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ABCD: Algorithm for Balanced Component
Discovery in Signed Networks
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Abstract—The most significant balanced element in signed graphs plays a vital role in helping researchers understand the
fundamental structure of the graph, as it reveals valuable information about the complex relationships between vertices in the network.
The challenge is an NP-hard problem; there is no current baseline to evaluate state-of-the-art signed graphs derived from real
networks. In this paper, we propose a scalable state-of-the-art approach for the maximum balanced sub-graph detection in the network
of any size. However, it is still bounded by computational capability. The proposed approach builds on the graph characteristics and a
scalable fundamental cycle discovery method to minimize the number of vertices discarded. We evaluate the proposed approach
against state-of-the-art and demonstrate over two times higher graph size regarding the number of vertices selected of the discovered
subset on an extensive signed network with millions of vertices and edges over the state-of-art in the same time frame.

Index Terms—balanced subgraph, frustration index, balanced states, and signed graphs.

✦

1 INTRODUCTION

S IGNED networks allow for negative weights, represent-
ing antagonistic relationships or conflicting opinions [1].

This is because unstructured data requires a rich graph rep-
resentation. Balance theory represents a theory of changes in
attitudes [2]: people’s attitudes evolve in networks so that
friends of a friend will likely become friends, and so will en-
emies of an enemy [2]. Heider established the foundation for
social balance theory [3], and Harary established the mathe-
matical foundation for signed graphs and introduced the k-
way balance [4], [5]. Balance theory concepts have been used
to predict edge sentiment, to recommend content and prod-
ucts, or to identify unusual trends [6], [7], [8], [9]. The task
of the largest balanced sub-graph discovery has applica-
tions in portfolio system’s economic risk management [10],
computational and operational research [11], community
analysis and structure [12], computational biology to model
balanced interactions between genes and proteins [13] and
social network analysis [14]. The vertices that are part of the
maximum balanced sub-graph Σ′ of Σ may not necessarily
have a high degree of centrality between them. Still, they
are essential for understanding how the system behaves.
Moreover, by locating the maximum balanced sub-graphs,
we can simplify the system into sub-systems with balanced
interactions and eliminate inconsistencies regarding unbal-
anced cycles. This is a well-known NP-hard problem [15],
and existing solutions do not scale to real-world graphs [1].
We consider Σ a structure-free signed graph derived from
real-life networks with millions of vertices and vertices, e.g.,
[16]. Signed graph balancing is defined in Section 3, and we
propose a solution based on the scalable graph cycle-basis
computation of the underlying unsigned graph G of Σ. We
use the edge sign switching technique using a fundamental
cycle basis discovery method to search for the maximum
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balanced subgraph. The proposed approach finds the largest
balanced subgraph Σ′ of any Σ is O(K ∗ (n ∗ m)) where
n is the number of vertices, m is the number of edges in
Σ and the algorithm considers only the top K balanced
states with the lowest frustration index. We use the state-
of-art method proposed in [17] for baseline comparisons
in Section 5. This selection is because the authors of this
recent algorithm proposed in [17] achieved the highest
vertex cardinality (number of nodes in the largest balanced
subgraph) across all signed graphs among other baselines
in the literature. Note that the algorithm proposed in [18]
is not the same problem we are targeting. Our problem is
a searching problem, whereas the algorithm proposed by
[18] modifies the graph after finding an initial maximum
balanced subgraph using TIMBAL. The problem definition
of finding the largest balanced component Σ′, |Σ′| = n′ in
any size signed graph Σ, |Σ| = n is in Eq. 1.

Σ′ ⊆ Σ ∧ Fr(Σ′) = 0 ∧ argmax
n′≤n

Σ′ =⇒ Σ′ (1)

Note that Fr(Σ′) represents the Frustration of balanced
subgraph Σ′. Hence, the goal is to find a subgraph in a
signed network with an even number of negative edges
along each fundamental Cycle and its size is as large as
possible. The size is usually expressed in terms of vertex
cardinality (number of nodes in a subgraph). For definitions
and corollaries, see Section 3.

2 RELATED WORK

Finding the optimally balanced sub-graph in a signed graph
is known to be an NP-hard problem. Gülpinar et al. pro-
posed the GGMZ algorithm, which begins by computing
the input graph’s minimum spanning tree. Next, a subset of
nodes is selected, and all the edges crossing that subset are
inverted to create positive edges. This step is then applied
to the entire graph, identifying a set of nodes disconnected
by negative edges. This set of nodes is returned as the
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Fig. 1. (a): The unbalanced signed network. Green edges are the candidate edges causing imbalance, and red vertices are the candidate vertices.
(b): The maximum balanced signed sub-graph obtained after deleting one candidate node along each edge.

