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Abstract

Teacher attrition in public schools has reached a critical juncture, with many

educators leaving the profession. To address this pressing issue, we con-

ducted a large-scale analysis of public data from the National Center for

Education Statistics (NCES) to provide data-driven insights into teacher at-

trition challenges. We developed an open-source end-to-end educational data

modeling pipeline tailored for large-scale analysis to examine interpretable

teacher attrition; and adapted state-of-art AI/ML approaches to model the

survey data for two tasks: (i) identify the essential factors for teacher attri-

tion using multi-view feature importance analysis and (ii) derive a reliable

predictive model that outcomes the probability that the teacher will leave

their position in the next year. For the first task, we discovered that the

race and sex of the principal, the type of school, and the school’s location

impact teacher retention rates the most. For the second task, we observed

that modeling historical data resulted in a predicted attrition rate of over

10%, aligning closely with the current prevalent attrition rates in the USA.

This finding implies a concerning persistence of attrition rates over the past

several decades, despite the various changes in the educational landscape.

These findings enable policymakers to make data-driven decisions.
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1. Introduction

Teacher attrition is a pressing issue in education, with significant impli-

cations for the quality of education and the well-being of students. Defined

as the percentage of teachers leaving the profession within a given school

year, teacher attrition rates play a crucial role in shaping the effectiveness

of public schools worldwide. While a moderate turnover rate of 6% to 8%

is considered natural and desirable, low and excessively high attrition rates

can adversely affect educational outcomes [1]. The impact of teacher attri-

tion becomes evident when we examine its consequences. A school with an

attrition rate below 5% will likely stagnate, needing more fresh perspectives

and ideas from new educators. On the other hand, when attrition rates ex-

ceed 10%, the detrimental effects on a public school’s effectiveness become

increasingly pronounced. Therefore, addressing the factors contributing to

teacher attrition and seeking strategies to mitigate its negative consequences

is crucial. The global landscape of teacher attrition is diverse, as evidenced

by the wide range of rates observed in different countries. In a survey of

K-12 public institutions conducted in 2016, attrition rates varied from 3.3%

in Israel to 11.7% in Norway [2]. The attrition rate in the United States has

traditionally been around 8% per year. However, recent years have seen an

alarming increase, with almost half of the new teachers leaving the profession

within five years or less [3]. The COVID-19 pandemic has exacerbated the

problem of teacher attrition in K-12 education worldwide [4]. The impact

has been significant in the United States, with over 300,000 public school

teachers and staff leaving their positions between February 2020 and May

2022, resulting in a 3% decrease in the workforce [5]. A poll by the National
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Education Association in 2022 revealed that 55% of teachers desired to leave

education earlier than planned, compared to 37% in the previous year [5].

The high teacher attrition rate carries substantial costs and detrimen-

tal effects on student academic progress. The constant turnover of teachers

compromises the continuity and quality of education, hampering students’

learning experiences [6]. Moreover, the financial implications of replacing

teachers burden public budgets. A study conducted in 2007 estimated the

cost of teacher turnover to range from approximately $4,000 to nearly $18,000

per teacher, with the total annual cost of excess turnover in the United States

reaching $7.34 billion [7, 8]. Given the urgency and impact of the issue,

this research aims to provide data-driven insights into the factors influenc-

ing the recruitment and retention of public school teachers in the United

States. Through the implementation of a large-scale educational data model-

ing pipeline, we integrate, clean, and analyze educational data. Additionally,

we employ automated attribute importance analysis to identify meaningful

conclusions and develop a suite of interpretable teacher retention predic-

tion models that utilize open-source data. In this article, we present our

research findings and recommend next steps. Specifically, Section 3 pro-

vides background information on public education data in the United States

and outlines the exploratory data analysis conducted. Section 4 introduces

automated approaches to identify the most relevant attributes for teacher

retention. Subsequently, Section 5 summarizes the state-of-the-art modeling

comparison and presents the results of our experiments. Finally, in Section 6,

we conclude the article by summarizing our findings and offering insights into

future directions for addressing the challenges of teacher hiring and retention.
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2. Related Work

The field of data science has witnessed an increase in the application of

machine learning (ML) tools to correlate attributes with teacher attrition

rates. From just two studies in 2010, the number rose to seven in 2017 [9].

