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Abstract—Student learning gain rates in public school systems
in the U.S. plummeted during the COVID-19 pandemic, erasing
years of improvements. In this body of research, we collect,
integrate, and analyze all available public data in the data
science pipeline to see if public data can inform and impact
learning loss factors. The general data sources were collected
from the Census Bureau 2010, USAFACTS, Texas Department
of State Health Services (DSHS), National Center for Education
Statistics (CCD), U.S. Bureau of Labor Statistics (LAUS), and
three sources from the Texas Education Agency (STAAR, TEA,
ADA, ESSER). This is the first known study of public data to
address the post-COVID educational policy crisis from a data
science perspective. To this end, we have developed an end-to-end
large-scale educational data modeling pipeline that i) integrates,
cleans, and analyzes educational data, ii) implements automated
attribute importance analysis to draw meaningful conclusions,
and iii). develops a suite of interpretable learning loss prediction
models utilizing all data points and features. We demonstrate a
novel data-driven approach to discover insights from an extensive
collection of heterogeneous public data sources and offer an
actionable understanding to policymakers to identify learning-
loss tendencies and prevent them in public schools.

Index Terms—Algorithms, Boosting, Data augmentation, Di-
mensionality reduction, Random Forest

I. INTRODUCTION

COVID-19 also had an impact on teacher preparation [1]. A
study indicates how COVID-19 has led many veteran teachers
to retire early and novice teachers to consider alternative
professions [2]. The COVID-19 pandemic also forced many
schools to close across the world [2]. According to the latest
UNESCO statistics, there are 43 million students affected by
school closures and nationwide closures [3]. Even in high-
income countries like the Netherlands and Belgium, learning
loss ranged from 0.08 to 0.29 [4], [5]. In a recent article, the
global impact of a 5-month school shutdown could generate
learning losses with a value of <10 trillion dollars [3].

In a recent paper, the global impact of a school shutdown for
five months generated learning losses with a present value of
$10 trillion [3]. In the U.S., school district reopening decisions
are difficult for policymakers since there is no consensus on
the impact of school reopening on the spread of COVID-
19 [6]. The learning loss was not uniform across states, as
documented for Virginia, Maryland, Ohio, and Connecticut in
[7]. Recently, two states, Rhode Island and North Carolina,
published two reports estimating the learning losses in these
states ([8], [9]. Texas Education Agency also published a
report documenting the loss of learning [10]. There is no clear
conclusion on what specifically led to the learning recovery

in the states above, and how to recover these learning losses
will be the mounting policy and research questions for the
next few years and even decades. In the U.S., researchers have
disagreed on the impact of school reopening during the spread
of COVID-19 [1], [6]. This made it difficult for policymakers
to decide when to reopen the school, and these varied between
states, counties, and school districts [11]. The learning losses
have not been uniform across the board [7], [8]. The Texas
Education Agency published a report documenting the 4%
loss in Reading and 15% loss in math on the STAAR exam
and how the negative impact of COVID-19 erased years of
improvement in Reading and math [12]. This paper proposes
a novel data-driven approach for public data integration and
analysis on a scale, automated attribute importance analysis,
and robust prediction modeling. As a proof-of-concept, we
fuse and analyze multiple open sources of information on
public education in Texas before, during, and after the COVID-
19 pandemic. We have collected and processed data from
eight public websites to find what specific factors were most
important for the schools to experience a large learning loss.
We looked into consensus information, public school district
population makeup, mode of instruction, income, urban/rural
settings, student attendance, county infection rates, and un-
employment rates, among hundreds of other factors in 2019,
2021, and 2022. The data-driven findings show that the most
resilient factor of influence for learning loss in the district is
how early or late the students went back to in-person learning.
The size and location of a district play a critical role in the
recovery process, along with the amount of money in the
area and the Elementary and Secondary School Emergency
Relief Fund received. The results identify the significance of
various factors in promoting learning recovery in math and
Reading, highlighting the importance of considering a district’s
economic status, size, locale, demographics, and funding.

II. RELATED WORK

We reviewed the related work from qualitative and reporting
perspectives in the introduction. In this section, we will focus
on (1) quantitative research and machine learning tools to gain
insight from the data on the relationship with the outcome
without overfitting the features to the data or (2) the directions
for selecting machine learning models for predicting learning
loss with tabular data.

The most popular machine learning (ML) techniques (lo-
gistic regression, support vector machines, Bayesian belief
network, decision trees, and neural network) for data in the
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Fig. 1: The proposed noisy tabular data analysis pipeline.

wild generally offer an excellent classification accuracy above
70% for simple classification tasks [13]. From a data science
perspective, the modeling approaches evaluated must be nar-
rower in scope, and feature engineering almost guarantees poor
domain/data translation results. A more elaborate evaluation
of 30 selected articles revealed deep neural networks (DNN),
decision trees, support vector machine (SVM), and nearest
neighbor k (k-NN) as preferential methods to predict student
academic performance [14]. Demographic, academic, fam-
ily/personal, and internal assessments were the most frequently
used features to predict student performance in class, at
grade levels, on standardized tests, etc. [15]. A large-scale
data science study correlated the Big Fish Little Pond Effect
(BFLPE) in 56 countries in fourth-grade math and 46 countries
in eighth-grade math using extensive data from the Trends in
International Mathematics and Science Study (TIMSS) and a
simple statistical analysis [16]. Recent findings show that the
state of the art in machine learning in tabular data outperforms
existing approaches and is not as sensitive to input bias and
noise as DNN [17].

State-of-the-art gradient-boosted decision trees (GBDT)
models such as XGBoost [18], LightGBM [19], and Cat-
Boost [20] are the most popular models of choice when it
comes to tabular data. In recent years, deep learning models
have emerged as state-of-the-art techniques on heterogeneous
tabular data: TabNet [21], DNF-Net [22], Neural Oblivious
Decision Ensembles (NODE) [23], and TabNN [24]. Although
papers have proposed that these deep learning algorithms
outperform the GBDT models, there is no consensus that
deep learning exceeds GBDT on tabular data because standard
benchmarks have been absent. Open-source implementations,
libraries, and their APIs are lacking [25], [26]. Recent studies
provide competitive benchmarks comparing GBDT and deep
learning models on multiple tabular data sets [25], [27], [28],
[29]; however, all of these benchmarks indicate that there is
no dominant winner, and GBDT models still outperform deep
learning in general. The studies suggest developing tabular-
specific deep learning models such that tabular data modalities,
spatial and irregular data due to high-cardinality categorical
features, missing values, and uninformative features cannot
guarantee the same prediction power as deep learning obtains
from homogeneous data, including images, audio, or text [27],
[29].