final output of the "algorithm. The system’s overall com-
plexity is O(|N |3) if N is a set of nodes [19]. Poljak and
Daniel Turzík show that any signed graph that has |N|
nodes and |M| edges contains a balanced sub-graph with
at least 0.5|M| + 0.25(|N|- 1) edges [20]. Crowston et
al. propose a discovery of a balanced sub-graph of size
0.5|M| + 0.25(|N|- 1+k), k is a parameter, of the complete
system’s overall complexity is O(|N |3) if N is a set of
nodes [19]. The data reduction is based on finding small
separators and a novel gadget construction scheme. The
fixed-parameter algorithm is based on iterative compression
with a very effective heuristic speedup. Figueiredo et al. first
introduced a polyhedral-based branch-and-cut algorithm to
find an optimal sub-graph [21], followed by preprocessing
routines and initial heuristic improvements in [11]. The
proposed GRASP algorithm randomly selects a subset of
vertices. It then greedily adds nodes that maximize the num-
ber of edges connecting them to the current subset while
keeping the size of the subset balanced [11]. The EIGEN
algorithm [22] works by first computing the eigenvectors
of the Laplacian matrix of the graph. Using the dominant
eigenvector of the adjacency matrix, it then partitions the
graph into two disjoint sets. The partition is made by setting
a threshold value for the eigenvector and assigning each
vertex to one of the two sets based on whether its value
in the eigenvector is above or below the threshold. The
algorithm then recursively this partitioning process on each
of the two sets until the desired level of balance is achieved.
Sharma et al. proposed a heuristic that deletes edges from
the graph associated with the smallest eigenvalues in the
Laplacian matrix of the graph until a maximum balanced
sub-graph is obtained [18]. Ordozgoiti et al. introduced the
most scalable version of the algorithm to date. TIMBAL is
an acronym for trimming iteratively to maximize balance two-
stage method approach where the first stage removes nodes
and the second one restores them as long as it does not cause
imbalance [17]. Both algorithms rely on signed spectral
theory. The approaches do not scale to the large signed
graphs as they rely on the costly eigenvalue computation
(O(|N |2)), and its performance decreases due to the spectral
pollution in eigenvalue computation [23]. TIMBAL proposes
a novel bound for perturbations of the graph Laplacian
preprocessing techniques to scale the processing for large
graphs. The algorithm randomly samples sub-graphs and
runs TIMBAL. The nodes deleted from at least one of these
sub-graphs are then deleted from the original graph. They
evaluate the scalability of the proposed work on graphs over

30 million edges by artificially implanting balanced sub-
graphs of a specific size and recovering them [17].

This paper proposes an algorithm for balanced compo-
nent discovery (ABCD) in signed graphs, and we show that
it discovers larger signed sub-graphs faster than TIMBAL.
The approach builds on the scalable discovery of fundamen-
tal cycles in [24] and utilizes the graph’s node density dis-
tribution and near-optimal balanced states to minimize the
number of vertices removed from the balanced sub-graph.
The paper is organized as follows: in Section 1, we formally
describe the objective and the problem related to finding
the maximum balanced subgraph in the signed network; in
Section 3, we present related definitions and corollaries that
lead to the proposed solution. n Section 4, we introduce the
novel ABCD algorithm and the implementation details; in
Section 5, we present proof of concept; and in Section 8, we
summarize our findings.

3 DEFINITIONS AND COROLLARIES

First, we define the fundamental cycle basis and relevant
signed graph network terms.
Definition 3.1. Signed graph Σ = (G, σ) consists of under-

lying unsigned graph G and an edge signing function
σ : m → {+1,−1}. The edge m can be positive m+ or
negative m−. Sign of a sub-graph is product of the edges
signs. Balanced Signed graph is a signed graph where
every Cycle is positive. Frustration of a signed graph is
defined as the number of candidate edges whose sign
needs to be switched for the graph to reach the balanced
state.

Definition 3.2. Graph Σ′ is a subgraph of a graph Σ if all
edges and vertices of Σ′ are contained in Σ.

Definition 3.3. Path is a sequence of distinct edges m that
connect a sequence of distinct vertices n in a graph.
Connected graph has a path that joins any two vertices.
Cycle is a path that begins and ends at the same node.
Cycle Basis is a set of simple cycles that forms a basis of
the cycle space.

Definition 3.4. For the underlying graph G, let T be the
spanning tree of G, and let an edge m be an edge in G
between vertices x and y that is NOT in the spanning tree
T . Since the spanning tree spans all vertices, a unique
path in T between vertices x and y does not include m.
The fundamental cycle is any cycle that is built using
path in T plus edge m in graph G.
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Corollary 3.1. A fundamental cycle basis may be formed
from a spanning tree or spanning forest of the given
graph by selecting the cycles formed by combining a
path in the tree and a single edge outside the tree. or the
graph G with n vertices and m edges, there are precisely
m− n+ 1 fundamental cycles.

Definition 3.5. The balanced states are optimal if and only
if it requires a minimum number of edge sign switches
in the original graph to reach a balanced state.

Theorem 3.1. If a signed subgraph Σ′ is balanced, the fol-
lowing are equivalent [4]:

1) Σ′ is balanced. (All circles are positive.)
2) For every vertex pair (ni, nj)inΣ

′, all (ni, nj)-paths
have the same sign.

3) Fr(Σ′) = 0.
4) There exists a bipartition of the vertex set into sets U

and W such that an edge is negative if, and only if,
it has one vertex in U and one in W . The bipartition
(U ,W ) is called the Harary-bipartition.

