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ABSTRACT This study is a path forward for the large-scale, data-driven quantitative analysis of noisy
open-source data resources. The goal is to support qualitative findings of smaller studies with extensive
open-source data-driven analytics in a new way. The study presented in this research focuses on learning
interventions. It uses nine publicly accessible datasets to understand and mitigate factors contributing to
learning loss and the practical learning recovery measures in Texas public school districts after the recent
school closures. The data came from the Census Bureau 2010, USAFACTS, Texas Department of State
Health Services (DSHS), the National Center for Education Statistics (CCD), the US Bureau of Labor
Statistics (LAUS), and three sources from the Texas Education Agency (STAAR, TEA, ADA, ESSER). We
demonstrate a novel data-driven approach to discover insights from an extensive collection of heterogeneous
public data sources. For the pandemic school closure period, the mode of instruction and prior score emerged
as the primary resilience factors in the learning recovery intervention method. Grade level and census
community income level are the most influential factors in predicting learning loss for both Math and
Reading. We demonstrate that data-driven unbiased data analysis at a larger scale can offer policymakers
an actionable understanding of how to identify learning-loss tendencies and prevent them in public schools.

INDEX TERMS noisy tabular data, data in the wild, gradient boosting, feature selection, dimensionality
reduction

I. INTRODUCTION

Learning loss, within the context of education, can be defined
as the depletion or regression of previously attained or ex-
pected knowledge and competencies. COVID-19 also had an
impact on teacher preparation [1]. As an example, the recent
COVID-19 pandemic forced many schools to close, and the
global consequences of a five-month closure of schools were
equated to less than $10 trillion monetary loss as 43 million
students were affected by the school closures [2]. The school
closures have led to learning loss among students [3]. The
learning loss percentage in some countries was estimated
from 0.08 to 0.29 based on the public data [4]. The school
closure and subsequent reopening in the United States were
uneven as there was no consensus. Thus, the learning loss
was not uniform across the states, as documented for Vir-
ginia, Maryland, Ohio, and Connecticut in [5]. Individual
studies of Rhode Island and North Carolina education data
provided estimations of the learning losses and recovery [6].

The data-driven factors contributing to the learning recovery
in the abovementioned studies remain elusive and diverse [7].
This complexity posed challenges for policymakers in the
other states in determining the learning intervention measures
based on their data. The Texas Education Agency published
a report documenting the 4% Loss in Reading and 15% Loss
in Math on the STAAR exam and how the negative impact of
COVID-19 erased years of improvement in Reading andMath
[8], [9]. If the apparent factors (census data), location (urban
vs. rural), and standardized exam data are good predictors of
learning loss. Next, we pinpoint the resilient factors contribut-
ing to learning recovery within Texas schools. Our approach
is novel in that it integrates data science methodologies with
educational policy analysis, offering a data-driven perspective
to inform decision-making processes. We identify the factors
most important for the schools to experience significant learn-
ing loss and recovery using nine open data sources. Next,
we introduce the improved automated attribute importance
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analysis to understand various parameters, including con-
sensus information, demographics of public school districts,
instructional modalities, socioeconomic indicators such as in-
come levels, urban or rural settings, student attendance rates,
county infection rates, and unemployment statistics, among
numerous other factors from 2019 to 2022.

This research uncovers fascinating data-driven indicators:
the most resilient factor influencing learning loss in the dis-
trict is how early or late the students return to in-person learn-
ing. The size and location of a district, along with the amount
of money in the area and the Elementary and Secondary
School Emergency Relief Fund received, play critical roles
in the recovery process. The results identify the significance
of various factors in promoting learning recovery in Math
and Reading, highlighting the importance of considering a
district’s economic status, size, locale, demographics, and
funding. The remainder of this paper is structured as follows:
Section II reviews pertinent literature, Section III-B outlines
the research design, Section IV describes data gathering and
preparation; Results presents our findings; and Section VI
discusses the implications and suggests directions for future
research.

FIGURE 1. Fusion Process Of Aggregating Outcomes From Various Feature
Selection Methods For Reading And Math For The Academic Years
2018-2019, 2020-2021, 2021-2022. Refer to Table 1.

II. RELATED WORK
In this section, we focus on (1) quantitative research and
machine learning tools to gain insights from data on the
relationship with outcomes without overfitting features to the
data and (2) directions for selecting machine learning models
for predicting learning loss with tabular data. The most pop-
ular machine learning (ML) techniques—logistic regression,
support vector machines, Bayesian belief networks, decision
trees, and neural networks—generally offer excellent classi-
fication accuracy above 70% for simple classification tasks
[10]. However, excessive reliance on feature engineering
may result in less-than-optimal outcomes when translating
domain-specific data [11]. ML methods such as deep neural
networks (DNN), decision trees, support vector machines
(SVM), and K-nearest neighbors (KNN) are widely used for
predicting student academic performance [12]. Demographic,
educational, familial/personal, and internal assessment fac-
tors are standard resources for data-driven evaluations of

student performance across classroom metrics, grade levels,
and standardized tests [11].
The COVID-19 pandemic significantly disrupted educa-

tional systems worldwide, exacerbating inequalities in learn-
ing outcomes, particularly for underserved communities. Re-
cent research highlights the unequal effects of these disrup-
tions and the importance of policy interventions in addressing
them [13]. The study synthesizes evidence on the achieve-
ment gap and emphasizes technology and policy innovations
to support equitable recovery and long-term resilience.
Recent research indicates that state-of-the-art machine

learning techniques for tabular data surpass existing methods
and exhibit less sensitivity to input bias and noise compared to
DNNs [14]. Gradient-boosted decision trees (GBDT) models
such as XGBoost [15], LightGBM [16], and CatBoost [17]
are preferred for tabular data due to their superior perfor-
mance and ability to handle complex feature interactions
effectively. Although deep learning models such as TabNet
[18], NODE [19], and TabNN [20] show promise, recent
benchmarks confirm that GBDTmodels still outperform deep
learning for tabular data in most scenarios [21].

III. METHODOLOGY
The methodology employed in this study aims to system-
atically uncover factors contributing to both learning loss
and learning gain among students. The study utilizes com-
prehensive datasets from Texas public schools to analyze
trends and patterns in Math and Reading scores by leveraging
advanced educational data science techniques. This method-
ology integrates statistical modeling, machine learning algo-
rithms, and data visualization tools to identify critical vari-
ables influencing student academic performance over time.
By examining multiple academic years, including the 2021-
2022 data, the study ensures robustness and reliability in its
findings, offering valuable insights into educational outcomes
and informing targeted interventions.