III. PROPOSED METHODOLOGY

The work introduces a unified data science pipeline for
handling tabular data. It validates the channel from the data
science application to educational data by predicting learning
loss in math and reading scores in Texas public schools.

A. Attribute Importance Scoring
This section proposes a novel way to select essential features

from the hundreds of features considered. The work compares
three different techniques for selecting features in data: filter
methods, embedded methods, and wrapper methods. Several
algorithms for automated feature selection are tested to eval-
uate these techniques, and a set of interpretative methods for
analyzing feature importance are also provided to avoid the
problems of "Garbage In, Garbage Out (GIGO)" and Trivial
Modeling.

Attribute Filtering by Mutual Correlations Heteroge-
neous data tends to have much overlapping information mixed
with numerical and categorical data. With this filter method
distilling correlated features mutually, we aim to build a quasi-
orthonormal attribute space to observe any correlation between
two features or a feature and our label. We wanted to avoid
artificial weighting of the features in the modeling step, so we
utilized this correlation filtering in this section to aggregate
linearly related features in our data set into one attribute. To
this end, we have expanded several categorical features to
multiple binary features as we found that numerous separate
categories capture highly overlapping data. The Pearson cor-
relation coefficient ρ measures the linear relationship between
two normally distributed variables and is defined in Equation
1:

ρ =
cov(X,Y )

σXσY
(1)

The cov(X,Y ) represents the covariance between variables X
and Y , while σX and σY are the standard deviations of X and
Y respectively. Pearson’s correlation coefficient estimate r,
also known as a "correlation coefficient," for attribute feature
vectors x = (x1, . . . , xn) with mean x̄ and y = (y1, . . . , yn)
with mean ȳ, is obtained via a Least-Squares fit, as defined in
Equation 2.

r =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√

(yi − ȳ)2
(2)

The x̄ and ȳ represent the means of vectors x and y respec-
tively. A value of 1 represents a perfect positive relationship, -1
is a perfect negative relationship, and 0 indicates the absence
of a relationship between variables. We use features with high
correlation coefficients to aggregate them into one attribute, as
they are linearly dependent on each other. Eventually, we could
keep one attribute, the most highly correlated to our label, of
those overlapping features in our analysis. Then, we can com-
bine all binary dummy-coded variables from related categories
as a set in variable selection. This approach thus reduces an
attribute dimension that provides better interpretability of our
attribute set and its importance.

Multi-View Relevancy of the Attribute To select and have
a glimpse of the features that affect our prediction models,
we compare and contrast ten different approaches from the
three methods mentioned above—filter methods, embedded
methods, and wrapper methods—to evaluate the importance of
features. Every technique of selecting minimum redundancy
and maximum relevancy feature sets yields either a set of
features chosen or a score of feature importance to reduce
the dimensionality of feature space.
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Permutation Feature Importance (PFI) is a technique that
replaces the values of a feature with noise and measures the
change in performance metrics (such as accuracy) between
the baseline and permuted data set. This method overcomes
some limitations of impurity-based feature importance but
can also be biased by the correlation between features[30].
Our final set of features includes any feature with positive
mean importance, as the PFI method returns positive values
for essential features. We use Random Forests PFI RF and
Logistic Regression with Ridge Regularization PFI LR. All
these approaches provide the non-zero scores for all features.
Recursive Feature Elimination (RFE) is a method train-
ing a model on the full set of features in the data set. It
then eliminates the features with the smallest coefficients. It
continues this process until the 10-fold cross-validation score
of the models with Random Forest RFE RF and Logistic
Regression with Ridge Regularization RFE LR on the training
data decreases. The final scores are attribute rankings where 1
indicates the most relevant features [31]. Logistic Regression
with Filtering and Regularization is a technique that uses
L1 LR Lasso or L1 and L2 ElasticNet penalty terms to shrink
the coefficients during training. This reduces the coefficients
of some features to zero for both, and the remaining non-zero
coefficients are considered useful information for prediction.
Feature Importance Random Forest (FI RF) is a method
that leverages the Random Forests machine learning algorithm
to determine the importance of each feature. This importance
is measured using either the Gini or the mean decrease impu-
rity. A threshold of the 50th percentile of feature importance
is used to determine which features should be included in the
final set. Variance Threshold is a straightforward method to
eliminate features by removing features with low variance in
the training data set[32]. In this work, the threshold used is
0.8*(1-0.8), meaning that features with 80% similar values in
the training data set are removed. The final set of features
consists of the k features with the highest variance. Variance
Threshold, SFS LR, and SFS KNN provide a binary selection
of features.

Sequential Feature Selection (SFS) searches for the opti-
mal set of features by greedily evaluating all possible combi-
nations of features. The method works by adding one feature
at a time and assessing each subset based on the 5-fold cross-
validation score of logistic regression with ridge regression
SFS RR and SFS KNN models. Overall, we have ten different
results: some binary, some numerical, and some rank scores
in Alg. 1. We propose several fusion scoring mechanisms for
the end user to consider. First, we look into five approaches
that filter out features and rank the features by the binary sum
outputs. Next, we take five methods that provide scores for
all features and rank the attribute importance based on the
sum of absolute scores. We transform the scores into rankings
and combine them with the filtering and ranking methods to
develop the final feature importance ranking.

B. Prediction Modeling

The second question we are answering in this research is if
the public data we mined from the web is enough to robustly

Algorithm 1: Fusion Scoring Algorithm
Input : Feature Selection Importance Scores(binary,

numerical)
Output: Final Fusion Importance Ranking

1 Initialize BinarySumRankings;
2 Initialize AbsoluteScoreRankings;
3 foreach result in Results do
4 if result is binary then
5 Apply filtering mechanism to extract relevant

features;
6 Calculate the binary sum output for these

features;
7 Rank the features based on the binary sum

outputs;
8 Append the ranked features to

BinarySumRankings;
9 else

10 Apply methods to provide scores for all
features;

11 Calculate the absolute scores for each feature;
12 Rank the attribute importance based on the sum

of absolute scores;
13 Append the ranked attribute importance to

AbsoluteScoreRankings;
14 end
15 end
16 Transform the scores from BinarySumRankings and

AbsoluteScoreRankings into rankings;
17 Combine the rankings derived from both

methodologies;
18 Merge the filtering and ranking methods to generate

the FinalFeatureImportanceRanking;
19 return FinalRanking;

predict school district performance during COVID-19 years in
terms of learning performance.