These studies employed popular ML techniques such as logistic regression,

support vector machines, Bayesian belief networks, decision trees, and neural

networks. While these techniques achieved accuracy above 70% for simple

classification tasks, their narrow scope and limited feature engineering of-

ten resulted in poorly translating domain-specific knowledge into effective

models [9]. A more comprehensive evaluation of 30 selected articles revealed

that deep neural networks (DNN), decision trees, support vector machines

(SVM), and nearest neighbor (kNN) methods were preferred for predicting

student academic performance [10]. Additionally, a detailed review of 25,771

studies, incorporating 120 quantitative data analyses of teacher turnover,

highlighted the overfitting of attributes in the evaluated methods [11]. De-

mographic, academic, family/personal, and internal assessment attributes

were commonly employed to predict student performance across various con-

texts [12]. In the realm of data science for education application, a large-scale

study analyzed the Big Fish Little Pond Effect (BFLPE) across 56 countries

in fourth-grade math and 46 countries in eighth-grade math, utilizing exten-

sive data from the Trends in International Mathematics and Science Study

(TIMSS) [13]. This study employed simple statistical analysis to establish

correlations. Furthermore, recent findings indicate that state-of-the-art ma-

chine learning techniques in tabular data outperform existing approaches,

demonstrating robustness to input bias and noise [14]. In the domain of

4



machine learning, gradient-boosted decision trees (GBDT) models, such as

XGBoost, LightGBM, and CatBoost, have gained popularity for analyzing

tabular data [15, 16, 17]. Deep learning models, including TabNet, DNF-

Net, and Neural Oblivious Decision Ensembles (NODE), have emerged as

state-of-the-art techniques for tabular data analysis [18, 19, 20]. However,

there is no consensus on whether deep learning surpasses GBDT in tabular

data, as standard benchmarks and open-source implementations have been

limited [21, 22]. Recent studies have provided competitive benchmarks com-

paring GBDT and deep learning models across multiple tabular datasets,

revealing that GBDT models still generally outperform deep learning mod-

els [21, 23, 24]. The field of education economics has extensively analyzed

teacher turnover, attrition, retention, and recruitment on a global scale [2].

Various studies have investigated these issues in specific contexts, including

Sweden, South Korea, the United States, Canada, Finland, Nepal, and many

other countries, considering factors such as teacher characteristics, qualifica-

tions, school organizational characteristics, resources, student body char-

acteristics, relational demography, accountability, and workforce measures

[25, 26, 27, 28, 29, 30, 31, 32, 33]. However, no principal data-driven study

has comprehensively identified the attributes that explain teacher attrition.

3. Open Source Data for Education

The National Center for Education Statistics (NCES) in the United States

is the primary statistical agency responsible for collecting education-related

data. NCES gathers international assessment data, administrative data from

all public schools in the country, and national survey data, available to the
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Figure 1: NCES Data from five sources for teachers, schools, and districts is aggregated

for the 3640 teachers with over 124 attributes that have the outcome labels 1(stayed) and

0 (left).

research community to inform policy and practice [34]. One of the signifi-

cant studies conducted by NCES is the Schools and Staffing Survey (SASS),

a multiyear study encompassing public and private school districts, schools,

principals, and teachers. SASS aims to provide descriptive data on vari-

ous elementary and secondary education aspects. It covers teacher demand,

characteristics of teachers and principals, school conditions, perceptions of

school climate, teacher compensation, district hiring, retention practices, and

essential student characteristics within the school [35]. The Teacher Follow-

Up Survey (TFS) is conducted a year later in conjunction with SASS. TFS

focuses on K-12 teachers who participated in the previous SASS survey. The

data collected includes a sub-sample of teachers who left teaching within the

year and a sub-sample of those who continued teaching, whether in the same

school or a different one [35].