A. ATTRIBUTE IMPORTANCE SCORING
First, we introduce an innovative approach to identifying
critical features from various potential factors. Heterogeneous
data tends to have overlapping information mixed with nu-
merical and categorical data. Logistic Regression coefficients
for the actual data often randomly select one out of multiple
correlated columns and are not robust enough for the noisy
multi-source data analysis [22]. We propose to contrast filter,
embedded, and wrapper methods for feature importance and
propose a novel aggregation technique for robustness.
Several distinct (ten with variations) algorithms for auto-

mated feature selection and interpretativemethods for analyz-
ing feature importance are evaluated to assess their effective-
ness. These measures aim to mitigate issues associated with
"Garbage In, Garbage Out" (GIGO) and trivial modeling. We
construct a quasi-orthonormal attribute space by distilling and
aggregating highly correlated features.
We wanted to avoid artificial weighting of the features in

the modeling step, so we utilized this correlation filtering in
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this section to aggregate linearly related features in our data
set into one attribute. To this end, we have expanded several
categorical features to multiple binary features as we found
that numerous separate categories capture highly overlapping
data. The Pearson correlation coefficient ρ measures the lin-
ear relationship between two normally distributed variables
and is defined in Equation 1:

ρ =
cov(X ,Y )
σXσY

(1)

The cov(X ,Y ) represents the covariance between variables X
and Y , while σX and σY are the standard deviations of X and
Y respectively. Pearson’s correlation coefficient estimate r ,
also known as a "correlation coefficient," for attribute feature
vectors x = (x1, . . . , xn) with mean x̄ and y = (y1, . . . , yn)
with mean ȳ, is obtained via a Least-Squares fit, as defined in
Equation 2.

r =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√

(yi − ȳ)2
(2)

The x̄ and ȳ represent the means of vectors x and y respec-
tively. A value of 1 represents a perfect positive relationship, -
1 is a perfect negative relationship, and 0 indicates the absence
of a relationship between variables. We use features with high
correlation coefficients to aggregate them into one attribute,
as they are linearly dependent on each other. Eventually, we
could keep one attribute, the most highly correlated to our
label, of those overlapping features in our analysis. Then,
we can combine all binary dummy-coded variables from
related categories as a set in variable selection. This approach
thus reduces an attribute dimension that provides better in-
terpretability of our attribute set and its importance. Here,
we modify ten distinct approaches from filter, embedded,
and wrapper methods sets to identify and assess the features
influencing our prediction models. Each technique aims to
select feature sets with minimal redundancy and maximal
relevance, resulting in either a chosen set of features or a score
indicating feature importance.
Permutation Feature Importance (PFI) is a technique that
replaces the values of a feature with noise and measures the
change in performance metrics (such as accuracy) between
the baseline and permuted data set. This method overcomes
some limitations of impurity-based feature importance but
is biased by the correlation between features [23]. Our ulti-
mate feature set comprises features exhibiting positive mean
importance as determined by the PFI, identifying crucial
features. We utilize Random Forests PFI RF and Logistic
Regression with Ridge Regularization PFI RR, both of which
assign non-zero scores to all features.
Recursive Feature Elimination (RFE) is a method of train-
ing a model on a complete set of features in the data set,
eliminating the features with the smallest coefficients. This
process iterates until the 10-fold cross-validation score of the
models with RandomForestRFERF and Logistic Regression
with Ridge Regularization RFE RR on the training data shows

TABLE 1. Resilience Factors and Methods with Abbreviations

Abbreviation Resilience Factor

LI Low Income
ATT Attendance
DEM Demographics
R/E Race/Ethnicity
CC County COVID
DM District Makeup
MOI Mode of Instruction
TST Testing
PS Prior Score
LOC Locale

Abbreviation Feature Method

RFE RF Recursive Feature Elimination - Random Forest
RFE RR Recursive Feature Elimination - Ridge Regression
VT Variance Threshold
SFS RR Sequential Feature Selection - Ridge Regression
SFS KNN Sequential Feature Selection - K-Nearest Neighbors
FI RF Feature Importance - Random Forest
PFI RR Permutation Feature Importance - Ridge
PFI RF Permutation Feature Importance - Random Forest
Elastic Loss ElasticNet Logistic Regression Loss
Elastic Expected ElasticNet Logistic Regression Expected
Elastic Gain ElasticNet Logistic Regression Gain
Lasso Loss Logistic Regression L1 (Lasso) Loss
Lasso Expected Logistic Regression L1 (Lasso) Expected
Lasso Gain Logistic Regression L1 (Lasso) Gain
Ridge Loss Logistic Regression L2 (Ridge) Loss
Ridge Expected Logistic Regression L2 (Ridge) Expected
Ridge Gain Logistic Regression L2 (Ridge) Gain

a decrease. The final scores are attribute rankings where 1
indicates the most relevant features [24].
Logistic Regression with Filtering and Regularization is
a technique that uses L1 Lasso or L1 and L2 Elastic penalty
terms to shrink the coefficients during training. L1 regular-
ization reduces the coefficients of some features to zero for
both, and the remaining non-zero coefficients are consid-
ered useful information for prediction. On the other hand,
L2 regularization, commonly known as Ridge, penalizes the
square of coefficients, effectively reducing their magnitude
without necessarily setting them to zero. This method helps
handlemulticollinearity and stabilize themodel by smoothing
out fluctuations in the data, thereby improving generalization
performance.
Feature Importance Random Forest (FI RF) is a method
that leverages the Random Forests machine learning algo-
rithm to determine the importance of each feature. This
importance is measured using either the Gini or the mean
decrease impurity. The selected set contains features with the
top 50% scores.
Variance Threshold (VT) is a straightforward method to
eliminate features by removing features with low variance in
the training data set [25]. In this work, the threshold used is
0.8*(1-0.8), meaning that features with 80% similar values in
the training data set are not selected. The final set of features
consists of the k features with the highest variance. VT, SFS
RR, and SFS KNN provide a binary selection of features.
Sequential Feature Selection (SFS) searches for the optimal
set of features by greedily evaluating all possible combina-
tions of features. The method works by adding one feature at
a time and assessing each subset based on the 5-fold cross-
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validation score of Logistic Regression with Ridge Regres-
sion SFS RR and SFS KNN models.