To this end, we establish five simple baseline models:
logistic regression with ridge regularization, Support vector
machines (SVM) and K-nearest neighbor (KNN) for nonlinear
and non-separable data, random forests, and gradient boosting;
and four advanced gradient boosting algorithms: XGBoost,
LightGBM, CatBoost, and HistGradientBoosting. Our data
fit the description of tabular data. Since gradient boosting
approaches showed the most robustness when dealing with
heterogeneous tabular data [25], our goal is to assess the
predictive power of these nine machine learning models in
this real example. Gradient Boosting assembles many weak
decision trees, and unlike the random forests, the approach
grows trees sequentially and iteratively based on the residuals
from the previous trees. Gradient boosting methods handle
tricky observations well and are optimized for faster and
more efficient fitting using data sparsity-aware histogram-
based algorithm.

In contrast to the pointwise split of the traditional Gradient
Boosting prone to overfitting, the algorithm’s approximate gra-
dient creates estimates by creating a histogram for tree splits.
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Fig. 2: Exploratory Data Analysis - Locale (top) Math (bot-
tom) Reading

As this histogram algorithm does not handle the sparsity of the
data, especially for tabular data with missing values and one-
hot encoded categorical features, these algorithms improved
tree splits. For example, XGBoost uses Sparsity-aware Split
Finding, defining a default direction of tree split in each tree
node [18]. Also, LightGBM provides the Gradient-Based One-
Side Sampling technique, which filters data instances with
a large gradient to adjust the influence of the sparsity, and
Exclusive Feature Bundling combining features with non-zero
values to reduce the number of columns [19].

IV. WEB DATA COLLECTION AND PROCESSING

A. Data Sources and Collection

We have collected data from eight different public sources
as described in Table I. Common Core of Data (CCD) [33]
is the primary database on public elementary and secondary
education supplied by the National Center for Education
Statistics (NCES) in the United States. The CCD provided
us with public school characteristics, student demographics
by grade, and faculty information at the school district in
Texas for the fiscal years 2019 and 2021. State of Texas
Assessments of Academic Readiness (STAAR) data was
obtained from the Texas Education Agency (TEA) for the
fiscal year 2019 and 2021 for each school district [34]. The
STAAR data we collected are the average scores for math
and reading tests and the number of students who participated
in the grades 3-8 tests. These data also include students’
numbers and average scores under various classifications, such
as Title 1 participants, economically disadvantaged, free lunch,
special education, Hispanic, Black, White, and Asian. Texas
School COVID-19 campus data was provided by the Texas
Department of State Health Services (DSHS) [35], including
the self-reported student enrollment and on-campus enrollment
numbers of the dates September 28, 2020, October 30, 2020,
and January 29, 2021, at each school district in Texas. County
COVID-19 data on infection and death cases due to Coro-
navirus for each Texas County was parsed from USAFacts
source[36]. The average daily attendance (ADA) is a sum
of attendance counts divided by days of instruction per school
district and provided by TEA. Elementary and Secondary
School Emergency Relief (ESSER) Grant data provided by
TEA summarizes COVID-19 federal distribution by TEA to
school districts for the fiscal years 2020, 2021, 2022, and 2023.
The Local Area Unemployment Statistics (LAUS) data [37]

TABLE I: Data from eight different sources are integrated by
matching school district I.D. and county FIPS code for 1,165
school districts with 506 features in 253 Texas counties

Data
Frame

Data Source Level RowXCol

CCD National Center for Education Stat [33] District 1189X66

STAAR Texas Education Agency [34] District 1184x217

TEA Texas Education Agency [10] District 1182x217

ADA Texas Education Agency [39] District 1226X3

ESSER Texas Education Agency [40] District 1208X6

census Census Bureau 2010 [38] County 254, 37

Covid USAFacts [36] County 254X8

LAUS U.S. Bureau of Labor Statistics [37] County 254X13

Covid DSHS [35] District 1216X7

was parsed from the U.S. Bureau of Labor Statistics (BLS) for
the years 2019 and 2021 to examine the workforce impact on
learning loss in the counties. Census block group 2010 data
[38] were included to see if the county’s general population
characteristics make a difference in learning loss. At the end
of the initial data integration merging data from eight sources
by matching school district I.D. and county FIPS code, the
data set represents 1,165 school districts of Texas located in
253 counties with 506 features, consisting of 1 categorical and
505 numerical.

The data was collected from March 13, 2020, to September
30, 2022. CARES ESSER I 20, ARP ESSER III 21 features are
part of the Elementary and Secondary School Emergency Re-
lief (ESSER) grant programs, which are federal funds granted
to State education agencies (SEAs) providing Local education
agencies (LEAs) to address the impact due to COVID-19 on
elementary and secondary schools across the nation; thus, the
funds have been administered by Texas Education Agency
(TEA) and allocated in each school district in Texas [40],
[41]. CARES ESSER I: Authorized on March 27, 2020, as
the Coronavirus Aid Relief and Economic Security (CARES)
Act with $13.2 billion. Our data have the allocation amount
for the fiscal year of 2020. CRRSA ESSER II: Authorized
on December 27, 2020, as the Coronavirus Response and
Relief Supplemental Appropriations (CRRSA) Act with $54.3
billion. Our data have the allocation amount for the fiscal
year of 2021. ARP ESSER III: Authorized on March 11,
2021, as the American Rescue Plan (ARP) Act with $122
billion. The data show the allocation amount for the fiscal year
2021. ESSER-SUPP: Authorized by the Texas Legislature
to provide additional resources for not reimbursed costs to
support students not performing well educationally. The data
have the allocation amount for the fiscal years 2022 and 2023.B. Data Aggregation and Filtering

To help policymakers make more informative decisions on
learning recovery with localized efforts in each school district,
we collected data from eight different sources as described in
Table I to answer our research questions: i) Are students from
low-income backgrounds and minority students experiencing
more learning loss? ii) Do students of different grade levels
experience learning loss differently? iii) Does the school
or school district reopening decision influence learning loss
experienced by students? iv) Is the mode of instruction (hybrid,
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Fig. 3: Math (top) and Reading (bottom) scores broken by race

remote, in-person) related to learning loss? v) Is the school or
district attendance negatively correlated with learning loss? vi)
Does the local or regional infection rate lead to more learning
loss? vii), Does the local unemployment rate negatively affect
learning losses? If we can answer these questions with our
approach, we can also identify resilient factors in learning
recovery for Texas public schools.