For this research, we analyze the available data from the 1999-2000 SASS

and 2000-2001 TFS, explicitly focusing on public schools, teachers, and prin-

cipals [35]. The TFS data provide binary labels indicating whether teachers

decided to continue teaching (labeled as 1) or leave the profession (labeled
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Figure 2: SASS and TFS Exploratory Retention Analysis for (a) gender, (b) race/ethnicity,

(c) new teacher, and (d) teaching field.

as 0). Figure 3 illustrates the data integration pipeline. Of the 42,086 public

teachers who participated in the SASS 1999-2000, only 4,156 (less than 10%)

participated in the TFS 2000-2001, comprising 2,477 current teachers and

1,679 former teachers. The data set includes 76.6% of schools with at least

one teacher participating in both SASS and TFS. We excluded 301 current

teachers and 215 former teachers who did not have TFS data on principal

and school associations, resulting in the labeled data set. Initially, 124 at-

tributes, including 107 categorical and 17 numerical attributes, represented

3,640 teachers. These attributes include 70 public teachers, nine public prin-

cipals, and 45 public schools. Data analysis, as shown in Figure 2, reveals

several interesting findings: (i) female teachers comprise a two-thirds major-

ity, (ii) male teachers exhibit higher turnover rates, (iii) white non-Hispanic

teachers form the majority racial/ethnic group in public schools, and (iv)

this group also experiences the highest attrition rate. Surprisingly, this over

20-year-old data analysis reveals that (v) teachers working more than three

years and those teaching STEM subjects have the highest annual attrition

rates.
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Figure 3: Correlation of SASS attributes with the TFS attributes.

4. Attribute Importance Scoring

4.1. Attribute Filtering by Mutual Correlations

This section presents a unique and easily interpretable suite of approaches

for analyzing attribute importance. Our goal is to overcome the challenges

of working with large-scale survey data containing noise, missing values, and

potential data quality issues, often called the ”Garbage In Garbage Out”

(GIGO) problem. The SASS and TFS data sets, which provide extensive

information with a mix of numerical and categorical data, also exhibit sig-

nificant overlap [35]. To address these challenges and enhance the inter-
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pretability of our models, we employ a filter method that identifies correlated

attributes. This filtering process allows us to construct a quasi-orthonormal

attribute space, enabling us to observe correlations between different features

or between a feature and our target label. By identifying and aggregating

linearly related attributes, we prevent artificial weighting of attributes during

the modeling step. To achieve this, we expand several categorical attributes

into multiple binary attributes. Through this expansion, we discover that

multiple separate categories capture highly overlapping data, further enhanc-

ing the granularity and accuracy of our analysis. The Pearson correlation

coefficient ρ measures linear relationships between two normal distributed

variables as ρ = cov(X,Y )
σxσy

. Pearson’s coefficient estimate r, also known as

a “correlation coefficient,” for attribute feature vector x = (x1, ...xn) with

mean x̄ and attribute feature vector y = (y1, ...yn) with mean ȳ is obtained

via a Least-Squares fit as defined in Eq. 1.

r =

∑n
i=1(xi − x)(yi − y)√∑n
i=1(xi − x)2(yi − y)2

(1)

In our analysis, we assign a value of 1 to indicate a perfect positive re-

lationship between variables, -1 for a perfect negative relationship, and 0

when there is no relationship between variables. We aggregate attributes

with high correlation coefficients to reduce redundancy and enhance inter-

pretability, as they exhibit linear dependence on each other. We select the

one with the highest correlation with our target label from these overlapping

attributes. Additionally, we combine all binary dummy-coded variables from

related categories as a set during variable selection. This consolidation ap-

proach reduces the dimensionality of the attribute set, allowing for improved
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Table 1: Example of aggregated attributes filtered by correlations.
New Label From Labels New Label From Labels

teaches 7th

teaches 7to12: Teaching 7 to

12th grades (1 0)

deg P Associate

deg highest P: Principal’s

highest degree (5 categories)

teaches 8th deg P Bachelors

teaches 9th deg P Masters

teaches 10th deg P Edu

teaches 11th deg P Doctorate

teaches 12th

pd stipend

pd finance: Professional

development pay (1 0)

hrs tch math hrs taught STEM: Hours of

teaching STEM subjects per

week

pd tuition r hrs tch science

pd conference r

pd travel r

pd release t pd time: Professional

development time off(1 0)pd schedule t

vacnc gen elem

vacnc NonSTEM: Difficulty

filling the vacancies in

Non-STEM fields (1 0)

incen gen elem

incen NonSTEM: Pay recruit

incentives on non-STEM fields

(1 0)