The labels are also used in Figures 2 to 4 to illustrate
the Section V and comparisons clearly. Figure 1 illustrates
the aggregated scoring mechanism detailed in Algorithm 1.
This figure emphasizes the innovative approach to combining
filter, embedded, and wrapper methods for feature selection,
ultimately producing a robust feature importance ranking.

We obtained ten diverse results comprising binary, numer-
ical, and rank scores. We suggest multiple fusion scoring
mechanisms for end-users, as detailed in Algorithm 1. First,
we look into five approaches that filter out features and rank
the features by the binary sum outputs. Next, we take the
methods that provide scores for all features and rank the
attribute importance based on the sum of absolute scores. We
transform the scores into rankings and combine them with
the filtering and ranking methods to develop the final feature,
importance ranking. Figure 1 illustrates the fusion process
described above.

B. PREDICTION MODELING

In this study, we address whether the public data collected
from web sources is sufficient to predict school district learn-
ing performance during the COVID-19 years reliably. Thus,
we create five basic baseline models: Logistic Regression
with Ridge Regularization, Support Vector Machines (SVM),
K-Nearest Neighbor (KNN) suitable for nonlinear and non-
separable data, Random Forests, and GBDT. Additionally, we
explore four advanced GBDT algorithms: XGBoost, Light-
GBM, CatBoost, and HistGradientBoosting. Since the data
aligns with the features of tabular data, we opt for GBDT
methodologies due to their demonstrated robustness in han-
dling diverse tabular datasets [26]. The gradient-boosted de-
cision tree (GBDT) assembles many weak decision trees and
grows them sequentially and iteratively based on the residual
modeling from the previous trees.

The GBDT methods handle tricky observations well and
are optimized for faster and more efficient fitting using a data
sparsity-aware histogram-based algorithm. In contrast to the
pointwise split of the traditional GBDT, which is prone to
overfitting, the algorithm’s approximate gradient creates esti-
mates by creating a histogram for tree splits. As this histogram
algorithm does not handle the sparsity of the data, especially
for tabular data with missing values and one-hot encoded
categorical features, these algorithms improved tree splits.
For example, XGBoost uses Sparsity-aware Split Finding,
defining a default direction of tree split in each tree node
[15]. The LightGBM provides the Gradient-Based One-Side
Sampling technique, which filters data instances with a large
gradient to adjust the influence of the sparsity, and Exclusive
Feature Bundling combining features with non-zero values to
reduce the number of columns [16]. Our ultimate goal is to
assess the predictive power of these nine machine-learning
models in this real example.
IV. OPEN SOURCE DATA ACQUISITION AND PROCESSING

Algorithm 1 Fusion Scoring Algorithm
1: Input: Feature Selection Importance Scores (binary, nu-

merical)
2: Output: Final Fusion Importance Ranking
3: Initialize BinarySumRankings and AbsoluteScoreRank-

ings
4: for each result in Results do
5: if result is binary then
6: Filter and sum relevant binary features
7: Rank features by binary sums
8: Append to BinarySumRankings
9: else
10: Calculate and rank features by absolute scores
11: Append to AbsoluteScoreRankings
12: end if
13: end for
14: Transform BinarySumRankings
15: Transform AbsoluteScoreRankings
16: Combine and merge both rankings for the FinalFea-

tureImportanceRanking
17: Return: FinalRanking

A. OPEN DATA SOURCES
The dataset utilized for this analysis integrates information
from nine distinct sources, employing both School District
I.D. and County FIPS Code to cover a comprehensive range
of 1,165 school districts across 253 counties in Texas. The
data frames and their respective sources include CCD from
the National Center for Education Statistics, providing a ma-
trix of 1189 rows by 66 columns; STAAR and TEA from
the Texas Education Agency, with dimensions of 1184x217
and 1182x217 respectively; ADA from the Texas Education
Agency, comprising 1226 rows by three columns; ESSER
from the Texas Education Agency, with 1208 rows by six
columns; Census data from the Census Bureau (2010), with
254 rows by 37 columns; Covid data from USAFacts, featur-
ing 254 rows by eight columns; LAUS from the US Bureau
of Labor Statistics, spanning 254 rows by 13 columns; and
additional Covid data fromDSHS, providing a matrix of 1216
rows by seven columns.
State of Texas Assessments of Academic Readiness
(STAAR) data was obtained from the Texas Education
Agency (TEA) for the fiscal years 2020, 2021, and 2022
for each school district [27]. The STAAR data we collected
are the average scores for Math and Reading tests and the
number of students who participated in the grades 3-8 tests.
These data also include students’ numbers and average scores
under various classifications, such as Title 1 participants,
economically disadvantaged, free lunch, special education,
Hispanic, Black, White, and Asian.
Common Core of Data (CCD) [28] is the primary database
on public elementary and secondary education supplied by
the National Center for Education Statistics (NCES) in the
United States. The CCD provided us with public school
characteristics, student demographics by grade, and faculty
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information at the school district in Texas for the fiscal years
2019, 2020, 2021, and 2022. For example, according to the
data acquired, 62.5% of the students attend school in rural
areas, 19.8% in town areas, 10.6% in suburban areas, and only
7.1% in the city area.
Texas School COVID-19 campus data comes from the Texas
Department of State Health Services (DSHS) [29], including
the self-reported student enrollment and on-campus enroll-
ment numbers of the dates 28 September 2020, 30 October
2020 and January 29, 2021, at each school district in Texas
County COVID-19 data on infection and death cases due
to Coronavirus for each Texas County was parsed from US-
AFacts source [30]. The average daily attendance (ADA)
is a sum of attendance counts divided by days of instruction
per school district and provided by TEA. Elementary and
Secondary School Emergency Relief (ESSER) Grant data
provided by TEA summarizes COVID-19 federal distribution
by TEA to school districts for the fiscal years 2019, 2020,
2021, and 2022. The Local Area Unemployment Statistics
(LAUS) data [31] was parsed from the US Bureau of Labor
Statistics (BLS) for the years 2019 and 2021 to examine
the workforce impact on learning loss in the counties. Cen-
sus block group 2010 data [32] captures the county’s gen-
eral population characteristics. Upon completing the initial
data integration process, merging data from nine sources
by matching school district I.D. and county FIPS code, the
dataset encompasses 1,165 school districts in Texas, spanning
253 counties with 506 features, one definite, and 505 numer-
ical variables.

