The algorithm is detailed in Alg. 1.
The approach is evaluated in Section VII-C after we rank the
models on the training dataset in Table VII.

VI. ATTRIBUTE IMPORTANCE ANALYSIS

The L3C data set is sparse and noisy, and over 10,000
unique identifier per frame makes it hard to evaluate the fea-
ture selection and aggregations approaches on Enclave. Thus,
we seek to validate the data aggregation approaches presented
in Section IV by applying eight different feature ranking
methods to Demographics (22 binary and one numerical
attribute), Conditions (24 binary attributes), Observations (32

numerical attributes) data frames, and Diagnoses (64 binary).
and designed in Section IV. Each proposed feature importance
method selects a subset of features based on minimum
redundancy and maximum relevancy: (1) Variance threshold
filtering removes attributes by eliminating all low-variance
attributes in the training set. (2) Lasso regularization of
logistic regression (penalty L1 term) shrinks the coefficients
by minimizing the loss function during training. (3) Random
Forest embedding has a built-in feature importance measured
by the Gini importance or mean decrease impurity. We
propose to set the 50th percentile threshold for the importance
of the attribute to include a relevant attribute in the final set.
(4) Random forest Recursive Feature Elimination (RFE) with
Random forest first fits the full set of attributes in our data set,
and we eliminate features with the smallest coefficients if they
deteriorate the 10-fold cross-validation score of the models
in the training data. (5) Recursive Feature Elimination (RFE)
with Ridge Regression eliminates features with the smallest
coefficients if they deteriorate the 10-fold cross-validation
score of the models in the training data. Permutation Feature
Importance(PFI) with (6) Random Forest method and with (7)
Ridge Regression methods replace the values of a feature with
redundant noise and measures the difference in the accuracy
score or other performance metrics between the baseline and
the permuted data set. The sequential Feature Selection (SFS)
model selects an optimal set of features by searching the
feature space of all combinations in a greedy manner. We
evaluated each subset of features that add one predictor at
a time forward based on the 5-fold cross-validation score
of the (8) Ridge regression regularization. We apply the
importance attribute rankings to separate frames captioning
demographics, conditions, observations and drugs, and to the
fused frame of demographics, conditions and drugs attributes,
the Diagnoses frame, and analyze the results in Section VII-D.

VII. EXPERIMENTS

A. Setup

In this section we report on the attribute importance and
modeling experiments using data frames described in Sec-
tion IV and outlined in Table IV. The training set includes
57,672 patient records where 9,031 patients have been diag-
nosed with Long COVID and 48,531 were not. We report
the effectiveness of the modeling using a confusion matrix
and derived information retrieval measures such as precision,
recall, F1, and accuracy measures [24]. We use the following
notations: TP-the number of patients who had Long COVID
in the set with the ground truth label that the model predicted
as positive; FP-the number of patients who did not have Long
COVID in the set with ground truth label that model predicted
as positive; FN-the number of patients who had Long COVID
in the set with ground truth label that the model predicted as
negative; and TN-the number of patients that did not have the
Long COVID in the set with ground truth label that model



predicted as negative, and precision P, recall R, F1 measure
and accuracy Acc, defined as:

P =
TP

TP + FP
,R =

TP

TP + FN
,F1 =

2 ∗ P ∗R
P +R

(1)

Acc =
TP + TN

TP + TN + FP + FN
(2)

If the model is evaluated on the entire training data set, the
following equations hold for the model evaluations TP + FN
= 9,032 and TN + FP = 48,531 in Table III and for the
Demographics and Early Fusion data frame in Table VII.
Precision (P) is defined as ’the probability that an object
is relevant given that it is returned by the system’ [25] and
recall (R) is defined as ’the probability that a relevant object
is returned’ [25]. We use F1-measure to combine our results
for precision and recall by taking the (weighted) average of
precision and recall. Acc is short for accuracy and is the
fraction of predictions our model correctly evaluated. Note
that training data is somewhat imbalanced with 9,032 patients
with the Long COVID Diagnoses and 48,351 patients with
no Long COVID Diagnoses. Thus, we do not use accuracy
as a measure to draw conclusions in the paper, as accuracy
emphasizes the trivial negative class.

Fig. 6. Precision (green) and Recall (blue) Scores for each of the three stages
of the logistic regression modeling on the entire data set.

B. Experiment: Statistical Modeling Baseline

TABLE III
STATISTICAL MODELING SCORES.