4 METHODOLOGY

Balancing a signed network via edge sign switching iden-
tifies a set of candidate edges to have their sign switched.
Removing such edges yields the removal of the unbalanced
fundamental cycles and produces a unique partitioning of
input graphs to balanced subgraphs. Optimal balancing
states require minimum edge signed switched, and thus, we
consider only the candidates to reach such states. Note that
optimal balanced states do not necessarily have the same
amount of candidate edges that need to be switched [25].
Their frustrations are different. First, we propose to obtain
the variety of optimal balanced state candidates by sam-
pling the graph multiple times and using the fundamental
cycle basis discovery method as a base [24], [25]. Next, we
propose to process the edges that cause imbalance by delet-
ing one vertex along each candidate edge. The proposed
approach removes one of the vertices along these candidate
edges to minimize the number of vertices simultaneously
lost and obtain the largest possible balanced sub-graph. The
criteria for choosing the vertices to purge is that if the candi-
date edge is positive, we delete the one that "carries" fewer
vertices (degree/sum of neighborhood degree). f the edge
is negative, we exploit the concept of Harary bipartition [4]
and remove the vertex in the smaller partition because it
would be connected to a smaller number of vertices. Thus,
the loss of vertices in the process is minimized to reach
a balanced sub-graph and simultaneously maximize the
vertex cardinality of that sub-graph. Ongoing research is still
investigating the potential adverse effects of selecting this
criterion. However, this handling criteria can be modified
and improved to yield a greater vertex cardinality. Figure 1
demonstrates an example execution of our algorithm where
the candidate edges causing imbalance are identified using
[25], proving that the spanning tree-based approach can
discover fundamental cycles and balance the graph. Then,
one of the vertices (denoted in red) along these candidate
edges is removed based on the above-mentioned criteria. In
this paper, we introduce the Algorithm for the Balanced

Component Discovery (ABCD) as a scalable solution for
the discovery of the largest balanced subgraph in Alg. 1.
The approach produces different optimal balanced states of
Σ, as defined in 3.5. We have proposed an efficient data
structure and algorithm to discover fundamental cycles if
given the spanning tree T [24]. We demonstrated that the
discovery and analysis of the fundamental cycles can be
computed with linear time complexity and only require
a linear amount of memory. The algorithm outline in 1
consists of three steps, as illustrated in Figure 2.

Algorithm 1 ABCD Phase 1
1: Fetch signed graph Σ, number of iterations I , and inte-

ger K that determines the top optimal balanced states
with the lowest frustration index to keep

2: Generate set Ti of I spanning trees of Σ
3: Counter to keep only the top optimal balanced states

with the lowest frustration index i = 0;mK = m;
4: for i =0; i++; i < I do
5: for edges m, m ∈ Σ \ Ti do
6: if fundamental cycle T ∪m is negative then
7: add edge m to mi

8: end if
9: end for

10: if |mi| < mK then
11: MΣ∪ = mk

12: end if
13: if |MΣ| > K then
14: Remove the largest set and update mK

15: end if
16: end for
17: for i =0; i++; i < K do
18: Create zero vector Hk of dimension n
19: for edge m ∈ mi do
20: switch edge sign in Σk: m− → m+;m+ → m−

21: end for
22: Cut all the negative edges to create Harary bi-

partitions A and B so that |A| > |B|
23: for node in n do
24: if node ∈ A,Hk(node) = 1
25: end for
26: end for
27: return MΣ = mk,HΣ = Hk, k ∈ [1,K]

ABCD phase 1 creates a candidate list of fundamental
cycle bases with minimal unbalanced cycles. This algorithm
is the backbone of our proposed algorithm in Alg. 1. I is the
number of iterations we run the algorithm and the upper
bound on how many optimal balanced states we discover
in the process. The steps are:
1.1. Discover the fundamental cycle bases for each of the I
spanning trees (Alg. 1).
1.2. For each of the cycles in the basis, count the number
of cycles that contain the odd number of negative edges
(Alg. 1).
1.3. Keep only the K,K << I fundamental cycle basis out
of I accessed that have the smallest number of fundamental
cycles with an odd number of negative edges (imbalanced
Cycle). his translates into lowest cardinality |mk|, |mk| <
m− n+ 1 in Alg. 1.
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Fig. 2. Algorithm for Balanced Component Discovery (ABCD): graph processing flow and illustration of Algorithm 1, Algorithm 2, and phase 3 of the
algorithm.

Algorithm 2 ABCD Phase 2
1: Harary bipartition array for each node Hk, edges of each

top-K optimal balanced state with the lowest frustration
mk

2: Initialize empty set nk = ∅ for all values of k
3: for i =0; i++; i < K do
4: for edges m, m ∈ mk do
5: if m+ then
6: Append the vertex x along m+ that has a lower

sum of neighborhood degrees to set nk

7: else
8: Append the vertex x along m− where Hk(x) = 0

to set nk

9: end if
10: end for
11: end for
12: return nk which is the entire set of vertices of the kth

graph to keep when reconstructing the original graph

ABCD phase 2 employs a smart edge deletion approach
for all K discovered balanced states as outlined in Alg. 2.
The illustrative example is outlined in Figure 3. Minimizing
the number of vertices removed from the graph increases
the cardinality of the largest balanced sub-graph. Harary
bipartition separates the vertices of the balanced graph into
two sets such that the vertices of both sets internally agree
with each other but disagree with the vertices of the other
set [4]. The Hk set is created as a labeling vector in Alg. 1.
We repeat the following steps for all K identified balanced
states for a signed graph Σ, and the heuristic on how we
remove the unbalanced fundamental cycles out of possible
m− n+ 1 cycles for the balanced state k, k ∈ [1,K].
For the mk list of edges that should have a different sign
for the entire graph to be balanced, we initialize an empty
set of vertices nk. or every edge in mk, Alg. 2 repeats the
following steps:
2.1. If the edge is positive, it will be negative in the balanced
state. If either vertices is already in nk, move on to the next
edge. Else, add the edge-defining node node to nk so that
Hk(n) = 0. If they are both 0 or both 1, move this edge to
the end of the mk set and revisit. The remaining node is in
the largest Harary partition for a fully balanced graph, so it
will be connected to more vertices than the node ending up
in the smaller Harary set after partitioning.