vacnc spec ed incen spec ed

vacnc english incen english

vacnc soc st incen soc studies

vacnc esl incen esl

vacnc foreign lang incen foreign lang

vacnc music or art incen music art

vacnc vo tech incen voc ed

type Alternative

sch type: School type (5

categories)

vacnc comp sci
vacnc STEM: Difficulty of

filling vacancies in STEM

fields (1 0)

type Elementary vacnc math

type Regular vacnc biology

type Special vacnc phys sci

type Voc Tech

incen certification

incen pay: Pay incentives in

salary (1 0)

incen STEM comp sci

incen STEM: Pay recruit

incentives in STEM fields (1 0)

incen excellence incen STEM math

incen prof dev incen STEM phys sci

incen location incen STEM biology

urbanicity LargeCity
urbanicity: Urbanic locale (3

categories)
urbanicity SmallTown

urbanicity MidCity

interpretability and understanding of attribute importance. Before calcu-

lating correlation coefficients and identifying linearly dependent attributes,

we pre-process categorical attributes with high cardinality. For instance,

we convert categorical attributes with numerous categories, such as 80 cat-

egories representing the major codes for teachers’ BA or MA degrees, into

STEM or non-STEM majors. We then expand the remaining categorical at-

tributes into multiple binary attributes to identify highly overlapping data
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patterns. Our expanded attribute set comprises 134 categorical attributes

and 17 numerical attributes. Among these, 78 attributes pertain to public

teachers, 17 to public principals, and 56 to public schools. The correlation

coefficients of the expanded data are illustrated in Figure 3, e.g. base salary

is highly correlated with earnings school and earnings total attributes. With

the correlation coefficients of our data, we combined all binary variables if

they can be related categories as a set, as summarized in Table 1. Finally,

the dimensionality of the data set has been reduced to 53 attributes, with 39

categorical and 14 numerical.

4.2. Multi-view Attribute Importance Analysis

Feature importance analysis is crucial to machine learning as it has sev-

eral benefits. It aids in model interpretation, allowing us to identify the most

influential features and understand their relative importance in contributing

to the model’s predictions. This interpretation is valuable for gaining in-

sights, making informed decisions, and building trust in the model’s outputs.

Feature importance helps identify the most important features in feature se-

lection. The model can generalize, improve performance, and reduce noise

by focusing on these high-importance features. Furthermore, feature impor-

tance provides valuable insights into the underlying relationships within the

data. It helps domain experts understand which attributes are crucial in de-

termining the outcome and uncovers meaningful patterns and dependencies.

This knowledge can drive further research, guide feature engineering efforts,

and inform decision-making processes. Feature importance analysis can help

detect data issues such as missing values, outliers, or incorrect labels. By

examining the importance of features, we can identify any issues or anomalies
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Figure 4: All nine methods select the 4 features remain teaching, public pt exp, pub-

lic ft exp, level Elementary as the most important features.

in the data. This allows us to address data quality problems before building

the model, ensuring better performance and reliability.
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In this paper, we propose six distinct approaches for feature importance

analysis. Logistic Regression with Lasso Regularization is the popular base-

line used for feature importance analysis beyond data science. Using the L1

penalty term, Lasso Regularization minimizes the loss function during the

training of the logistic regression model by shrinking the coefficients. At-

tributes with non-zero coefficient values are considered and selected for the

final set. Variance Threshold allows us to evaluate data quality problems.

The method removes attributes with low variance by applying a threshold,

such as 0.8*(1-0.8), to the training dataset. Attributes with a similarity

of 80% or more are eliminated, and the top-k attributes with the highest

variance are selected for the final set [36]. Random Forests classification

and regularization machine learning algorithm provide attribute importance

measures through the Gini importance or mean decrease impurity. In this

paper, we set the threshold at the 50th percentile of attribute importance,

and attributes with importance scores above this threshold are included in

the final set [37].