Model 3 Model 2 threshold selection) Model 1
0.30 0.10 0.20 0.30 0.40 0.50

TP 2031 8128 4516 2167 1174 722
FP 2967 28817 8765 2994 1378 723
FN 7000 903 4515 6864 7857 8009
TN 45564 20319 39776 45437 471533 47808
P 0.41 0.22 0.34 0.42 0.46 0.50
R 0.22 0.90 0.50 0.24 0.13 0.08
F1 0.29 0.36 0.41 0.31 0.20 0.14
Acc 0.25 0.50 0.77 0.83 0.84 0.84

The statistical model is a three-stage model trained and
tested using the attributes of the Early Fusion data frame. In
the first stage, Model 1 uses demographic information from
the Early fusion data frame to train the logistic regression

model and to identify 33 attribute interactions. The results of
the trained model on the entire training data set are outlined
in the Model 1 column in Table III. The next step uses
the Model 1 scores on the same attribute set and evaluates
the effectiveness of the performance with respect to cutoff
threshold at lower levels in Table III. We select 0.3 as logistic
regression classification threshold for assigning 1 and 0 labels
to the outcome. This results in the slight drop in precision
with the significant increase in the recall R , as illustrated in
Figure 6. The modeling result on Model 3 applies the findings
to the full set of 64 features. The L3C benchmark submission
is Model 3 coefficients applied to the testing data with 0.3
binary threshold. The model pipeline performance (from right
to left) is evaluated on entire data set and described in
Table III, and modeling comparison is illustrated in Figure 6.

Statistical modeling uncovers several interesting gender
relations in the training data set: (1) Even though the race
category is not statistically significant, it is chosen by the
Bayesian Information Criterion at the Long logistic regression
stage in Model 1; (2) Model 1 coefficient analysis shows
that females have a higher risk of Long COVID than males;
and (3) being of unknown gender has a rather different
coefficient estimate (-1.8) relative to being classified as male
(-0.21). The final model, Model 3, identifies 35 interactions
on the entire training data set, and the Akaike’s Information
Criterion decreases from 44,737 to 43,640 from Model 2
to Model 3 which makes up for the loss in degrees of
freedom. An African American man who is 40 years old has
a probability of 29.5% to get Long COVID whereas for a
female this increases to 31.32%. On the other hand, if gender
is unknown this probability for the same individual decreases
to 7%. This indicates an unobserved effect regarding this
value and a deeper investigation is necessary. The largest
coefficient that is effecting the log probability is the type of
life support system utilized: Extracorporeal Membrane Oxy-
genation (ECMO) and Extracorporeal Carbon Dioxide Re-
moval (ECLS) which increases the above mentioned female
acquiring Long COVID to 86%. If instead, this individual
utilizes omeprazole drug it amounts to a probability of 76%.
The ECMO is linked to cardiac failure, cardio-respiratory
failure, and respiratory failure conditions; the ECLS is linked
to CO2 retention conditions. [26]

Figure 6 and Table III compare all 3 models on the training
data set in terms of precision and recall. Model 3 includes
the full 64 attributes from Early Fusion data frame, and the
precision and recall stay comparable to Model 2 that includes
demographics data only in terms of precision, recall, and
F1 measure, while the accuracy significantly drops on the
account of the increased true and false positives in the model.

C. Experiment: Model Tuning, Selection and Fusion

In this experiment, we tune and train three families of
models, random forests, decision tree, and gradient boosting
on 80% held-out training data set for 7 frames. Decision
tree and gradient boosting hyper parameters tuned in the data



TABLE IV
DECISION TREE AND GRADIENT BOOSTING HYPERPARAMETERS PLUS
ALL MODELS’ IMPURITY IS ’ENTROPY’ AND MININFOGAIN IS 0.0. * -

MISSING VALUES FROM ENCLAVE.

Decision Tree Grad Boost
max min min sub

data frame Depth Instance Weight sampling
Demographics 10 10 0 0.3
Conditions 10 10 0 0.5
ConditionsB 10 5 0 0.5
ObservationsB 10 5 0 *
Observations 10 10 0 *
Diagnoses 5 1 0.1 *
DiagnosesB 5 1 0 *

TABLE V
RANDOM FOREST PARAMETER TUNING OUTCOMES FOR DATA FRAMES.