2.2. If the edge is negative and marked for switching to
positive, if either vertex is already in nk, nothing needs to
be done; move on to the next edge. e add the node with the
lower neighborhood degree to nk. The computation of the
neighborhood degree is demonstrated in Alg 3. e observe
that iterating 3 times where in each iteration, we set degree[]
to be equal to neighborhood_degree[] before computing an
empty neighborhood_degree[] using the new degree[] to
improve the results generally.

Algorithm 3 Computation of the sum of neighborhood
degree

1: Input Signed graph Σ
2: Declare and initialize array neighborhood_degree = []
3: for v = 0; v++; v < |n| of Σ do
4: Declare and initialize integer sum = 0
5: for every neighbor nei connected to v via an edge do
6: sum += degree[nei]
7: end for
8: neighborhood_degree[v]=sum
9: end for

10: return array neighborhood_degree

Fig. 3 illustrates how we compute the neighborhood
degree for an exemplar signed graph. Two red vertices in the
image indicate the balancing algorithm labeled the edge and
that its sign needs to be switched for the graph to achieve
a complete balancing state. The degree of the left node is 3,
and the right node is 4. The neighborhood degree of the left
node is 10 (neighbors of a neighbor), and the neighborhood
degree of the right node is 7. We chose the node on the
right to delete and the node on the left to keep. If both
have the same sum of neighborhood degrees, choose the
one connected to another edge in mk set of edges marked
to form an unbalanced fundamental cycle. Note that the
neighborhood degree is computed for all vertices in the signed
graph once and re-used for computation.

ABCD phase 3 finds the index of the smallest sized nk

set among all nk, k ∈ [1,K] sets. Let it be index s : |ns| ≤
|nk|, k ∈ [1,K]. The resulting maximized balanced sub-
graph proposal n′

s is finally obtained by removing specific
vertices as n′ = n \ ns. The remaining subset is balanced as
all fundamental cycles in the graph are balanced.

Illustrative Example of the ABCD algorithm The full
ABCD algorithmic flow is illustrated in Figure 2. Figure 4
illustrates the step-by-step ABCD method on the sampled



IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. X, NO. Y, JUNE 2024 5

Fig. 3. Degree (black, in node) vs. Sum of Neighborhood Degrees
(green, next to the node) computation. The sum of neighborhood de-
grees labels the red vertices connected by a positive link that will be
deleted.

signed graph. The signed graph with seven vertices and
ten edges is introduced in the top row. Balancing occurs in
ABCD phase 1 (Alg.1), and green text on the edges indicates
the changed signs. Green numbers beside vertices are the
sum of neighborhood degrees. Orange edges are the edges
of the unbalanced fundamental cycles. Green edges are the
candidate edges. Red vertices are the candidates for deletion
in ABCD phase 2 (Alg.2). The final candidate selection and
comparison is in ABCD phase 3, and we found that the
remaining subgraph is balanced by removing node v2. The
red dotted oval over the graph in Step 3 signifies that the
final output n′

s of ABCD has a maximal cardinality.

5 PROOF OF CONCEPT

All real-world benchmark graphs have one large connected
component. The implementation of the algorithms is in
C++. The algorithm identifies the largest connected com-
ponent (LCC). It applies the ABCD algorithm to LCC. The
implementation treats edges without signs as positive edges
in the fundamental Cycle. If the graph has more equal
connected components, the implementation accommodates
that scenario. ABCD phase 1 (Alg. 1) implementation builds
on [24], [25]. [26] have recently shown that the breadth-
first search sampling of the spanning trees captures the
diversity of the optimally balanced states, and we adopt
the breath-first search method for sampling spanning trees
in the Algorithm 1. ABCD phase 2 is implemented as listed
in Algorithm 2. or the ABCD phase 3, n′

s is constructed by
the algorithm re-reading the original graph and skipping
the entries with vertices in ns. ABCD algorithm parameters:
I = 5000 for all, K = 4000 for n < 100, 000, K = 100 for
100, 000 < n < 300, 000, and K = 20 for 300, 000 < n
vertices. ABCD_Fast is a faster version of ABCD and the
parameters are: I = 1000 for all, K = 700 for n < 100, 000,
K = 100 for 100, 000 < n < 300, 000, and K = 20 for
300, 000 < n vertices. For this faster version, we can also
study the effect of decreasing the number of iterations on
the overall speed and performance. We experiment with
this version solely on the Konect dataset as in Figure 5 and
Figure 6.