For the academic years 2018-2019, 2020-2021, and 2021-
2022, the percentage distribution of students by race varied
slightly over time. In 2018-2019, the breakdown was as fol-
lows: 1.07% Asian or Asian/Pacific Islander, 6.50% Black
or African American, 40.41% Hispanic, and 49.09% White.
The following year, 2020-2021, saw minor shifts with 1.10%
Asian or Asian/Pacific Islander, 6.35% Black or African
American, 41.32% Hispanic, and 48.12% White. For the
academic year 2021-2022, the proportions were 1.12% Asian
or Asian/Pacific Islander, 6.29% Black or African American,
41.67% Hispanic, and 47.70% White.
CARES ESSER I 20, ARP ESSER III 21 features are part
of the Elementary and Secondary School Emergency Relief
(ESSER) grant programs, which are federal funds granted to
State education agencies (SEAs) providing Local education
agencies (LEAs) to address the impact due to COVID-19 on
elementary and secondary schools across the nation; thus, the
funds have been administered by Texas Education Agency
(TEA) and allocated in each school district in Texas [33],
[34]. CARES ESSER I: Authorized on 27 March 2020 the
Coronavirus Aid Relief and Economic Security (CARES)Act
with $13.2 billion for the fiscal year 2020. CRRSA ESSER
II: Authorized on 27 December 2020, as the Coronavirus
Response and Relief Supplemental Appropriations (CRRSA)
Act with $54.3 billion for the fiscal year 2021. ARP ESSER
III: Authorized on 11 March 2021, as the American Res-
cue Plan (ARP) Act with $122 billion for the fiscal year

2021. ESSER-SUPP: Authorized by the Texas Legislature
to provide additional resources for not reimbursed costs to
support students not performing well educationally fromM13
March 2020 to 30 September 2022. To help policymakers
make more informative decisions on learning recovery with
localized efforts in each school district, we collected data
from nine different sources to determine the qualitative con-
clusions from small sample datasets. Qualitative findings on
the educational impacts of COVID-19 highlight significant
disruptions in learning environments and the varied responses
of educational systems worldwide. It emphasizes qualitative
insights into the socio-emotional and pedagogical challenges
students and educators face during the pandemic [35], match-
ing the data-driven findings from significant, heterogeneous,
noisy public data sources.

B. DATA CLEANING, AGGREGATION AND FILTERING
Common Core of Data (CCD) [28] is the primary database
on public elementary and secondary education supplied by
the National Center for Education Statistics (NCES) in the
United States. The CCD provided us with public school
characteristics, student demographics by grade, and faculty
information at the school district in Texas for the fiscal years
2019 and 2021. Then, we merged the CCD data with the State
of Texas Assessments of Academic Readiness (STAAR) data
[27] from the Texas Education Agency (TEA) for the fiscal
years 2019, 2020, 2021, and 2022 at each school district. The
STAAR data we collected are the average scores forMath and
Reading tests and the number of students who participated
in the grades 3-8 trials. These data also include students’
numbers and average scores under various classifications,
such as Title 1 participants, economically disadvantaged, free
lunch, special education, Hispanic, Black, White, and Asian.
Next, our data merged with COVID-19 campus data from
the Texas Department of State Health Services (DSHS) [29],
including the self-reported student enrollment and on-campus
enrollment numbers of the dates 28 September 2020, 30
October 2020, and January 29, 2021, at each school district
in Texas. Additional COVID-19 data involved confirmed
infection and death cases [30] due to Coronavirus at each
county from USAFacts. Also, the average daily attendance
(ADA) [36], which consists of the sum of attendance counts
divided by days of instruction, and data from the Elementary
and Secondary School Emergency Relief (ESSER) Grant
Programs [33] were collected from TEA for school district
level. The ADA data for fiscal years 2019 and 2021 capture
the impact of district attendance, and the ESSER data reflect
the localized efforts of TEA allocating the grant amount at
each school district for the fiscal years 2019, 2020, 2021,
and 2022. Also, we combined the Local Area Unemployment
Statistics (LAUS) data [31] from the US Bureau of Labor
Statistics (BLS) for the years 2019 and 2021 to examine
the negative impact of the unemployment rate on learning
loss at the county level. The census block group 2010 data
[32] capture the demographic features of a county for the
general population. We merged the data from nine sources
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by matching the school district I.D. and county FIPS code
and then integrated based on the district I.D. and county FIPS
code.

The analysis aggregates the values from various demo-
graphic and educational categories into one consolidated
group by calculating the percentage difference between the
corresponding pairs of values from 2022-2021, 2020-2021,
and 2018-2019. For instance, the percentage difference be-
tween the total count of White Students in 2020-2021 and
2018-2019, denoted as ’% White Students Diff,’ reflects the
change in the demographic composition over the two years.
Similarly, the percentage difference in total race/ethnicity
counts and school-wide Title I program participation provides
insights into broader demographic shifts and changes in pro-
gram enrollment. Moreover, examining the percentage differ-
ence in enrollment counts across different grade levels, such
as Prek and Kinder, between the two years offers valuable
information regarding enrollment trends within specific age
groups [37].

Among the 506 features analyzed, 416 display missing val-
ues across three data sources, varying from one to 88%within
our dataset. Notably, 408 features originate from STAAR
and TEA data, six from CCD and NCES, and two from
COVID and DSHS data. Within these 416 features, 332 have
less than 20% missing values, while 24 exhibits more than
80% missing values. Features exhibiting over 20% missing
values primarily originate from the STAAR data, specifically
concerning average scores and participation in the STAAR
tests. Consequently, we eliminated these features from the
STAAR dataset. Additionally, we excluded school districts
lacking CCD and COVID data, resulting in 955 public school
districts in Texas available for analysis, featuring 119 features
devoid of missing values.

Out of 119 features, we aggregate the 58 features that
duplicate the 2019, 2021, and 2022 data into 29 differential
features. For example, Total Schools 2020-2021 and Total
Schools 2018-2019 features are aggregated into Total Schools
Diff 2021, reducing the total number of features to 90. For
Total Schools 2022-2021 and Total Schools 2020-2021, fea-
tures are aggregated into Total Schools Diff 2022, reducing
the total number of features to 90. The dataset’s missing
value distribution across columns reveals varying frequencies
within distinct count ranges.