Primarily, we gathered the Common Core of Data (CCD)
[33], which is the primary database on public elementary
and secondary education supplied by the National Center
for Education Statistics (NCES) in the United States. The
CCD provided us with public school characteristics, student
demographics by grade, and faculty information at the school
district in Texas for the fiscal years 2019 and 2021. Then, we
merged the CCD data with the State of Texas Assessments
of Academic Readiness (STAAR) data [34] from the Texas
Education Agency (TEA) for fiscal years 2019 and 2021 at
each school district. The STAAR data we collected are the
average scores for math and reading tests and the number
of students who participated in the grades 3-8 trials. These
data also include students’ numbers and average scores under
various classifications, such as Title 1 participants, econom-
ically disadvantaged, free lunch, special education, Hispanic,
Black, White, and Asian. Next, our data merged with COVID-
19 campus data from the Texas Department of State Health
Services (DSHS) [35], including the self-reported student
enrollment and on-campus enrollment numbers of the dates
September 28, 2020, October 30, 2020, and January 29, 2021,
at each school district in Texas. Additional COVID-19 data
involved confirmed infection and death cases [36] due to
Coronavirus at each county from USAFacts. Also, the average
daily attendance (ADA) [39], which consists of the sum of
attendance counts divided by days of instruction, and data
from the Elementary and Secondary School Emergency Relief
(ESSER) Grant Programs [40] – COVID-19 relief funding –
were collected from TEA for school district level. The ADA
data for fiscal years 2019 and 2021 were added to our data
to see the impact of district attendance, and the ESSER data
reflect the localized efforts of TEA allocating the grant amount
at each school district in the fiscal years of 2020, 2021, 2022
and 2023. Also, we combined the Local Area Unemployment
Statistics (LAUS) data [37] from the U.S. Bureau of Labor
Statistics (BLS) for the years 2019 and 2021 to examine the
negative impact of the unemployment rate on learning loss at
the county level. The census block group 2010 data [38] were

TABLE II: Example of 2019 and 2021 attribute aggregates
Attribute Aggregated Attribute Data
Total Schools 2020-2021 Total Schools Diff CCD, NCESTotal Schools 2018-2019
% Title 1 Eligible 2020-2021 % Title 1 Eligible Diff CCD, NCES% Title 1 Eligible 2018-2019
% Hispanic 2020-2021 % Hispanic Diff CCD, NCES% Hispanic 2018-2019
% Grades 1-8 2020-2021 % Grades 1-8 Diff CCD, NCES% Grades 1-8 2018-2019
% Tested Reading G3 2020-
2021 % Tested Reading G3 DiffSTAAR, TEA

% Tested Reading G3 2018-
2019
Unemployed Rate 2021 Unemployed Rate Diff LAUS, BLSUnemployed Rate 2019
% ADA 2020-2021 % ADA Diff ADA, TEA% ADA 2018-2019

included to grasp demographic characteristics at a county for
the general population. At the end of the initial data integration
merging data from eight sources by matching school district
I.D. and county FIPS code, the data set represents 1,165
school districts of Texas located in 253 counties with 506
features, consisting of 1 categorical and 505 numerical. All
eight sources were integrated by the district I.D. and county
FIPS code, and the aggregated dataset covers 1,165 school
districts of Texas located in 253 counties with 506 features,
one categorical and 505 numerical.

The aggregated data set contains 506 features for 1,165
school districts in Texas. Among the 506 features, 416 features
include missing values from 3 data sources ranging from 1 to
88% in our data set: 408 features from STAAR, TEA, six
features from CCD, NCES, and two features from COVID,
DSHS data. Of these 416 features, 332 features have fewer
than 20% missing values and 24 features have more than 80%
of missing values, and the distribution is illustrated in Figure 4.

The features with over 20% missing values are predomi-
nantly from the STAAR data, related to average scores and
participants in the STAAR tests, and we have removed those
features from the STAAR data. We have also dropped the
school districts that do not have the CCDE and COVID data
and ended up with 955 public school districts in Texas to
analyze and a total of 119 features with no missing values. Out
of 119 features, we aggregate the 58 features that duplicate
the data for 2019 and 2021 into 29 differential features as
illustrated in Table II. For example, Total Schools 2020-2021
and Total Schools 2018-2019 features are aggregated into Total
Schools Diff, and the total number of features is reduced to
90.

C. Data Labeling

Our data set is unlabeled; thus, we must create a ground
truth label for further prediction processes. The data set
contains average scale scores of the STARR for math and
Reading between grades 3 and 8 for the fiscal years of 2019
and 2021. Each school district has 24 features indicating
the scores for calculating learning loss. We first normalized
each cell of the scores by the maximum score value of the
attribute as described in Figure 5, Step 1. Step 2 averaged
these normalized scores for each year and subject, and Step
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Fig. 4: Percentage of missing values for 416 features in the
aggregated data. 2022-2023

3 calculated the loss as the difference between the scores
between 2019 and 2021 for the perspective of 2019.

Step 4. Label into 3 classes

Loss Expected Gain

Step 3. Calculate delta

% Loss 2022 =
𝐴𝑣𝑔 2021−2019

𝐴𝑣𝑔 2019
% Loss 2023 =

𝐴𝑣𝑔 2022−2021

𝐴𝑣𝑔 2021

Step 2. Calculate average

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑝𝑒𝑟 𝑑𝑖𝑠𝑡𝑟𝑖𝑐𝑡 =
𝐺3, 𝐺4, 𝐺5, 𝐺6, 𝐺7, 𝐺8

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑔𝑟𝑎𝑑𝑒𝑠

Step 1. Normalize each individual grades score

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑠𝑐𝑜𝑟𝑒 =
𝑠𝑐𝑜𝑟𝑒

max(𝑠𝑐𝑜𝑟𝑒)

 

Fig. 5: Four steps to label learning loss with "Expected,"
"Loss," and "Gain" using the STAAR scores. First, normalize
each score, then get averages and deltas of the scores between
2021 and 2019.