Recursive Feature Elimination (RFE): RFE starts by fitting a model to

the complete attribute set. The algorithm eliminates attributes with the

smallest coefficients and removes characteristics that worsen the 10-fold cross-

validation score of the models (ridge regression and random forest) on the

training data. The final set consists of attributes that do not compromise

the model’s generalizability [38]. Permutation Feature Importance (PFI):

PFI measures the difference in accuracy score or other performance metrics

between a baseline dataset and a permuted dataset where the values of a

feature are replaced with random noise. Features with positive importance
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mean are included in the final set, as the method returns positive and higher

values. PFI addresses limitations related to impurity-based attribute impor-

tance but can be influenced by feature correlations [39]. Sequential Feature

Selection (SFS): SFS sequentially selects an optimal set of features by ex-

haustively searching through all possible combinations. Each subset adds

one predictor at a time and is evaluated based on the 5-fold cross-validation

score of ridge regression and KNN models. The method is set to select half

of the provided attributes for the final set [40].

Six distinct approaches produce nine total scorecards on feature impor-

tance, as the last three approaches implement two measures per method

to illustrate the difference and sensitivity. Table 2 presents the number of

attributes each approach selects. Among them, RFE with ridge regression

resulted in the smallest set, consisting of 18 attributes, while RFE with ran-

dom forests produced the largest set, with 49 attributes, as illustrated in

Figure 4. We find that all nine attribute importance ranking approaches

consistently ranked the following four attributes as the most impactful: (1)

remain teaching - teacher responded to the survey question on the likelihood

of remaining in teaching); (2) public pt exp number of years of part-time

teaching experience in public schools); (3) public ft exp - number of years

of full-time teaching experience in public schools) and (4) level Elementary

- level of school in teaching is elementary, as illustrated in Figure 4. Eight

methods agree on the next five most impactful attributes (Figure 4), etc. In

this section, we have demonstrated a data-driven way to uncover the most

impactful attributes (in positive and negative senses) related to the teacher’s

decision to stay or leave the job. Note that race and gender appear to be
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picked by two or three methods only in Figure 4.

Table 2: Nine approaches selected the number of features, and the selection is illustrated

in Figure 4 with distinguished bar colors marked in the Color column.

Method Approach Features Color

Filter Variance Threshold 34

Embedded Lasso Regularization 38

Embedded Random Forests Feature Importance 27

Wrapper PMI - Random Forests 28

Wrapper PMI - Ridge Regression 33

Wrapper RFE - Ridge Regression 18

Wrapper RFE - Random Forests 49

Wrapper SFS - KNN 26

Wrapper SFS - Ridge Regression 26

Figure 5 indicates the main attributes of Random Forest and Random

Forest Permutation to predict teacher attrition. If we use a threshold of

0.011, public ft exp (years of full-time teaching experience in public schools),

remain teaching (teacher responded to the survey question on how likely

they will remain in teaching), yrs tch before P (years of teaching experience

before becoming a principal), num dependents (number of dependent teach-

ers), age P (age of a principal), new teacher (teachers who teach 3 years

or less), level Elementary (teachers teaching in an elementary school), and

hrs taught STEM (hours of teaching STEM subjects per week) are the only

eight overlapping highly impactful attributes. Vanilla Random Forest has 27

features with an impact score greater than 0.011. Both methods select pub-

lic ft exp as the most significant characteristic: the years of full-time teaching
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Figure 5: Random Forest Feature Importance and Permutation Attribute ranking com-

parison

experience in public schools. Specifically, since teachers work longer years as

full-time teachers in public schools, we can better predict teacher retention.
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5. Analysis and Prediction Modeling of Teacher Attrition

5.1. Prediction Leave Decision Modeling

We have established five baseline models, including the ridge regression

as the most common logistic classification model, Support Vector Machines

(SVM) and K Nearest Neighbors (KNN) for nonlinear and non-separable

data, and two decision tree-based ensemble methods: Random forests and

gradient boost. Each model runs with a 10-fold cross-validation of grid search

to find optimal hyper-parameters. Training data is the labeled data set with

3,640 teachers from 2,838 schools: 53 attributes and labels of 2,176 current

teachers and 1,464 former teachers.

Figure 6: Five machine learning models fitted to the training and test sets with 10-fold

cross-validation of hyper-parameter grid search. Test set accuracy, F1, and MCC results

show stable performance for all models except KNN.