C. DATA LABELING

Our data set is unlabeled; thus, the process begins by normal-
izing the individual grade scores, ensuring consistency across
different scales, through the equation: NormalizedScore =

grade score
max(grade score) . Next, the district average is calculated by
summing up the scores of grades G3 to G8 and dividing by
the total number of grades. The normalized score provides
an overarching view of the academic performance within
the district, represented by the equation: DistrictAverage =
(G3+G4+G5+G6+G7+G8)

TotalNumberOfGrades . The percentage loss in performance
is computed over time intervals, reflecting changes in educa-

tional outcomes in Eq 4:

Score =
Avg 2021− Avg 2019

Avg 2019
(3)

Score =
Avg 2022− Avg 2021

Avg 2021
(4)

We label the scores as follows: Gain if the overall score
is more significant than zero, Expected if the overall score
equals zero, and Loss if the overall score is less than zero. This
comprehensive process enables the assessment of educational
trends, facilitating informed decisions and interventions to
enhance learning outcomes.
When analyzed by year, the normalization process encom-

passes various facets of educational institutions, such as the
count of operational public schools, identification of School-
wide Title 1 designations, and Title 1 eligibility. The data
provide insights into the educational workforce, encompass-
ing Full-Time Equivalent (FTE) teachers, overall staff counts,
and lunch program statistics like free and reduced-price lunch
participants. Race and ethnicity distributions among Asian,
Hispanic, Black, and White demographics, delineated by
grade groups from Prekindergarten to Grade 12, are normal-
ized for accurate assessment. Attendance metrics undergo
normalization regarding average daily attendance (ADA) and
as a percentage of total students per district. By grade, the
standardization involves the Percentage of students taking the
STAAR Reading and Math tests, with average scores ratio-
ed to the 100th percentile in each grade, regarding population
metrics, normalization factors in confirmed COVID-19 cases,
and deaths as percentages of the county population. It also en-
compasses race/ethnicity and age group distributions as a per-
centage of the county population 2010. Lastly, when assessed
by date, the normalization process considers the Percentage of
students on campus on 28 September 2020, 30 October 2020,
and January 29, 2021. The Census block grouped by county
[32] categorizes different household types and housing units
as percentages of the total number of households and housing
units in 2010, respectively. This comprehensive standard-
ization methodology ensures a consistent and comparable
analysis across diverse data points and time frames. Table 2
illustrates the race, grade, and age groups across counties,
highlighting diversity and composition, which are crucial for
understanding educational demographics and planning edu-
cational resources.
For Math, the average learning gain from 2021 to 2022

was 2.80%, contrasting with the previous average loss of -
2.75%. This shift indicates an overall improvement in Math
proficiency. The standard deviation increased to 11.93%,
suggesting more significant variability in student outcomes.
The minimum loss observed was -50.10%, while the max-
imum gain was 210.09%. In Reading, the average learning
gain from 2021 to 2022 was 0.58%, slightly higher than
the previous period’s gain of 0.32%. The standard deviation
remained similar at 9.08%, showing consistent variability.
The minimum observed loss in Reading was -50.48%, and
the maximum gain was 191.43%. Considering all subjects
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TABLE 2. Demographic Proportions of Race/Ethnicity, Gender, and Age Groups Across Counties [32].

Race Gender Age (0-24) Age (25+)
Category Total Category Total Category Total Category Total
White 17,701,487 Male 12,472,234 0-4 1,928,470 35-44 3,458,373
Black 2,979,598 Female 12,673,245 5-9 1,928,232 45-54 3,435,322
Asian 964,596 10-14 1,881,881 55-64 2,597,668

Hispanic 9,460,903 15-19 1,883,121 65-74 1,472,248
20-24 1,817,069 75+ 1,129,626
25-34 3,613,469

combined, the average learning gain from 2021 to 2022 was
1.69%, a significant improvement compared to the previous
average loss of -1.22%. The standard deviation increased
to 10.22%, indicating more diverse student outcomes. The
minimum observed loss across all subjects was -36.35%,
while the maximum gain was 193.44%. Figure 5 shows that
student learning outcomes improved from 2021 to 2022, with
average gains recorded across all subjects. Math showed the
most substantial recovery, transitioning from an average loss
to a notable gain, while Reading maintained a modest im-
provement. The increased standard deviations indicate more
varied student experiences during this period. Next, we set the
threshold to categorize districts based on the STAAR scores
into three categories: Loss, Expected, and Gain. The data
revealed that more districts experienced a loss in Math, with
a median loss value of -0.03, compared to a median of 0 for
Reading. We analyzed and predicted outcomes for Math and
Reading separately. School districts in the middle 50% of loss
values were labeled asExpected, those 25% as Loss, and those
75% as Gain.
This categorization enabled us to explore the correlation

between various features and these labels. Our findings in-
dicated that the proportion of White students was higher in
districts labeled as Gain and decreased in those labeled as
Loss. Conversely, Hispanic students constituted about two-
thirds of the Loss category, and their proportion decreased in
the Expected and Gain categories for both Math and Read-
ing. The locale of school districts showed a correlation with
learning loss labels as over half of the schools were located
in rural areas, with rural locales positively correlated with the
Gain label. However, an increasing number of losses occurred
in schools located in city and suburban areas.

D. DATA PRE-PROCESSING
In LossA, we propose a dimensionality reduction dataset to
enhance interpretability and pinpoint resilience factors asso-
ciated with Learning loss. For instance, features such as "To-
tal Schools 2020-2021" and "Total Schools 2018-2019" are
combined into a single feature, "Total Schools Diff," resulting
in a total reduction to 90 features. These features are treated
independently in the dataset LossB. This approach employs
the raw integrated data for the GBDT experiment without
normalization while considering missing values. LossB treats
each feature individually, whereas LossA utilizes normalized
and aggregated features to reduce dimensionality and enhance
interpretability. While this approach LossA may result in a
more prominent feature space and potentially increase com-
putational complexity, it allows for amore detailed analysis of

features and their impact on learning loss. By examining each
feature in isolation, we aim to gain insights into the specific
factors contributing to learning loss without the influence of
normalization or aggregation techniques. LossB provides a
complementary perspective to LossA and allows for a compre-
hensive exploration of the dataset, encompassing 506 features
across 1,165 school districts.

V. RESULTS
In this section, we analyze the results and proposed ap-
proaches. For simplicity, Table 1 describes the ten abbrevia-
tion labels used for the feature importance scoring. RFE (RF
and RR) provide attribute ranking, and SFS (KNN and RR)
provide a binary selection of features. RF FI and PMI (RF and
RR) offer non-zero scores to all 90 features. Lasso, Ridge, and
Elastic fit for theGain,Expected, and Loss provides scores for
a subset of coefficients selected.
We consider Math Learning Loss and Reading Learning

Loss separate tasks with separate attribute selections from the
same dataset. Table 1 expands on the following abbreviated
feature selection methods that separately detect the resilience
factors; abbreviations can be found in Table 1, for Learning
Loss due to COVID-19 using the data set with 90 features and
955 school districts in Texas as a baseline.