Baseline for the proof of concept is TIMBAL [17].
The TIMBAL approach has reached the highest cardinal-
ity of the sub-graphs in various datasets and is a de-
facto state-of-the-art [17]. The input parameters of TIMBAL

[17] are set as follows for all subsample_flag=False, sam-
ples=4 based on the paper implementation. The parameter
max_removals=1 is set for small graphs (under 1000 ver-
tices) and to max_removals=100 for the rest of the signed
networks. e set avg_size=20 for datasets of several vertices
less than 80,000, and subsample_flag=True, samples = 1000,
avg_size = 200 max_removals=100 for datasets with the
number of vertices greater than 80,000. TIMBAL is a non-
deterministic algorithm, and we run it 5 and 10 times for
Konect data to get the maximum node cardinality.

Setup ABCD is run on the same graphs as TIMBAL, and
the results are compared side-by-side for 14 Konect and 17
Amazon datasets in terms of runtime in seconds and the size
of the produced sub-graph. We verify the balanced state of
the discovered subgraph for both methods. The operating
system used for the experiments is Linux Ubuntu 20.04.3,
running on the 11th Gen Intel(R) Core(TM) i9-11900K @
3.50GHz with 16 physical cores. t has one socket, two
threads per core, and eight cores per socket. The architecture
is X86_x64. Its driver version is 495.29.05, and the CUDA
version is 11.5. The cache configuration is L1d : 384 KiB, L1i
: 256 KiB, L2 : 4 MiB, L3 : 16 MiB. The CPU op is 32-bit and
64-bit.

6 KONECT BENCHMARK EVALUATION

Konect signed graphs and their characteristics are described
in Table 1. Highland is the signed social network of tribes of
the GahukuGama alliance structure of the Eastern Central
Highlands of New Guinea, from Kenneth Read [27]. Crisis-
InCloister is a directed network that contains ratings between
monks related to a crisis in an abbey (or monastery) in New
England (USA), which led to the departure of several of
the monks [27]. ProLeague are results of football games in
Belgium from the Pro League in 2016/2017 in the form of
a directed signed graph. Vertices are teams; each directed
edge from A to B denotes that team A played at home
against team B. The edge weights are the goal difference,
and thus positive if the home team wins, negative if the
away team wins, and zero for a draw [27]. DutchCollege is
a directed network that contains friendship ratings between
32 first-year university students who mostly did not know
each other before starting university. Each student was
asked to rate the other at seven different time points. A node
represents a student, and an edge between two students
shows that the left rated the right. The edge weights show
how good their friendship is in the eye of the left node.
The weight ranges from -1 for the risk of conflict to +3 for
best friend [27]. Congress is a signed network where vertices
are politicians speaking in the United States Congress, and
a directed edge denotes that a speaker mentions another
speaker [27]. In the Chess network, each node is a chess
player, and a directed edge represents a game with the
white player having an outgoing edge and the black player
having an ingoing edge. The weight of the edge represents
the outcome [27]. BitcoinAlpha is a user-user trust/distrust
network from the Bitcoin Alpha platform on which Bitcoins
are traded [27].BitcoinOTC is a user-user trust/distrust net-
work, from the Bitcoin OTC platform, on which Bitcoins are
traded [27]. TwitterReferendum captures data from Twitter
concerning the 2016 Italian Referendum. Different stances
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Fig. 4. The ABCD algorithm applied to a sample signed graph with seven vertices and ten edges. Balancing occurs in ABCD phase 1 (Alg.1), and
green text on the edges indicates the changed signs. Green numbers beside vertices are the sum of neighborhood degrees. Orange edges are the
edges of the unbalanced fundamental cycles. Green edges are the candidate edges. Red vertices are the candidates for deletion in ABCD phase
2 (Alg.2).

between users signify a negative tie, while the same stances
indicate a positive link [28]. WikiElec is the network of
users from the English Wikipedia that voted for and against
each other in admin elections [27]. SlashdotZoo is the reply
network of the technology website Slashdot. Vertices are
users, and edges are replies [27]. The edges of WikiConflict
represent positive and negative conflicts between users of
the English Wikipedia [27]. WikiPolitics is an undirected
signed network that contains interactions between the users
of the English Wikipedia that have edited pages about
politics. Each interaction, such as text editing and votes, is
given a positive or negative value [27]. Epinions is the trust
and distrust network of Epinions, an online product rating
site. It incorporates individual users connected by directed

trust and distrust links [27]. PPI models the protein-protein
interaction network [29].

The first benchmark consists of 14 signed graphs from
the Konect repository [27] used in [17] TIMBAL benchmark
evaluations. The supplemental PDF document describes
Konect signed graphs and their characteristics in great de-
tail. ABCD and TIMBAL performance are outlined in Fig-
ure 5 and Figure 6. ABCD matches TIMBAL performance in
the smallest three networks. ABCD algorithm finds a more
significant subset for 11 Konect datasets. TIMBAL performs
better on the three Konect Wiki data sets. TIMBAL is faster
than ABCD on smaller networks. For the most extensive
graph in the collection, Epinions, ABCD takes double the
time to recover the largest balanced sub-graph. We recorded
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TABLE 1
Konect sets plus TwitterReferendum and PPI signed graphs attributes: n is the total number of vertices; m is the total number of edges in the
graph; The number of edges of the entire input signed network is the reported numbers from the Konect site. The number of edges of LCC is

computed locally in our machine with preprocessing as removing duplicate and inconsistent edges is applied.