We randomly split the data into a training set (2,192 teacher instances,

80%) and a test set (728 teacher instances, 20%) with shuffling and strat-

ification on the label. The feature reduction methods produced different

attributes: the whole set contains 53 attributes, and 18, 26, 26, 27, 28, 33,

34, and 38 attributes are selected by the nine feature selection methods. The

performance of the five state-of-the-art models in the test set, organized by

the number of attributes, is illustrated in Figure 6. The ensemble models
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Table 3: Best model of the five state-of-the-art machine learning models is gradient boost-

ing training 27 features.

Model Best Set Selection Method Accuracy [0,1] F1 [0,1] MCC [-1,+1]

Log Reg Ridge 28 PMI - Random Forests 0.761 0.808 0.496

SVM 33 PMI - Ridge 0.754 0.804 0.48

KNN 28 PMI - Random Forests 0.713 0.774 0.389

Random Forests 28 PMI - Random Forests 0.766 0.821 0.507

Gradient Boost 27 Random Forests Feature Importance 0.773 0.824 0.521

based on decision trees, gradient boost, and random forests training 27 and

28 attributes selected by the importance of random forest characteristics and

PMI with random forests, respectively, are the model with the highest accu-

racy (77%) and F1 (82%). The metrics, accuracy, F1, and MCC generally

show steady performance across all models except KNN and feature sets.

The modeling pipeline was repeated for the advanced gradient boost-

ing models, XGBoost, LightGBM, CatBoost, and HistGradientBoosting.

Gradient-Boosting approaches are optimized for faster and more efficient fit-

ting using a data sparsity-conscious histogram-based algorithm approximat-

ing gradient creates estimates by creating a histogram for tree splits. This

algorithm handles the data’s sparsity, especially for tabular data with miss-

ing values and one-hot encoded categorical features. For example, XGBoost

uses Sparsity-aware Split Finding defining a default direction of the tree split

in each tree node [15]. Additionally, LightGBM provides the Gradient-Based

One-Side Sampling technique, which filters data instances with a large gra-

dient to adjust the influence of sparsity, and Exclusive Feature Bundling

combining features with non-zero values to reduce the number of columns

[16].
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Handling categorical features. Handling categorical features is chal-

lenging in building a machine-learning model for tabular data. While there

are several ways to process representing categorical features, such as one-hot

and ordinal encoding, tree building and splitting with these methods often

result in unbalanced trees and data sparsity, especially for high-cardinality

categorical features. The four gradient boost models implement and suggest

optimal methods for processing categorical features to optimize numerous

boost steps for computing time and memory consumption. LightGBM, Hist-

GradientBoosting, and XGBoost use the optimal split method [41] to group

the categories of a feature and classify them as continuous partitions accord-

ing to the target variance to find the best split in the histogram of sorted

gradients[42]. CatBoost proposes Ordered Target Statistics (TS), which im-

proves the target encoding method by using the history of all training data

to compute TS instead of the target on a test set [43]. All four models accept

hyperparameters to handle categorical features, such as categorical feature

indices or thresholds to control one-hot encoding or the number of tree split

points.

Early stopping rounds. As the boosting algorithm trains weak learners

iteratively, early stopping reduces training time and avoids overfitting. At

every boost round, the model evaluates and decides whether to stop or con-

tinue the training when the model shows no more improvement for a certain

number of consecutive rounds in terms of the evaluation metric specified as

the fit parameter. For early stopping, a validation set, the split test set at the

beginning of the modeling process, and the number of early stopping rounds

set to 10% of the maximum number of boosting iterations are provided.
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Next, we compared the four gradient boosting models with our best-

performing baseline models, gradient boosting. Although the boosting mod-

els remain stable for all sets of attributes regarding their test precision, F1

and MCC, as shown in Figure 7, the most robust boosting model performs

best is CatBoost trained 27 features selected by the importance of random

forests features with the best accuracy (78%), F1 (83%) and MCC (54%).

Furthermore, the performance of the four gradient-boosting algorithms is

similar to and not exceeding the vanilla gradient boost implementation, as

the difference in accuracy between them is equal to or less than 1%. In

conclusion, the reduction in dimensionality does not influence the ma-

chine learning models, and the gradient-boosting algorithms perform slightly

better than the other baseline models.

Table 4: CatBoost fitting 27 features is the most robust model among Advanced gradient

boosting models.