A. ATTRIBUTE IMPORTANCE ANALYSIS
Following Algorithm 1 and the process illustrated in Figure 1,
we aggregate five filtering method outcomes for Reading and
Math: VT, SFSKNN, SFSRidge, and Elastic Gain and Elastic
Loss binarized coefficients. The Initial Importance Values
represent raw scores from machine learning methods, which
are challenging to compare due to their non-uniformity. The
Binary Selection Values are the first output transformation,
where VT, SFS KNN, and SFS Ridge outcomes are already
binary. RFE methods retain the rank of one feature, assigning
it a value of 1, and logistic regression assigns +1 to fea-
tures with positive coefficients and -1 to those with negative
coefficients, ignoring coefficients of 0. Feature importance
selects the top 50% of features with positive scores as 1,
and permutation feature importance assigns 1 to features with
positive scores and zero otherwise. Summing these scores and
sorting creates feature importance rankings for each subject
out of 9.
The Impact Score Values, the second transformation, nor-

malize scores by dividing each method’s scores by the sum
of all feature scores to ensure equal contribution to the final
ranking. The summation of the absolute value of normalized
scores forms feature ranking. The top 20 features with the
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highest scores are selected for Math and Reading, prioritizing
the impact score, which integrates binary and non-zero scores.
The binary score is a secondary measure for understanding
importance, determining the cutoff point where the impact
score drops. Secondary labels are applied to features to cat-
egorize their type, enhancing understanding of their signif-
icance. This approach facilitates comparing feature impor-
tance and identifying the most critical features in educational
data analysis.

In this study, we applied several feature selection methods
to determine their effectiveness in reducing the dimension-
ality of features for Math and Reading scores. The methods
evaluated include RFE (RF and RR), VT, SFS (RF and KNN),
FI RF, PFI (RR and RF), Elastic, Lasso, and Ridge, (Loss,
Gain, Expected). Lasso, Elastic, PFI RR, PFI RF, and FI
RF generate score outputs. Lasso resulted in 51 features for
both Math and Reading. Figure 6 shows methods SFS KNN,
SFS RR, and VT that focus on selecting subsets of features
based on iterative addition or variance criteria. SFS methods
iteratively add features to improve model performance, while
VT removes low-variance features to enhance efficiency and
accuracy. Figure 4 illustrates RFE RF and RFE RR employ
recursive techniques to systematically reduce feature sets,
facilitating the identification of the most influential features
while optimizing computational efficiency. Grouping these
methods aids in visualizing each feature’s interpretability by
each feature selection method. Figures 2 include F1 RF, PFI
RR, and PFI RF, emphasizing feature importance assessment
through recursive elimination or permutation testing. These
methods evaluate how features contribute to model accuracy,
identifying crucial predictors for refined model performance.

Figure 3 illustrated the most selected features such as #
of Families 10, % On Campus 01/29/21, and % On Campus
10/30/20 by feature selection techniques listed in Table 1).
The # of Families 10 showed significant relevance across
all methods, indicating its robust influence on educational
outcomes during disrupted learning environments. The %On
Campus 01/29/21 and % On Campus 10/30/20 demonstrated
varying impacts depending on the method employed.

The ten methods ranked 18 features as top importance and
agreed to exclude 33 descriptors, mainly from the workforce,
Census, and COVID data sources. The difference between
free lunch and the COVID deaths in the county had little
impact on learning loss. Next, we sort the remaining 57
features using RF FI, PMI (RF and RR), RFE (RR and RF)
scores, and Elastic Gain and Elastic Loss. Since all of them
have an importance ranking per feature (including the sign),
we first normalize the scores for each method and then sum
them as listed in Table 1.

Elastic reduced the features to 45 for Reading and 41 for
Math. PFI RR identified 82 for Reading and 28 for Math,
while PFI RF selected 26 for Reading and 70 for Math. FI RF
resulted in 45 features for both subjects. Methods producing
binary outputs include VT, SFS RR, and SFS KNN. VT
reduced the features to 20 for both Reading and Math. Both
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FIGURE 2. Filtering Feature Selection Methods for (a) Reading and (b)
Math Comparison of RFE RF and RR.

SFS RR and SFS KNN selected 45 features for each subject.
Methods producing rank outputs include RFE RR and RFE
RF. RFE RR resulted in the most miniature feature set, with
five features for Reading and six for Math, whereas RFE
RF identified 36 features for both subjects. The Permutation
Feature Importance (PFI) methods identified the most signif-
icant number of features, with PFI RF selecting 70 features
for Math and PFI RR selecting 82 features for Reading.
Table 4 presents the importance ranking of the features and
summarizes the top 20 features for Math (a) and for Reading
(b) selected by six or more methods scores in 2021 and 2022.
The most significant feature predicting learning loss in Math
is % of Campus 10/30/20, the enrollment of students in the
campus district on 30 October 2020, representing the mode
of instruction.
For Reading, three critical features were selected, all of

which were resilience factors related to the Low-income
backgrounds of students: CARES ESSER I 20 (Coronavirus
Aid, Relief and Economic Security (CARES) grant amount
in 2020), ARP ESSER III 21 (American Rescue Plan Act
(ARP) grant amount in 2021), % Reduced-price Lunch Diff
(Reduced-price Lunch Eligible Students Difference in per-
cent between 2019 and 2021). Table 3 summarizes the top
20 impact features of the learning loss. Table 4 summa-
rizes the top 20 features for learning recovery. The attribute
is important if selected by six or more selection methods
summarized in Table 1. Figure 4 illustrate that income and
Grade level are the most influential resilient factors to pre-
dict learning loss for Math and Reading. The race/Ethnicity
and mode of instruction continued to be decisive, resilient
factors for both subjects; on the other hand, Attendance and
Census demographics are considered significant factors only
in Math, and Unemployment is essential only for Reading.
Although we now realize these primary features can iden-
tify the resilient factors for Loss or Gain in learning due to
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TABLE 3. Top 14 Math Features for 2021 and 2022 Datasets