The learning loss label is decided depending on the loss
value: if it is positive, there is learning gain, but a negative
value corresponds to learning loss. TODO: make sure the
definition is consistent – Mirna. The distribution of the loss
values in Figure 6 informed us to set a threshold determining
the loss and gain. The Distribution shows that more districts
have experienced loss in math as the median for math (-0.03) is
lower than for Reading (0). We proceeded with further analysis
and prediction separately for math and Reading. Step 4 in
Figure 5 describes creating three label classes; the middle
50% of school districts are labeled as "Expected," the loss
values below the 25th percentile are set to be "Loss," and the
loss values above 75th percentile become "Gain." TODO: does
this make sense – Mirna

With the data labeled as learning loss, Expected, and Gain,
we analyzed each in-depth concerning a correlation between
features and the label. Figure 3 illustrates (a) White students
are correlated to our label as they are the majority population
for Gain and decreased towards Loss label; (b) Hispanic

Fig. 6: Distribution of normalized STAAR scores between
2019-2023. More school districts in Texas faced learning loss
in math than in reading

students are 2/3 of Loss students then reduced as for Expected
and Gain labels for both math and Reading. Also, we realized
that the locale of school districts is correlated to the label
learning loss, as illustrated in Figure 2 (a), confirms that over
half the schools are located in rural areas in Texas despite
the positive correlation between rural areas and the label from
Loss to Gain; however, Loss occurring in schools located in
City and Suburb areas increasingly appeared in (b) and (c).

D. Data Pre-Processing

In the dataset LossA, we aggregate the 58 features that
duplicate the data for 2019 and 2021 in 29 differential
features as illustrated in Table II. For example, the features
Total Schools 2020-2021 and Total Schools 2018-2019 are
aggregated into Total Schools Diff, and the total number of
features is reduced to 90. In the dataset LossB, we treat them
as independent features. The experiment comparing the two’s
importance modeling is illustrated in Section III-A. The dataset
contains 506 attributes for 1,165 school districts.

TABLE III: Resilient factors for Top 15 (math) and 14 features
(Reading) Low income and grade level are both subjects’ most
impactful resilience factors

Resilient Factor Math Reading
Low-income 4 5
Grade Level 4 4

Race/Ethnicity 3 1
Mode of instruction 2 3

Attendance 1 0
Census demographics 1 0

Unemployment 0 1

We propose dimensionality reduction to obtain interpretabil-
ity and identify the resilience factors for learning loss as
follows:
LossA We remove noise and missing values from the data and
then aggregate attributes conveying the same information for
2019 and 2021. In turn, we successfully reduced the number of
attributes to 90 to finally adopt the attribute selection methods
Section III-A.
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Fig. 7: Random Forest Recursive Feature Elimination, Ridge
Recursive Feature Elimination, Sequential Feature Selection
using Ridge, and K-Nearest Neighbors selecting the most
reading significant resilient factors

When analyzed by year, the normalization process encom-
passes various facets of educational institutions, such as the
count of operational public schools, identification of School-
wide Title 1 designations, and Title 1 eligibility. Additionally,
it includes insights into the educational workforce, encompass-
ing FTE teachers and overall staff counts, along with lunch
program statistics like free and reduced-price lunch partici-
pants. Race and ethnicity distributions among Asian, Hispanic,
Black, and White demographics, delineated by grade groups
from Prekindergarten to Grade 12, are normalized for accu-
rate assessment. Attendance metrics undergo normalization in
terms of average daily attendance (ADA) and as a percentage
of total students per district. By grade, the standardization
involves the percentage of students taking the STAAR Reading
and Math tests, with average scores ratio-ed to the 100th
percentile in each grade, regarding population metrics, nor-
malization factors in confirmed COVID-19 cases, and deaths
as percentages of the county population. It also encompasses
race/ethnicity and age group distributions as a percentage
of the county population in 2010. Lastly, when assessed by
date, the normalization process considers the percentage of
students on campus for dates like September 28, 2020, October
30, 2020, and January 29, 2021. Additionally, it categorizes
different household types and housing units as percentages
of the total number of households and housing units in 2010,
respectively. This comprehensive standardization methodology
ensures a consistent and comparable analysis across diverse
data points and timeframes.

LossB Raw integrated data without normalization but miss-
ing values for the Gradient Boosting experiment. TODO: add
more ... this is awfuly short compared to the LossB writeup –
Mirna

V. RESULTS

A. Attribute Importance Analysis

We executed the ten different feature selection approaches
described in Section III-A to detect the resilient factors for
learning loss due to COVID-19 using the data set with 90
features and 955 school districts in Texas as a baseline.

As we discriminate the subjects, math, and Reading, on
predicting learning loss, the feature selection process has

Fig. 8: Comparison of Feature Selection Techniques — Lasso
Loss, Lasso Expected, Lasso Gain, Ridge Loss, Ridge Ex-
pected, Ridge Gain, ElasticNet Loss, ElasticNet Expected, and
ElasticNet Gain — to identify the most significant reading
resilient factors

been repeated for each subject separately. Variance Threshold,
SFS Ridge, and SFS KNN provide a binary selection of
features. ElastiNet Logistic Regression fit for the Gain and
Loss provides scores for a subset of coefficients that are
not zeroed out. R.F. feature importance, R.F. permutation,
and Ridge permutation importance offer non-zero scores to
all 90 features, and RFE ridge regression and RFE Random
forest provide attribute ranking. Figure 7 sums up the filtering
results. The five methods ranked 18 features as top importance
and agreed on excluding 33 descriptors, mainly from the
workforce, census, and COVID data sources. The difference
between free lunch and the COVID deaths in the county had
little impact on learning loss. Next, we sort the remaining
57 features using Random Forest feature Importance, Random
Forest permutation, Ridge permutation importance, RFE Ridge
and R.F. scores, and ElastiNet Gain and ElastinNet Loss. Since
all of them have importance ranking per feature (including the
sign), we first normalize the scores for each method and then
sum them.