ALL DATA FRAMES SHARE THE FOLLOWING: MAXDEPTH IS 10,
MININSTANCE IS 10, MININFOGAIN IS 0.0, MINWEIGHT PER NODE IS

0.0 AND MAXITERATIONS IS 20.

Random Forest Hyper Parameters
max min sub

data frame Depth Impurity Instance sampling
Demographics 20 gini 1 0
Conditions 10 entropy 5 0
ConditionsB 10 entropy 5 0.3
ObservationsB 20 entropy 10 0
Observations 30 gini 10 0.3
Diagnoses 30 gini 1 0
DiagnosesB 10 gini 1 0

frames are listed in Table IV. For both models and all data
frames, the best impurity parameter is ’entropy’ and the best
minInfoGain is 0.0. The Random Forest parameters are in the
Table VII-C, and all data frames share the following tuning
parameters maxDepth is 10, minInstance is 10, minInfoGain
is 0.0, minWeight Per Node is 0.0 and maxIterations is 20.

Fig. 7. Precision, Recall and F1 comparisons for the Decision Tree Model,
Random Forest and Gradient Boosting Models

Next, we compare the performance of the model on the
20% of the training data set, and Table VI summarizes the
effectiveness of the three methods on seven data frames in
terms of precision P, recall R, and F1-measure. First, we
compare the Gradient Boosting of the Decision Tree with the
Decision Tree and Random Forest Modeling due to the time

Fig. 8. Recall for Random Forest Model, Random Forest and Gradient
Boosting Models

Fig. 9. F1 for Decision Tree Model, Random Forest and Gradient Boosting
Models

TABLE VI
EFFECTIVENESS OF THE THREE MODELS WITH TUNED

HYPER-PARAMETERS EVALUATED ON A HOLDOUT TRAINING SET FOR
SEVEN DATA FRAMES FOR DECISION TREE AND RANDOM FOREST AND

ON THREE DATA FRAMES FOR GRADIENT BOOSTING.

method Gradient Boosting Random Forest
data frame P R F1 P R F1
Demographics 0.792 0.845 0.78 0.869 0.845 0.78
Conditions 0.75 0.785 0.76 0.78 0.799 0.76
ConditionsB 0.75 0.785 0.75 0.77 0.793 0.76
method Decision Tree Random Forest

data frame P R F1 P R F1
Demographics 0.871 0.848 0.780 0.87 0.845 0.78
Conditions 0.77 0.794 0.76 0.78 0.799 0.76
ConditionsB 0.76 0.792 0.76 0.77 0.793 0.76
Observations 0.76 0.782 0.75 0.79 0.808 0.77
ObservationsB 0.76 0.781 0.75 0.77 0.793 0.75
Diagnoses 0.75 0.783 0.74 0.85 0.850 0.84
DiagnosesB 0.75 0.780 0.74 0.78 0.792 0.76

complexity of running the method on Enclave: the processes
never completed for the Gradient Boosting models on our
Observations and diagnoses data frames. Random Forest in
Table VI demonstrates the same or superior comparison
over Gradient Boosting for demographics and conditions data
frames. When we expand our analysis for Decision Trees
and seven data frames, Random Forest modeling shows a
consistently robust superior approach over Decision Trees.
Thus, we select Random Forests as our final modeling ap-



proach as they consistently demonstrated the same or superior
performance when compared to Decision Tree and Gradient
Boosting Decision Tree in terms precision P, recall R, and F1-
measure, as illustrated in Figure 7, Figure 8, and Figure 9,
respectively.

Fig. 10. Selecting the most informative data frames for the Random Forest
modeling based on precision P, recall R, and F1-measure on the training
holdout set.

Random Forest was selected as the final model across
all data frames based on the speed of performance and
comparable or superior measures across the board in Table VI.
Our next step is to select the most informative data frames for
the final submission from all due to the Enclave processing
limitations. To this end, we compare the Random Forest
performance of all data frames in Table VI per data frame
in Figure 10. Condition dataframe is part of the Diagnoses
dataframe so we focus on the Demographics, Observations,
and Diagnoses data frames going forward.

Fig. 11. Final model performances from Table VII on entire training dataset.
Late fusion model only returns prediction for 26,923 patients out of 57,562
patients total.