Model Best Set Selection Method Accuracy [0,1] F1 [0,1] MCC [-1,+1]

CatBoost 27 Random Forests Feature Importance 0.783 0.832 0.543

HistGradientBoost 49 RFE - Random Forests 0.779 0.826 0.533

LightGBM 28 PMI - Random Forests 0.764 0.801 0.51

XGBoost 28 PMI - Random Forests 0.776 0.825 0.527

Hyperparameter optimization. To improve the gradient-boosting

models, we can penalize and regularize the algorithm by hyperparameter

tuning so that we aim to increase accuracy and avoid overfitting. To begin

with, constraining tree structures reduces the growth of complex and more

extended trees by optimizing parameters such as the number of trees, the

depth of trees, and the number of leaves per tree. In addition, setting a

smaller learning rate, usually less than 0.5, allows weighting trees to slow the
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learning by a small amount at each iteration to reduce errors. Furthermore,

setting the optimal L1 and L2 regularization terms penalizing the sum of the

leave weights improves the models by simplifying the complexity and size

of the model [15]. These hyperparameters are searched with a 5-fold cross-

validation RandomizedSearch with the number of iterations that is 20% of

parameter distributions of each model. For example, XGBoost is supposed

to explore 100 distributions of the parameters; the number of iterations for

RandomizedSearch is 20 times.

Figure 7: Five gradient boosting models fitted to the training and test sets with 5-fold

cross-validation of RandomizedSearch. We show that the dimensionality reduction plays

no role in the performance of the models w.r.t accuracy, F1, and MCC.TODO: make

graphs larger and in 2 rows – June

5.2. Teacher Retention Prediction and Analysis

In this section, we evaluate how skewed the training data is and does

the classification of teachers (1 if it stays, 0 if it leaves) is skewed by a high

percentage of former teachers. Our labeled data (3,640 teachers) is small and

labels 2,176 as current and 1,464 as former teachers. The attrition rate in

the labeled data is 40%, much higher than the retention rate of under 10%

in the USA. The exploratory data analysis of the labeled dataset shows the

same characteristics as the exploratory data analysis of the dataset consisting

21



of teachers who took the SASS survey but did not follow up with the TFS

survey. The entries without principal and school associations were removed

from the test set. The labeled data of 3,640 teachers becomes a training set,

and our new unlabeled test set is a set of 33,198 teachers and their attributes.

The dataset that contains attributes for teachers that took the SASS survey

but did not follow up with the TFS survey also does not include informa-

tion on the teacher’s marital status and the number of dependents. Thus,

we exclude those attributes from the training dataset and fit the XGBoost

model, which is the best gradient boosting model for the complete feature

set of 51 features in the training data set, with the best hyperparameters:

’n estimators’ : 200, ’min child weight’ : 0, ’max depth’ : 6, ’learning rate’ :

0.2, ’lambda’ : 10, ’gamma’ : 0.1, ’alpha’ : 10. Next, we rank predictions in

the test set. To account for the bias in the training set that favors former

teachers, we raise the confidence in the model threshold to 0.8.

Figure 8: Teacher attrition prediction analysis per school and principal attributes.

As a result, our model predicts that 3,399 teachers from the unlabeled

SASS data set have also left education (80%+ model confidence), that is,

10.24% predicted attrition rate for the entire population that did not re-

spond to the follow-up survey. This result aligns with the teacher attrition
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rate in the USA, demonstrating that our training data are not skewed. The

breakdown of the predictions shown in Figure 8 is aligned with our primary

EDA (Figure 2) for the labeled data: (i) female teachers are the majority;

(ii) the turnover rate is higher for male teachers; (iii) white non-Hispanic

teachers are the majority race/ethnicity group and have the highest attrition

rate; (v) the highest attrition yearly rate is for teachers working more than

three years and for teachers teaching STEM subjects.