Fig. 9: TODO: please rewrite the captions to reflect what is
in the figure – Mirna

First, we aggregate five filtering method outcomes for
Reading and math: Variance Threshold, SFS KNN, SFS Ridge,



IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, VOL. X, NO. X, X 2023 8

Fig. 10: Random Forest Recursive Feature Elimination, Ridge
Recursive Feature Elimination, Sequential Feature Selection
using Ridge, and K-Nearest Neighbors comparison to identify
significant math resilient factors

Fig. 11: Lasso Loss, Lasso Expected, Lasso Gain, Ridge
Loss, Ridge Expected, Ridge Gain, ElasticNet Loss, ElasticNet
Expected, and ElasticNet Gain TODO: what is the point? Fix
axis labels, as it takes too much space. – Mirna

Fig. 12: Mirna rewrite to make sense

and ElastiNet Gain and ElastiNet Loss binarized coefficients.
The Initial Importance Values are the raw scores from the
machine learning methods and are initially tricky to compare
due to their non-uniformity. The Binary Selection Values are
the first output transformation, where we binarize all scores
as SFS KNN, SFS RR, and Variance Threshold, which are
already binary. To transform the features into a binary format,
we use the following approach: For RFE methods, we retain
only the rank of one feature and assign a value of 1 to it while
the others get a value of 0. For logistic regression, we give a
+1 score to features with a positive coefficient and -1 to those

TABLE IV: Method index and corresponding full name and
output format. Feature dimensions after the method is applied
are in the last two columns for Math and Reading

Index Method Output Math Reading
LR Lasso Logistic Regression with L1 Reg. score 51 51
LR Elas-
ticNet

Logistic Regression with L1+L2 Reg. score 41 45

PFI LR Permutation Feature importance for
LR L2

score 28 82

PFI RF Permutation Feature importance for
Random Forest

score 70 26

FI RF Feature Importance Random Forest score 45 45
VR Variance Threshold binary 20 20
SFS LR Sequential Feature Search with Ridge

Regression
binary 45 45

SFS
KNN

Sequential Feature Search KNN binary 45 45

RFE LR Recursive Feature Elimination with
Ridge Regression

rank 6 5

RFE RF Recursive Feature Elimination Ran-
dom Forest

rank 36 36

with a negative coefficient, while the coefficients with a value
of 0 are ignored. For feature importance, we select the top
50% of features with positive scores and assign a value of 1 to
them, while the others get a value of 0. For the importance of
permutation features, we give 1 to features with positive scores
and 0 to those with negative or zero scores. Finally, we sum the
scores and sort the feature importance for each subject out of 9.
The Impact Score Values are the second transformation of the
output. They are obtained by normalizing the scores of each
method by dividing them by their sum of overall features. This
normalization ensures that each feature contributes equally to
the final ranking. Next, we calculate the absolute value of
the normalized score for each attribute and sum them up to
create a feature ranking. The top 20 features with the highest
scores are selected for math and reading by prioritizing the
impact score, as it combines both binary and non-zero scores.
In contrast, the binary score is used as a secondary measure
to understand the importance. The number of features selected
is based on a drop in impact score after the top 20 features,
labeled the cutoff point. Secondary labels were also applied
to the features to understand what "type" of the feature was
most significant. Overall, this approach allows us to compare
the relative importance of each feature and identify the most
important ones.

Table IV indicates the dimension each approach reduces to
the various numbers. RFE with random forests only selected
6 and 5 features for math and Reading, respectively; however,
the PMI method selected the most significant number of
features for both subjects: 70 features for math using random
forests and 82 features for reading using ridge regression. The
2022 importance ranking of the features resulting from the
ten approaches is shown in Table V, (a) Top 20 for math,
and (b) Top 20 for reading selected by six or more feature
selection methods, and the 2023 TODO: 2022 or 2023? –
Mirna selection results are listed in Table VI.

The most significant feature predicting learning loss in math
is % of Campus 10/30/20, the enrollment of students in the
campus district on October 30, 2020, representing the mode
of instruction. For reading subject, three critical features were
selected, all of which were resilience factors related to the
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Low-income backgrounds of students: CARES ESSER I 20
(Coronavirus Aid, Relief and Economic Security (CARES)
grant amount in 2020), ARP ESSER III 21 (American Rescue
Plan Act (ARP) grant amount in 2021), % Reduced-price
Lunch Diff (Reduced-price Lunch Eligible Students Difference
in percent between 2019 and 2021). The top 20 in math in Fig-
ure 10, and the top 20 in reading in Figure 7 were important
features selected by six or more selection methods TODO:
check this please – Mirna. Low income and Grade level are
the most influential resilient factors to predict learning loss for
Math and Reading, as shown in Table III. Race/Ethnicity and
mode of instruction continued to be decisive, resilient factors
for both subjects; on the other hand, Attendance and Census
demographics are considered significant factors only in math,
and Unemployment is essential only for Reading.

Although we now realize these essential features can iden-
tify the resilient factors for Loss or Gain in learning due to
the COVID-19 pandemic, it is still unknown whether those
features positively impact learning. For example, we analyzed
positive or negative correlations between the most critical
features and our label, Loss, Expected, or Gain, in math and
Reading.

Figure 13 shows the Distribution of each ESSER fund
amount converted to the amount per student. The students
who experienced Loss in Reading received more significant
funding for all funding programs on average than the students
who participated, gained, or Expected in the same subject. The
ESSER funds have been distributed to proper districts in need
of financial help for adapting and preparing for learning Loss
due to COVID-19 as the ESSER fund amounts are calculated
by a formula based on Title I, Part A grant that is considered
as a poverty proxy [40], [41].

Figure 14 indicates that % of Campus 10/30/20 is positively
correlated with Gain as the Distribution of school districts
with the highest proportion of students on a campus populated
more for Gain and Expected in math; however, the students
experienced Loss are inhabited the most where the enrollment
is 0%. It is clear that in-person classes, the mode of instruction,
were the key to avoiding Loss in math.

B. Modeling Learning Loss from Public Data

The data sets have been randomly split into 80% of the train-
ing set and 20% of the test set with shuffling and stratification
on the label. We use performance metrics suitable for predic-
tion problems to find the best model. The accuracy score for
both gain and loss is used to get a big picture, and the F1 score
is used for an in-depth measure as it harmonically includes
the precision and the recall scores. Matthews’ correlation
coefficient (MCC) considers true negatives, class imbalance,
and multi-class data. Each model runs with a 10-fold cross-
validation of GridSearch to find optimal hyperparameters. As
the boosting algorithm trains weak learners iteratively, early
stopping reduces training time and avoids overfitting. At every
boost round, the model evaluates and decides whether to stop
or continue the training when the model shows no more
improvement for a certain number of consecutive rounds in
terms of the evaluation metric specified as the fit parameter.