Math Scores 2021 Math Scores 2022
Feature Impact Binary Feature Impact Binary

Median Household Income 6.62 5 Average Annual Pay 6.40 3
Total Students 2018-2019 6.23 7 Per Capita Income 6.27 4
Total Students 2020-2021 6.14 6 Total Students 2021-2022 6.02 6
Total Students 2021-2022 6.11 7 County Population 5.92 5
Rural: Distant 6.05 3 # of Families 10 5.91 6
# of Families 10 5.84 4 Total Students 2018-2019 5.89 5
Average Annual Pay 5.83 2 Total Students 2020-2021 5.87 5
ARP ESSER III 21 NORM 5.76 3 # of Households 10 5.84 5
CARES ESSER I 20 NORM 5.76 4 % of Population Under 18 in Poverty 5.80 4
Rural: Remote 5.74 3 CRRSA ESSER II 21 NORM 5.81 4
# of Housing Units 10 5.70 3 Median Household Income 5.78 5
# of Households 10 5.70 3 # of Housing Units 10 5.78 4
Per Capita Income 5.70 3 Median Age Female 10 5.76 3
% of Population Under 18 in Poverty 5.68 3 % of Population in Poverty 5.77 4

TABLE 4. Top 14 Reading Features for 2021 and 2022 Datasets

Reading Scores 2021 Reading Scores 2022
Feature Impact Binary Feature Impact Binary

Median Household Income 5.78 5 Total Students 2018-2019 5.89 4
Total Students 2018-2019 5.89 4 Total Students 2020-2021 5.87 5
Total Students 2020-2021 5.87 5 # of Households 10 5.84 5
Total Students 2021-2022 5.85 5 % of Population Under 18 in Poverty 5.80 4
# of Households 10 5.84 5 CRRSA ESSER II 21 NORM 5.81 4
# of Housing Units 10 5.78 4 Median Household Income 5.78 5
Median Age Female 10 5.76 3 # of Housing Units 10 5.78 4
% of Population in Poverty 5.77 4 Median Age Female 10 5.76 3
Rural: Distant 5.70 3 % of Population in Poverty 5.77 4
CARES ESSER I 20 NORM 5.71 4 Rural: Distant 5.70 3
ARP ESSER III 21 NORM 5.69 4 CARES ESSER I 20 NORM 5.71 4
Median Age Male 10 5.66 3 ARP ESSER III 21 NORM 5.69 4
Median Age 10 5.59 2 Median Age Male 10 5.66 3
Rural: Remote 5.56 2 Median Age 10 5.59 2

the COVID-19 pandemic, whether those features positively
impact learning is still unknown. We analyzed positive or
negative correlations between the most critical features and
our label, Loss, Expected, or Gain, in Math and Reading.
The students who experienced Loss in Reading received more
significant funding for all funding programs on average than
the students who participated, showed Gain or Expected in
the same subject. The districts in need of financial help for
adapting and preparing for learning Loss due to COVID-19
received the ESSER funds amounts calculated by a formula
based on Title I and Part A grant [33], [34].

Figure 4 indicates that % of Campus 10/30/20 is positively
correlated with Gain as the Distribution of school districts
with the highest proportion of students on a campus populated
more for Gain and Expected in Math; however, the students
experienced Loss are inhabited the most where the enrollment
is 0%. t is clear that in-person classes, the mode of instruction,
were the key to avoiding Loss in Math.

B. MODELING LEARNING LOSS FROM PUBLIC DATA

The data sets have been randomly split into 80% of the train-
ing set and 20% of the test set with shuffling and stratification
on the label. e use performance metrics suitable for prediction
problems to find the best model. The accuracy score for both
Gain and Loss is used to get a big picture, and the F1 score
is used for an in-depth measure as it harmonically includes

Lasso Loss ElasticNet Loss FI RF RFE RF VT
Feature Selection Method
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FIGURE 3. Most Selected Features: # of Families 10, % of Campus
10/30/20,and % On Campus 01/29/21.

the precision and the recall scores. Matthews correlation co-
efficient (MCC) considers true negatives, class imbalance,
and multi-class data. Each model runs with a 10-fold cross-
validation of GridSearch to find optimal hyperparameters.
The boosting algorithm trains weak learners iteratively, and
early stopping reduces training time and avoids overfitting. At
every boost round, the model evaluates and decides whether
to stop or continue the training when it shows no more
improvement for a certain number of consecutive rounds in
terms of the evaluation metric specified as the fit parameter.
The number of early stopping rounds is set to 10% of the
maximum number of boosting iterations.
We employed five state-of-the-art machine learning mod-
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FIGURE 4. Importance Feature Selection Methods for (a) Reading and (b)
Math: Comparison of SFS KNN, SFS RR, and VT for identifying significant
resilience factors.
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FIGURE 5. Comparison of Loss, Expected, and Gain Metrics for Lasso,
Ridge, and Elastic Regularization Techniques to identify significant
Reading (left) and Math (right) resilience factors
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FIGURE 6. Scoring Feature Selection Methods for Reading (left) and Math
(right) comparison of F1 RF, PFI RR, PFI RF, and Lasso for identifying
significant resilience factors

els: Ridge Regression, Support Vector Machine (SVM), K-
Nearest Neighbors (KNN), Random Forests, and GBDT and
their variations, as summarized in Table 1. We trained the
models using our complete set of 90 features and ten addi-

tional feature groups derived from various feature selection
techniques, and Table 1 summarizes the model characteris-
tics. Table 5 outlines the performance of the machine learning
methods. Performance metrics, including accuracy, F1 score,
and Matthews correlation coefficient (MCC), for these mod-
els, are presented in bar graphs in Figure 5 for baselinemodels
and in Figure 5 for GBDT models. The prediction of learn-
ing loss for Reading exhibits weaker performance than for
Math. Although most models perform similarly across both
subjects, except KNN, GBDT for Math, and ridge regression
for Reading, they demonstrate the highest average accuracy,
F1 score, and MCC.
We penalize and regularize the algorithm by hyperparam-

eter tuning so that we aim to increase accuracy and avoid
overfitting to improve the gradient boosting modeling for
XGBoost, LightGBM, CatBoost, and HistGradientBoosting.
These hyperparameters are searched with a 5-fold cross-
validation RandomizedSearch with the number of iterations
that is 20% of parameter distributions of each model. XG-
Boost is supposed to explore 100 distributions of the param-
eters; the number of iterations for RandomizedSearch is 20
times. The constraints on tree structures aid in curbing the
growth of overly complex and extensive trees, limiting the
number of trees, tree depth, and the number of leaves per
tree in the model. A lower learning rate (below 0.5) allows
for gradually adjusting tree weights during each iteration,
thereby minimizing errors. Ridge and Lasso regularization
terms further the models by simplifying the complexity and
size of the model [15]. The GBDT algorithms also show
higher prediction power for Math than Reading and indicate
no significant model exceeding other models, including the
best state-of-the-art models, in terms of performance.