The random forest model was then re-trained on the
entire training data set using tuned hyper-parameters from
Table VII-C and evaluated on the entire training dataset, as
illustrated in Table VII and illustrated in Figure 11. Late
Fusion modeling Note that Early Fusion and Demographics
datasets are the only datasets in Table IV to have the full train

and test coverage. We narrow down the final decision based on
Table VII measures on the entire dataset, and the Late Fusion
challenge submission combines in cascade all Random Forest
model outputs as follows. DiagnosesB Random Forest model
output had the highest number of detected true positives
(2,659) and the lowest number of detected false negatives
(996). The Diagnoses data frame combines the Demographics,
Conditions, and Drugs data frames. It provides the most
robust precision score of all modeling outcomes in Table VII
and in Figure 11, and it has coverage to provide prediction
scores for the 33,899 patients in the training set and 125
patients in the test set, as outlined in Table IV. Next, we apply
the cascaded model fusion algorithm explained in Section V-E
based on the model ranking in Table VII: M1-DiagnosesB -¿
M2-ObservationsB -¿ M3-ConditionsB -¿ M4-Demographics.
The ordering of the models was determined based on their
specificity, coverage, discrimination, and effectiveness on the
training dataset, as analyzed in Table VII. For the training
dataset, the algorithm Alg. 1 assigns DiagnosesB modeling
output values to 33899 patients in the training set. For the
remaining 23,663 patients we use M2 then M3 then M4
prediction label, and final results is the Late Fusion model
evaluated in the last row of Table VII with robust 4,216 true
positives, 448 false negatives, and 3482 true positives in the
training dataset, and highest recall and accuracy of all models.

D. Experiment: Attribute Importance

Fig. 12. Feature Importance of Top Demographics and Conditions Attributes
selected by y=axis number of methods from Diagnoses dataframe (blue) and
Individual dataframes (grey).

In this experiments, we compare the attribute importance
ranking the Diagnoses frame for eight selection methods
described in section VI. Diagnoses data frame aggregates
Demographics, Conditions, and Drugs data frames. Figure 12
illustrates the difference in attribute selection based on im-
portance from eight methods from individual data frames
(Demographics and Conditions) (gray) versus when the same



TABLE VII
FINAL MODEL PERFORMANCES FOR THE ENTIRE TRAINING DATA SET. THE ENCODING OF THE TOTAL DAYS FOR CONDITIONS OBSERVATIONS AND

DIAGNOSES MADE NO STATISTICAL DIFFERENCE FOR THE MODELING.

Model data set TP FP FN TN P R F1 Acc Model Rank for Alg. 1
Statistical Early Fusion 2031 2967 7000 45564 0.406 0.225 0.290 0.827
Random Forest Demographics 98 0 8933 48641 1.000 0.011 0.021 0.845 M4
Random Forest Conditions 2449 1085 6544 27966 0.693 0.272 0.391 0.799
Random Forest ConditionsB 2546 1402 6447 27649 0.645 0.283 0.393 0.794 M3
Random Forest Observations 2432 799 6555 28554 0.753 0.271 0.398 0.808
Random Forest ObservationsB 1980 922 7007 28431 0.682 0.220 0.333 0.793 M2
Random Forest Diagnoses 1764 3070 6935 22130 0.365 0.203 0.261 0.705
Random Forest DiagnosesB 2659 991 6040 24209 0.728 0.306 0.431 0.793 M1
Late Fusion Alg. 1 4216 3482 4816 45048 0.548 0.467 0.504 0.856

approach is applied to the fused Diagnoses frame (blue bar).
What is interesting is that white race and male gender were
not selected as important from the individual demographics
data frame, and six methods agreed that four attributes related
to age are important and nothing else is from the entire demo-
graphics frame. Allergic Rhinitis, Elevation and Respiratory
Failure are ranked as the most impactful condition attributes
in the Diagnoses frame where the individual ranking in-
cludes Oltagia, Cough, Trial Fibrosis, Ventricular and Cough,
also. All eight conditions are the top-ranked conditions by
algorithms both from Diagnoses and from Conditions data
frames. The interesting finding is that the Loss of Taste
conditions were never found as most impactful; see Figure 12
for more detailed comparison of attribute selection. The
following Drugs in Diagnoses data frame were selected by
six methods: Enoxaparin, Ondansetron, and Sennapod as most
impactful, and we do not have individual scores to evaluate
the robustness of this finding.

Six methods feature importance out of eight introduced
in Section VI marked twelve observations documented by
provider as most relevant for Long COVID patients: Alcohol,
Congregate Care, Drug Indicated, Family History, Health
Status, History of Observation, Malignant Disease, Never
Smoked, Observation period duration, Severely Obese, Ag-
gravating Symptoms, and Tobacco Product.

E. Experiment: Binary vs. Numerical Attribute Encoding
Impact

Fig. 13. Numerical vs. Binary feature encoding shows the significant
difference in performance on the 20% holdout testset for the diagnoses data
frame that integrates condition and drug information.