TABLE V: Top 20 Attributes for 2022 data

Math
Feature Impact Score Binary Score
Median Household Income 6.6214 5
Total Students 2018-2019 6.2266 7
Total Students 2020-2021 6.1418 6
Total Students 2021-2022 6.1089 7
Rural: Distant 6.0521 3
# of Families 10 5.8406 4
Average Annual Pay 5.8252 2
ARP ESSER III 21 NORM 5.7606 3
CARES ESSER I 20 NORM 5.7590 4
Rural: Remote 5.7405 3
# of Housing Units 10 5.7040 3
# of Households 10 5.7005 3
Per Capita Income 5.6966 3
% of Pop Under 18 in Poverty 5.6840 3
Median Age Male 10 5.6834 3
County Population 5.6794 2
% of Pop in Poverty 5.6740 2
CRRSA ESSER II 21 NORM 5.6704 2
Median Age 10 5.6540 2
Median Age Female 10 5.5848 1

Reading
Feature Impact Score Binary Score
Average Annual Pay 6.4049 3
Per Capita Income 6.2658 4
Total Students 2021-2022 6.0159 6
County Population 5.9212 5
# of Families 10 5.9140 6
Total Students 2018-2019 5.8932 5
Total Students 2020-2021 5.8707 5
# of Households 10 5.8357 5
% of Pop Under 18 in Poverty 5.8048 4
CRRSA ESSER II 21 NORM 5.8094 4
Median Household Income 5.7823 5
# of Housing Units 10 5.7847 4
Median Age Female 10 5.7612 3
% of Pop in Poverty 5.7661 4
Rural: Distant 5.7042 3
CARES ESSER I 20 NORM 5.7132 4
ARP ESSER III 21 NORM 5.6947 4
Median Age Male 10 5.6591 3
Median Age 10 5.5855 2
Rural: Remote 5.5603 2

For early stopping, a validation set, the split test set at the
beginning of the modeling process, and the number of early
stopping rounds that are set to 10% of the maximum number
of boosting iterations are provided.

Five state-of-the-art machine learning models – ridge re-
gression, SVM, KNN, TODO: make sure all abbreviations
are defined in every section and consistent – Mirna random
forests and gradient boosting – fit our complete set of 90
features and another ten different groups of selected features
from RFE with ridge regression and random forests, Variance
Threshold, SFS with ridge regression and KNN, random
forests feature importance, Lasso regularization, and PMI with
ridge regression and random forests as shown in Figure 15.
The performance, accuracy, F1, and MCC of these models
are plotted on bar graphs in Figure 16(top) for math and
in Figure 16(bottom) for Reading; predicting learning loss
for Reading shows weak performance compared to math
generally. While there are no apparent differences between the
performance of all models, except KNN, and the number of
features observed for both subjects, gradient boosting for math
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(a) (b) (c) (d) (e)
Fig. 13: CARES ESSER I 20, ARP ESSER III 21. Five ESSER funding, (a) CARES ESSER I (2020) (b) CRRSA ESSER
II (2021) (c) ARP ESSER III (2021) (d) ESSER-SUPP (2022) (e) ESSER-SUPP (2023), allocation for school district per
student confirms that the funds have been distributed to the districts needing help as those districts have more students who
experienced learning loss in reading TODO: not sure if we should keep this one. – Mirna
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Fig. 14: Analysis on the most important feature for predicting
learning loss: % On Campus 10/30/20. Gain and Expected
label school districts have more students who went to school
on October 30, 2020,

and ridge regression for Reading indicates the best accuracy,
F1, and MCC on average.

Four advanced gradient boost models, XGBoost, Light-
GBM, CatBoost, and HistGradientBoosting, train the same sets
of features for comparison purposes. To improve the gradient
boosting models, we can penalize and regularize the algorithm
by hyperparameter tuning so that we aim to increase accuracy
and avoid overfitting. These hyperparameters are searched with
a 5-fold cross-validation RandomizedSearch with the number
of iterations that is 20% of parameter distributions of each
model. For example, XGBoost is supposed to explore 100
distributions of the parameters; the number of iterations for
RandomizedSearch is 20 times.

To begin with, constraining tree structures reduces the
growth of complex and more extended trees by optimizing
parameters such as the number of trees, the depth of trees, and
the number of leaves per tree. In addition, setting a smaller
learning rate, usually less than 0.5, allows weighting trees
to slow the learning by a small amount at each iteration to
reduce errors. Furthermore, setting the optimal L1 and L2
regularization terms penalizing the sum of the leave weights
improves the models by simplifying the complexity and size
of the model [18]. The gradient boosting algorithms also show
higher prediction power for math than reading and indicate no
significant model exceeding other models, including the best
state-of-the-art models, in terms of performance.

The various dimensions of the selected features were ex-
perimented with to examine the effects of dimensionality
reduction methods and the best set of the features by predicting
learning loss with the machine learning models introduced in
Section III-B. Then, our initial data set was also experimented

TABLE VI: Top 20 Attributes - 2023

Math
Feature Impact Score Binary Score
Total Students 2018-2022 6.2266 7
% On Campus 10/30/20 1.4300 5
% White Students 2020-2021 0.6324 5
% Tested Math - G3 2020-2021 0.7360 5
Median Household Income 6.6214 5
% On Campus 09/28/20 0.6603 4
% White Students 2018-2019 0.6082 4
% On Campus 01/29/21 0.6892 4
Total Staff 2020-2021 0.6071 4
Total Teachers 2020-2021 1.2075 4
# of Families 10 5.8406 4
CARES ESSER I 20 NORM 5.7590 4
% Tested Math - G5 2018-2019 0.8683 4
% Asian Students 2018-2019 0.5235 4
City: Small 0.4131 4
Suburb: Mid-size 0.3970 4
% White Students 2021-2022 0.5163 3
% Hispanic Pop 10 0.1885 3
% Tested Math - G5 2020-2021 1.0852 3
% Tested Math - G6 2020-2021 0.2561 3

Reading
Feature Impact Score Binary Score
# of Families 10 5.9140 5
Total Students 2021-2022 6.0159 5
County Population 5.9212 5
# of Households 10 5.8357 4
Total Students 2018-2019 5.8932 4
Total Students 2020-2021 5.8707 4
# of Housing Units 10 5.7847 4
CRRSA ESSER II 21 NORM 5.8094 4
% Asian Pop 10 0.3936 3
% Prek 2018-2019 0.3689 3
% Tested Reading - G7 2021-2022 0.3498 3
Median Household Income 5.7823 3
Total Teachers 2020-2021 0.8628 3
% On Campus 10/30/20 0.4773 3
% Tested Reading - G8 2018-2019 0.2727 3
% White Students 2020-2021 0.5280 3
% White Students 2021-2022 0.3913 3
% of Pop Under 18 in Poverty 5.8048 3
% of Pop in Poverty 5.7661 3
City: Small 0.1889 3

with gradient boosting models in terms of missing values and
their imputation.