TABLE 5. Performance Metrics of Machine Learning Models Evaluated on
the Test Set (20% of the Data). The table includes state-of-the-art models
and advanced GBDT models.

Model Accuracy Precision Recall F1 MCC

GB 0.6329 0.6131 0.6329 0.5877 0.3513
KNN 0.5911 0.5731 0.5911 0.5548 0.2698
RF 0.6339 0.6355 0.6339 0.5651 0.3602
Ridge 0.6273 0.5974 0.6273 0.5662 0.3453
SVM 0.6268 0.5982 0.6268 0.5588 0.3441
CatBoost 0.6337 0.6310 0.6337 0.5778 0.3543
HistGB 0.6330.3 0.6157 0.6304 0.5805 0.3464
LightGBM 0.6281 0.6117 0.6281 0.5735 0.3415
XGBoost 0.6247 0.6047 0.6247 0.5635 0.3363

For Math, the best-performing model was CatBoost,
achieving an accuracy of 67.5%, an F1 score of 64.5%, and
an MCC of 43.4% using 36 features selected by RFE RF.
thTherotable performances included Gradient Boost with an
accuracy of 64.4%, an F1 score of 62.2%, and an MCC of
37.5% using the same feature selection method, and XG-
Boost with an accuracy of 66.0%, an F1 score of 61.6%, and
an MCC of 40.5% using 21 features selected by Variance
Threshold (VT).
For Reading, CatBoost also emerged as the top performer,

achieving an accuracy of 62.3%, an F1 score of 54.8%, and
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an MCC of 33.8% using 82 features selected by PMI Ridge.
The second-best performance was from XGBoost, with an
accuracy of 61.3%, an F1 score of 53.5%, and an MCC of
31.2% using 90 features from all feature sets. Third is the
Ridge approach, with an accuracy of 60.7%, an F1 score of
52.2%, and an MCC of 30.3% using 45 features selected by
SFS Ridge.

Overall, the GBDT algorithms, CatBoost and XGBoost,
were the best choices among all the machine learning models
tested for predicting learning loss in both subjects. Despite
better predictingMath scores than Reading scores, the perfor-
mance gap between the four GBDT models and the five other
state-of-the-art models, except KNN, was negligible, with a
difference in accuracy of around 3%.

Additionally, no single dimensionality reduction technique
consistently outperformed others across all models. The var-
ious dimensions of the selected features were experimented
with to examine the effects of dimensionality reduction meth-
ods and the best set of the features by predicting learning loss
with themachine learningmodels introduced in Section III-B.

C. BEST FEATURES VS. RAW DATA FOR GBDT MODELS
In this section, we analyze the performance of four GBDT
models—XGBoost, LightGBM, CatBoost, and HistGradient-
Boosting—on different datasets to evaluate their predictive
power regarding learning loss in Math and Reading. These
models handle data sparsity, including missing values, by
finding optimal tree splits. The initial dataset, referred to
as LossB, consists of 506 features (505 numerical and one
categorical) across 1,165 school districts, with 416 features
containing missing values ranging from 1% to 88%.

We compared the performance of models trained on three
datasets: (1) the best feature sets identified through various
feature engineering techniques, (2) raw data without imputa-
tion for missing values, and (3) raw data with missing values
imputed using mean values. The subject-specific features
differ for Math and Reading. Each subject had 302 features,
with 212 features containing missing values.

The comparison in Table 5 showed that all models im-
proved their performance metrics, especially the MCC, when
using the best feature sets compared to raw data. istGra-
dientBoosting exhibited the most significant improvement
in MCC for Math, increasing by 47%, followed by Light-
GBM 43%, CatBoost 25%, and XGBoost 24%. In Reading,
the improvement in MCC was even more pronounced, with
HistGradientBoosting showing a 124% increase and Light-
GBM, CatBoost, and XGBoost improving by 45%, 43%,
and 41%, respectively. Additionally, models trained on raw
data without imputation performed slightly better than those
with imputed data across all subjects and models. MCC for
Math increased by over 6% for CatBoost and HistGradient-
Boosting, while XGBoost showed the most significant MCC
growth for Reading, with an increase of 10%. In conclu-
sion, gradient-boosted decision tree (GBDT) models trained
on carefully selected feature sets significantly outperformed
those trained on raw data, highlighting the importance of fea-

ture engineering in predictive modeling. Moreover, avoiding
the imputation of missing values yielded better performance
than mean imputation, emphasizing the models’ capability to
handle raw data effectively. Table 5 also illustrates that over
ten feature selection methods, the GBDT models are robust
against changes in feature subsets as the standard deviation of
the results (in brackets is usually 1%). The models maintain
similar performance levels regardless of the specific features
used for training, which is beneficial in ensuring reliable pre-
dictions across different datasets or real-world applications.

VI. CONCLUSION AND FUTURE WORK
In this study, we employ a data-driven approach to inves-
tigate the impact of the COVID-19 pandemic on learning
loss, utilizing an intentional data science pipeline. Despite
employing ten distinct feature selection methods to facilitate
the automatic extraction of crucial features from publicly
available datasets, our findings reveal a limited influence on
prediction accuracy across the nine machine learning models
trained on feature-selected sets and raw data. Notably, GBDT
algorithms, particularly XGBoost and CatBoost, consistently
outperform other models, demonstrating remarkable efficacy
in managing missing values in the raw datasets. Your re-
producible experiments and datasets are accessible at [38],
providing valuable tools for policymakers to strategically
allocate resources and interventions to mitigate the effects
of learning loss. A deeper analysis of 2021 to 2022 data
revealed that shifts in feature significance primarily occurred
at the individual feature level rather than through changes
in resilience factor importance. Significantly, the mode of
instruction and prior score emerged as the primary resilience
factors during this period. Overall, low income and grade
level proved to be the most influential factors in predicting
learning loss in both Math and Reading. Noteworthy con-
tributors to Math performance include attendance and census
demographics, particularly the % of Campus 10/30/20. Addi-
tionally, students from low-income backgrounds and regions
with higher unemployment rates were particularly impactful
in predicting Reading learning loss. In future research, we aim
to broaden the temporal scope of our analysis and incorporate
more granular data sources to deepen our understanding of
the enduring repercussions of the COVID-19 pandemic on
education. Additionally, exploring novel feature engineering
techniques or enhancing existing ones could bolster predic-
tion accuracy across various datasets.
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