Entire Input Largest Connected
Konect Signed Network Component Graph
Dataset # vertices # edges # vertices # edges # cycles
Highland 16 58 16 58 43
CrisisInCloister 18 126 18 126 145
ProLeague 16 120 16 120 105
DutchCollege 32 3,062 32 422 391
Congress 219 764 219 521 303
PPI 3,058 11,860 3,058 11,860 8,803
BitcoinAlpha 3,783 24,186 3,775 14,120 10,346
BitcoinOTC 5,881 35,592 5,875 21,489 15,615
Chess 7,301 65,053 7,115 55,779 48,665
TwitterReferendum 10,884 251,406 10,864 251,396 240,533
SlashdotZoo 79,120 515,397 79,116 467,731 388,616
Epinions 131,828 841,372 119,130 704,267 585,138
WikiElec 7,118 103,675 7,066 100,667 93,602
WikiConflict 118,100 2,917,785 113,123 2,025,910 1,912,788
WikiPolitics 138,592 740,397 137,740 715,334 577,595

Nodes Graph LCC TIMBAL 5 TIMBAL 10 ABCD ABCD_FastTIMBAL 10ABCD ABCD_FastFundamental CyclesN+M Fundamental CyclesTIMBAL 5 secondsTIMBAL 10ABCD ABCD_Fast
 Highland 16 16 13 13 13 13 0.8125 0.8125 0.8125 43 74  Highland 43 0 0.2 0.9 0.18
 CrisisInCloister 18 18 8 8 8 8 0.444444 0.444444 0.444444 109 144  CrisisInCloister 109 0 0.5 1.28 0.25
 ProLeague 16 16 10 10 10 10 0.625 0.625 0.625 105 136  ProLeague 105 0 0.2 1.4 0.28
 DutchCollege 32 32 29 29 30 30 0.90625 0.9375 0.9375 391 454  DutchCollege 391 0 0.2 14 2.5
 Congress  219 219 207 207 207 207 0.945205 0.945205 0.945205 303 740  Congress  303 1 1.9 7.79 1.44

PPI 3058 0.294 0.677 0.664 PPI 156.9 97.59 6.63
 BitcoinAlpha  3783 3775 3014 3,081 3,146 3,107 0.816159 0.833377 0.823046 10346 17895  BitcoinAlpha  10346 6 11.4 55.68 14.79
 BitcoinOTC  5881 5875 4250 4,349 4,910 4,890 0.740255 0.835745 0.83234 15615 27364  BitcoinOTC  15615 10 20.3 92.29 23.48
 Chess  7301 7115 2230 2,320 2,551 2,554 0.326072 0.358538 0.35896 48665 62894  Chess  48665 15 30.5 174.67 40.72
 Twitter 10884 10864 9021 9,110 9,438 9,263 0.838549 0.868741 0.852633 240533 262260  Twitter 240533 28 55.2 851.94 231.29
 SlashdotZoo  79120 79116 39905 40,123 43,544 43,219 0.507141 0.550382 0.546274 388616 546847  SlashdotZoo  388616 259 518.8 1870.2 381.24
 Epinions  131828 119130 73433 74,106 74,843 74,522 0.62206 0.628246 0.625552 585138 823397  Epinions  585138 775 1549.8 3272.87 632.39
 WikiElec  7118 7066 3758 3,856 3,506 3,506 0.545712 0.496179 0.496179 93602 107733  WikiElec  93602 19 37.9 3033.08 73.43
 WikiConflict  118100 113123 56768 56,768 54,476 53,549 0.501825 0.481564 0.453421 1912788 2139033  WikiConflict  1912788 539 1078.5 8332.22 1979.049
 WikiPolitics  138592 137740 67009 69,050 63,584 63,584 0.501307 0.461623 0.461623 577595 853074  WikiPolitics  577595 603 1205.3 3478.08 672.077
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Fig. 5. ABCD and TIMBAL performance comparison for Konect benchmark in terms of subset graph fractions.

the maximum number of vertices obtained after 5 and 10
runs for TIMBAL, and only for one dataset did the repeated
runs discover a more significant subset. For ABCD_Fast, we
can observe that the performance is consistently better than
TIMBAL for the exact runtime for the majority of the graphs.

7 AMAZON BENCHMARK EVALUATION

Amazon benchmark consists of 17 signed graphs derived
from the Amazon rating and review files [16]. The dataset
contains product reviews and metadata from Amazon,
spanning May 1996 to July 2014. Rating score is mapped
into an edge between the user and the product as follows
(5, 4) → m+, 3 → m (no sign), and (2, 1) → m− [16]. The
characteristics of the most significant connected component
are outlined in Table 3.

Figure 7 and Table 4 illustrate the sub-graph size TIM-
BAL recovers (blue box) and the sub-graph ABCD algorithm
recovers (red box). Amazon data is extensive. For millions

of vertices, the ABCD algorithm performs much better than
TIMBAL. One iteration of TIMBAL (blue line) takes as long
as the entire ABCD algorithm (red line) for larger graphs.
We detail the timing and the experiment in the supplemental
PDF tables. In this experiment, the ABCD algorithm has
a superior runtime and performance regarding the graph
size it discovers, as illustrated in Figure 8. TIMBAL’s perfor-
mance degrades with the graph size, and the discovered
sub-graphs are much smaller than what ABCD finds, as
illustrated in Figure 7.