In this experiment, we also analyzed the modeling perfor-
mance of numerical versus binary data frames for conditions,
observations, and diagnoses. Table VI shows that the perfor-
mance of the models when the feature value is the cumulative
number of days a patient was assigned the condition /
diagnoses / observation / drug attribute performs consistently
better than simply modeling the presence of the attribute
for the patient in the data frame. Performance improvements
for conditions, observations, and diagnoses using rich data
frame encoding are illustrated in Figure 13 by the difference
in percentage points. The diagnoses data frame combines
demographic, conditions, and drug data frame, and has been
selected as the most informative one in Figure 10, so it is not
surprising that the greatest information gain is obtained by
encoding the number of days the patient is associated with
the attribute. However, the final model evaluation on the entire
training dataset favors binary representation as the number of
true positives is much higher and the number of false positives
much lower where the number of false negatives is decreased.
This requires more investigation on the larger dataset.

Fig. 14. Diagnoses Feature Importance: Five or more selection methods
selected to feature in for DiagnosesB (binary) and Diagnoses (cumulative).

For attribute ranking over the integrated Diagnoses vs.
DiagnosesB data frame, we have illustrated the most promi-
nent classification differences in Figure 14 for attributes that
were selected as the most impactful by most of the eight
methods we have applied to the Diagnoses and DiagnosesB



data frames. Five out of eight times our ranking algorithms
rank the Effusion condition as necessary if evaluated on the
Diagnoses data frame and only twice when evaluated on
the DiagnosesB data frame using the same procedure. A
similar discrepancy is seen for the disorders and elevation
conditions. For the demographic attributes, their importance is
dampened in the numerical data frame, while drug importance
is generally ranked higher for the same drug when the
numerical frame is used. This experiment demonstrates the
importance of encoding rich information, both in terms of
modeling performance and in terms of meaningful attribute
importance selection.

VIII. CONCLUSION AND FUTURE WORK

In this study, we describe the pipeline used on the N3C
Enclave system and present the results of its application to
the L3C challenge. Our findings indicate that the information
in the ”Conditions” data frame is complementary to that
in the ”Drugs” data frame, making the ”Diagnoses” data
frame a promising source for modeling conditions, drugs,
and demographics. The ”Observation” data frame was found
to have limited discriminatory power with respect to diag-
noses. Encoding the fields as binary or numerical had no
impact on modeling performance across three data frames.
PySpark processing on the Enclave system was not as efficient
as on the desktop workstation, requiring early aggregation
decisions that impacted the outcome. Our pipeline’s cho-
sen data frames and attribute selection resulted in a robust
detector The number of false positives and false negatives
indicates that we need to include more data sources in
our analysis. The modeling performance was similar using
random forests, decision trees, or gradient boosting. Given
that model selection and hyper-parameter tuning were limited
by the inadequate attribute space, we chose Random Forests
as the fastest modeling algorithm on the Enclave. Our final
model submission includes the novel cascade enhancement
to ensure effectiveness as well as the prediction coverage of
our modeling pipeline. The late fusion model described in
Alg 1 is the most robust model as is evident by the highest
number of true positives and lowest number of false negatives
among all models. Techniques selected had to be robust to
handle with over-fitting: retaining the noisy data allows for
each algorithm to integrate its ”own noise handling routine
to ensure robustness” [27]

In future research, the calculation of entropy should con-
sider multiple variables simultaneously and incorporate a
better interaction among variables. This will result in a more
robust and informative model. Individual conditions, proce-
dures, and drugs should be incorporated into the model. To
determine the most impactful factors, different methods must
be used to classify the importance of the features in all data
frames. The next steps are to automate feature aggregation
and selection for all unique drugs, conditions, observations,
and procedures fields and to improve the scalability of the
Enclave processing. With access to 17,411,971 patient records

with demographic information, 1,092,858 patient records with
condition information, 16,908,022 patient records with ob-
servation information, and 14,613,563 patient records with
drug information, as well as 207 conditions and 6,128 patients
labeled as COVID-19-related and death records for 475,085
patients, N3C Enclave data provide ample opportunities to
scale the pipeline and identify the most impactful attributes
(N3C, 2023). The statistical learning pipeline also reveals
interesting feature correlations between Long COVID and
demographics, with decision tree and gradient boosting mod-
els showing that using clinical data underfits the prediction
model, as evidenced by a high number of false positives.
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