For the ten models, the best set of features for each model
is described in Table VII (a) for math and (b) for Reading;
both subjects suggest CatBoost as the most robust models: 36
features selected by RFE with random forests with precision
(68%), F1 (65%) and MCC (43%) for math and 82 features
selected by PMI with ridge regression with precision (62%),
F1 (55%) and MCC (34%) for Reading.

Overall, the gradient boosting algorithms CatBoost and
XGBoost are the best choices of all the machine learning
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TABLE VII: Best Performance of the ten machine learning
models that are trained for (a) Math and (b) Reading for
DistrictA dataset. CatBoost is the overall winner

Model Best Feature Acc F1 MCC
Set Selection [0,1] [0,1] [-1,+1]

LR Ridge 45 FI RF 0.639 0.622 0.368
SVM 45 SFS LR 0.628 0.584 0.343
KNN 55 LR Lasso 0.618 0.591 0.318

Random Forests 45 SFS LR 0.639 0.582 0.363
Gradient Boost 36 RFE RF 0.644 0.622 0.375

CatBoost 36 RFE RF 0.675 0.645 0.434
HistGB 45 SFS KNN 0.634 0.609 0.35

LightGBM 70 PMI RF 0.644 0.601 0.372
XGBoost 21 VR 0.66 0.616 0.405

(a) Math

Model Best Feature Acc F1 MCC
Set Selection [0,1] [0,1] [-1,+1]

LR Ridge 45 SFS LR 0.607 0.522 0.303
SVM 45 SFS KNN 0.586 0.553 0.274
KNN 45 SFS KNN 0.571 0.536 0.232

Random Forests 45 SFS LR 0.592 0.513 0.26
Gradient Boost 45 SFS LR 0.56 0.542 0.231

CatBoost 82 PMI - Ridge 0.623 0.548 0.338
HistGB 45 SFS LR 0.576 0.495 0.219

LightGBM 90 All 0.602 0.516 0.288
XGBoost 90 All 0.613 0.535 0.312

(b) Reading

Fig. 15: Five state-of-the-art models fitted to 10 feature sets for
predicting learning loss. With the train-test split, GridSearch,
and 10-fold cross-validation, (top) gradient boosting for math
and (bottom) ridge regression perform the best. TODO: is this
June’s figure or you redid it? – Mirna
models we have experimented with to predict learning loss
for both subjects. Although these models performed better in
predicting failure in math rather than reading, in general, the
performance gap between the four gradient boosting models
and the five state-of-the-art models, except KNN, is negligible,
as their difference in accuracy is around 3%. Furthermore, no
clear indication of the best dimensionality reduction technique
that performs across all models emerged.

C. Best Features vs. Raw Data for Gradient Boosting Models

All four gradient boosting models built – XGBoost, Light-
GBM, CatBoost, and HistGrandientBoosing – are aware of the
sparsity of data, such as missing values, by finding optimal tree
split. Recall that the initial data set, also known as Raw data,
containing 506 features (505 numerical and one categorical)
for 1,165 school districts, includes 416 details with missing
values as small as 1% and as large as 88% of each point,
as shown in Figure 16. In this experiment, we executed the
pipeline of building the advanced gradient boosting models

Fig. 16: Train & Test Accuracy, MCC for (top) Math; (bottom)
Reading. MCC improved compared to the results using the
data with the best features selected through feature engineering
in Table VII
for raw data. We compared it with the models trained the
data processed the feature engineering techniques regarding
prediction power on learning loss. The classification task was
completed for Math and Reading, respectively. All features
with missing values except for eight details are subject-
specific, e.g., the number of grade 3 students tested in math.
After dropping the subject-specific math features for Reading
and vice versa, 302 was the dimension of characteristics for
this experiment for each subject. 212 of 302 details contain
missing values. We have three data sets for comparison: (1)
the best sets of features in Table VII from the performance
results of the four gradient boosting models in Figure VII, (2)
raw data without imputation for missing values, and (3) raw
data impute missing values with mean values. Our data has
only one categorical attribute, including no missing values,
so the imputation method is limited to average. Regarding
the performance of Best Features vs. Raw data, all models
improved with Raw data throughout all performance metrics,
especially MCC, for both subjects, as appeared in Figure 16;
HistGradientBoost increased MCC the most by 47% following
LightGBM (43%), CatBoost (25%) and XGBoost (24%) for
math, and the improved MCC for Reading is even higher
with 124% for HistGradientBoost and 45%, 43%, and 41%
for LightGBM, CatBoost, and XGBoost, respectively. For a
closer look, we also observed that the Raw data set without
imputation performed slightly better compared to the Raw data
set with imputation for all models and subjects; MCC for math
rose the most, over 6%, in CatBoost and HistGradientBoost;
on the contrary, XGBoost showed the most significant growth
for MCC in reading with 10%.

VI. CONCLUSION AND FUTURE WORK

The intentional data science pipeline employed in this
study automatically unearthed crucial features using publicly
available data, leveraging ten distinct feature selection methods
to model the impact of COVID-19 on learning loss. However,
despite the reduction in data dimensionality facilitated by these
methods, they exhibited limited influence on prediction accu-
racy. Surprisingly, the performance of the ten machine learning
models trained on the feature-selected sets showcased negligi-
ble improvements. Notably, gradient-boosting algorithms, such
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as XGBoost and CatBoost, emerged as consistently superior
in both projects. These models demonstrated remarkable effi-
cacy in managing missing values, a prevalent issue as more
than two-thirds of the features in the learning loss datasets
contained missing values. Our reproducible experiments and
datasets are accessible at [42], offering valuable tools for
policymakers.

Upon deeper analysis of the most influential features, it
became evident that shifts in significance were predominantly
observed at the individual feature level rather than through
changes in resilience factor importance from 2022 to 2023.
Notably, across this period, the mode of instruction and prior
score stood out as the most significant resilience factors in the
realm of education. This finding underscores the centrality of
these factors in understanding and addressing learning loss
dynamics. Policymakers can leverage our predictive mod-
els and analytical insights to strategically allocate resources
and interventions within the public school system, targeting
schools, students, and educators to mitigate and counteract the
effects of learning loss.
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