7.1 Graph Size vs. Runtime Experiment
evaluation considers runtime for TIMBAL and total runtime
for ABCD as a function of the f the number of edges m
vertices n in the graph. We use all 31 signed graphs for this
evaluation. Details on the graph characteristics are listed in
Table 1 and Table 3. Figure 9 illustrates a single TIMBAL
run time and ABCD run time as a function of the graph
size for all Konect and Amazon graphs. Both algorithms
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Nodes Graph LCC TIMBAL 5 TIMBAL 10 ABCD ABCD_FastTIMBAL 10ABCD ABCD_FastFundamental CyclesN+M Fundamental CyclesTIMBAL 5 secondsTIMBAL 10ABCD ABCD_Fast
 Highland 16 16 13 13 13 13 0.8125 0.8125 0.8125 43 74  Highland 43 0 0.2 0.9 0.18
 CrisisInCloister 18 18 8 8 8 8 0.444444 0.444444 0.444444 109 144  CrisisInCloister 109 0 0.5 1.28 0.25
 ProLeague 16 16 10 10 10 10 0.625 0.625 0.625 105 136  ProLeague 105 0 0.2 1.4 0.28
 DutchCollege 32 32 29 29 30 30 0.90625 0.9375 0.9375 391 454  DutchCollege 391 0 0.2 14 2.5
 Congress  219 219 207 207 207 207 0.945205 0.945205 0.945205 303 740  Congress  303 1 1.9 7.79 1.44

PPI 3058 0.294 0.677 0.664 PPI 156.9 97.59 6.63
 BitcoinAlpha  3783 3775 3014 3,081 3,146 3,107 0.816159 0.833377 0.823046 10346 17895  BitcoinAlpha  10346 6 11.4 55.68 14.79
 BitcoinOTC  5881 5875 4250 4,349 4,910 4,890 0.740255 0.835745 0.83234 15615 27364  BitcoinOTC  15615 10 20.3 92.29 23.48
 Chess  7301 7115 2230 2,320 2,551 2,554 0.326072 0.358538 0.35896 48665 62894  Chess  48665 15 30.5 174.67 40.72
 Twitter 10884 10864 9021 9,110 9,438 9,263 0.838549 0.868741 0.852633 240533 262260  Twitter 240533 28 55.2 851.94 231.29
 SlashdotZoo  79120 79116 39905 40,123 43,544 43,219 0.507141 0.550382 0.546274 388616 546847  SlashdotZoo  388616 259 518.8 1870.2 381.24
 Epinions  131828 119130 73433 74,106 74,843 74,522 0.62206 0.628246 0.625552 585138 823397  Epinions  585138 775 1549.8 3272.87 632.39
 WikiElec  7118 7066 3758 3,856 3,506 3,506 0.545712 0.496179 0.496179 93602 107733  WikiElec  93602 19 37.9 3033.08 73.43
 WikiConflict  118100 113123 56768 56,768 54,476 53,549 0.501825 0.481564 0.453421 1912788 2139033  WikiConflict  1912788 539 1078.5 8332.22 1979.049
 WikiPolitics  138592 137740 67009 69,050 63,584 63,584 0.501307 0.461623 0.461623 577595 853074  WikiPolitics  577595 603 1205.3 3478.08 672.077
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Fig. 6. ABCD and TIMBAL performance comparison for Konect benchmark in terms of algorithmic timing.

TABLE 2
[27] Konect (except TwitterReferendum and PPI, which are not from the Konect site) graph performance comparisons: The largest sub-graph
regarding the number of vertices discovered for TIMBAL 5 runs, TIMBAL 10 runs, and ABCD 5000 iterations approach in a given runtime in

seconds.

Konect TIMBAL 5 runs TIMBAL 10 runs ABCD
Results sub-graph Run sub-graph Run sub-graph Run

# vertices time (s) # vertices time (s) # vertices time (s)
Highland 13 0.1 13 0.2 13 0.9
CrisisInCloister 8 0.25 8 0.5 8 1.28
ProLeague 10 0.1 10 0.2 10 1.40
DutchCollege 29 0.1 29 0.2 30 14
Congress 207 0.85 207 1.9 207 7.79
PPI 900 78.45 900 156.9 2,072 97.59
BitcoinAlpha 3,014 5.57 3,081 11.4 3,146 55.68
BitcoinOTC 4,250 10.15 4,349 20.3 4,910 92.29
Chess 2,230 15.25 2,320 30.5 2,551 174.67
TwitterReferendum 9,021 27,6 9,110 55.2 9,438 851.94
SlashdotZoo 39,905 259.4 40,123 518.8 43,544 1870.20
Epinions 73,433 774.9 74,106 1549.8 74,843 3272.87
WikiElec 3,758 18.95 3,856 37.9 3,506 3033.08
WikiConflict 56,768 539.25 56,768 1078.5 54,476 8332.22
WikiPolitics 67,009 602.65 69,050 1205.3 63,584 3478.08

have approximate run times that are linear with the size
of the graph. ABCD’s performance in the most extensive
sub-graph discovery is superior to TIMBAL. TIMBAL per-
formance significantly degrades in terms of balanced graph
recovery for all graphs over 350,000 vertices.

8 CONCLUSION

Finding maximum balanced sub-graphs is a fundamental
problem in graph theory with significant practical applica-
tions. While the situation is computationally challenging,
the existing heuristic algorithms have made considerable
progress in solving it efficiently for many signed networks
and propose a novel scalable algorithm for balance compo-
nent discovery (ABCD). We capture the information on the

unbalanced fundamental cycles and the Harary bipartition
labeling for the top unique total cycle bases with the lowest
number of unstable cycles. A balanced state with the lowest
frustration index for a specific signed network does not nec-
essarily yield a maximum balanced sub-graph. A balanced
state with a high frustration index skyrockets the number
of vertices discarded due to the increase in the number of
candidate vertices and edges to be processed. We introduce
a novel set of conditions (neighborhood degree, bi-cut) to
remove the vertices from the graph. The output of the ABCD
algorithm is guaranteed to be balanced. ABCD eliminates
the unbalanced cycle bases by removing the edges. Thus, the
Cycle turns into an open path. The resulting subgraph has
the most significant size regarding the number of vertices; it
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Fig. 7. ABCD and TIMBAL performance comparison for Amazon data.

TABLE 3
Amazon ratings and reviews [16] (a subset of Amazon ratings

constructed from core5 reviews) [16] mapped to signed graphs. The
number of vertices, edges, and cycles reflect the number in the largest

connected component of each dataset.

Amazon Input graph Largest Connected Component
Ratings # ratings # vertices # edges # cycles
Books 22,507,155 9,973,735 22,268,630 12,294,896
Electronics 7,824,482 4,523,296 7,734,582 3,211,287
Jewelry 5,748,920 3,796,967 5,484,633 1,687,667
TV 4,607,047 2,236,744 4,573,784 2,337,041
Vinyl 3,749,004 1,959,693 3,684,143 1,724,451
Outdoors 3,268,695 2,147,848 3,075,419 927,572
AndrApp 2,638,172 1,373,018 2,631,009 1,257,992
Games 2,252,771 1,489,764 2,142,593 652,830
Automoto 1,373,768 950,831 1,239,450 288,620
Garden 993,490 735,815 939,679 203,865
Baby 915,446 559,040 892,231 333,192
Music 836,006 525,522 702,584 177,063
Video 583,993 433,702 572,834 139,133
Instruments 500,176 355,507 457,140 101,634
Reviews # reviews # vertices # edges # cycles
Core Music 64,706 9,109 64,706 55,598
Core Video 37,126 6,815 37,126 30,312
Core Instrum 10,621 2,329 10,261 7,933

is balanced as it has no unbalanced cycles, and it is a sub-
graph as the algorithm removes the vertices. ABCD recovers

TABLE 4
Amazon ratings and reviews graph results. The time in seconds for

ABCD includes 5000 iterations. The time in seconds for TIMBAL is the
total time. For graphs over a million vertices, we had only data on one

run as it takes over 100 minutes per run for TIMBAL. N/A indicates that
a method does not terminate within two days.

Amazon TIMBAL ABCD
Ratings # vertices time s # vertices time s
Book N/A N/A 7,085,285 116897
Electronics N/A N/A 3,104,399 37677
Jewelry 530,363 47046.34 2,769,431 21468
TV 891,106 11379.43 1,579,760 17146
Vinyl 612,700 11529.94 1,452,496 13011
Outdoors 683,846 12717.01 1,640,544 11295
AndrApp 437,740 5052.82 977,536 12254
Games 565,301 6251 1,150,782 7617.5
Automoto 140,711 12989 744,474 4157
Garden 122,844 5204 522,340 3200
Baby 229,545 3591 397,940 2986
Music 351,124 3223 451,320 2203
Video 121,694 4280 360,665 2176
Instruments 97,486 1785 285,233 1464.8
Reviews # vertices time s # vertices time s
Core Music 5 4,193 30.3 5,143 200.4
Core Video 5 3,419 23.7 3,934 128.3
Core Instrum 5 1,725 19.1 1,559 36.9

significantly balanced subgraphs, over two times larger than
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Fig. 8. ABCD and TIMBAL running time comparison for Amazon data.
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Fig. 9. ABCD and TIMBAL algorithm is linear with the graph size m + n
for 28 signed graphs tested. TIMBAL failed to complete the largest two
graphs.

the state of the art, while keeping the processing time linear
with the size of the graph.

Recently, [30] proposed faster O(m) heuristic and effi-
cient implementation for balancing a graph and for typi-
cally obtaining a lower number of flips to reach consensus.
Their paper suggests that edges, regardless of whether they
belong to the spanning tree, can be chosen to be switched

for balance. We plan to investigate this next, as multiple
unbalanced fundamental cycles can share an edge in the
spanning edge. Changing the sign of a tree edge might
cause processing instabilities. Future work also includes
integrating the OpenMP and GPU code accelerations. [24]
has shown that GPU code takes less than 15 minutes to
find 1000 fundamental cycle bases for 10M vertices and 22M
edges. Since the runtime is roughly proportional to the input
size, the ABCD parallel implementation can balance ten
times larger inputs in a few seconds per sample, making it
tractable to analyze graphs with 100s of millions of vertices
and edges.
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[24] G. Alabandi, J. Tešić, L. Rusnak, and M. Burtscher, “Discovering
and balancing fundamental cycles in large signed graphs,” in

Proceedings of the International Conference for High-Performance
Computing, Networking, Storage and Analysis, ser. SC ’21. New
York, NY, USA: Association for Computing Machinery, 2021.
[Online]. Available: https://doi.org/10.1145/3458817.3476153
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