6. Conclusion and Future Work

This paper utilizes open-source historical data to model the most impact-

ful attributes of teacher attrition in the USA, and introduces the multi-view

feature importance analysis for robust assessment of the intrinsic connec-

tions and patterns in the education data. The results show a consensus

among these methods, highlighting the teacher’s willingness to respond to

a survey question, years of teaching experience in public schools, and the

school’s elementary level as the most influential attributes. Furthermore, we

demonstrate that gradient-boosting models applied to raw input data yield

superior performance in predicting teacher attrition at the school level for

unlabeled data. Interestingly, data alignment and imputation do not sig-

nificantly improve the modeling performance within this framework. The

predicted attrition rate for teachers who completed the SASS survey but

not the TFS follow-up survey surpasses 10%, aligning with current attri-

tion rates in the USA. Our experiments are reproducible and available for

reference. Moving forward, our next step involves expanding the dataset to

include public-use SASS and TFS data from other years, as well as restricted-
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use data such as SASS and TFS (2003-2004, 2007-2008, and 2011-2012), and

National Teacher and Principal Survey (NTPS) data (2015-2016 and 2017-

2018). This expansion will allow us to validate our pipeline and explore

open-source educational data worldwide, enabling policymakers to allocate

resources effectively to schools and teachers at high risk of leaving the sys-

tem. In conclusion, this research sheds light on the influential factors of

teacher attrition and presents a robust data analysis and modeling pipeline.

It contributes valuable insights into the understanding of teacher attrition

and provides a framework for future investigations in this field.
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Teacher

Label

Description Teacher

Label

Description

num depen-

dents

Number of dependents of teach-

ers

deg T MA Master’s degree (1 0)

married Married teacher (1 0) pd time Professional development time

off(1 0)

race

T White

Teacher’s race (1 White 0 Oth-

ers)

pd finance Professional development pay (1

0)

race T Black Teacher’s race (1 Black 0 Others) remain

teaching

Likely to remain in teaching (5-

pt scale)

race

T Hispanic

Teacher’s Ethnicity (1 Hispanic 0

Others)

field STEM STEM is main teaching job (1 0)

gender

T Female

Teacher’s gender (1 F 0 M) hrs taught

STEM

Hours of teaching STEM sub-

jects per week

summer

teaching

Teaching summer school (1 0) public ft exp Years of full-time teaching in

public schools

nonteaching

job

Has a nonteaching summer job (1

0)

public pt

exp

Years of part-time teaching in

public schools

nonschool

job

Has a nonschool summer job (1

0)

private ft expYears of full-time teaching in pri-

vate schools

extracur act Extracurricular Pay(1-T 0-F) field same Same teaching field as 1yo (1 0)

merit pay Income from merit pay (1 0) full time Teaching full-time (1 0)

union memberUnion member (1 0) teaches 7to12Teaching 7 to 12th grades (1 0)

BA major

STEM

STEM major for BA (1 0) new teacher Teaching 3 years or less (1 0)

MA major

STEM

STEM major for MA (1 0) stu tch ratio Student-Teacher ratio

field cert

Regular

Certificate type (1 Regular 0

Others)

Table 5: Selected Teacher Attributes in the SASS dataset. Value (1 0): If the statement

is true, the attribute value is 1, otherwise it is 0.
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Principal

Label

Description School La-

bel

Description

age P Age of principal vacnc

STEM

Difficulty of filling vacancies in

STEM fields (1 0)

salary P Annual salary of principal region

Northeast

School Location (1 Northeast 0

Others)

yrs P

this sch

Years at current job region West School Location (1 West 0 Oth-

ers)

yrs P

oth schls

Years as principal elsewhere minority

students

Minority students percent

yrs tch

before P

Years teaching prior to principal FRPL eligi-

ble k12

Free or reduced-price lunch eligi-

ble students percent

yrs tch

since P

Years teaching since principal sch type School type (5 categories)

deg

highest P

Principal’s highest degree (5 cat-

egories)

level

Elementary

School level (1 Elementary 2

Others)

race P

Black

Principal’s race/Ethnicity (1

Black 0 Others)

urbanicity Urbanic locale (3 categories)

race P

White

Principal’s race/Ethnicity (1

White 0 Others)

title I re-

ceive

Students receive Title I (1 0)

race P

Hispanic

Principal’s race/Ethnicity (1

Hispanic 0 Others)

incen pay Pay incentives on salary (1 0)

gender P

Female

Principal’s gender (1 F 0 M) incen

NonSTEM

Pay recruit incentives on non-

STEM fields (1 0)

Table 6: Selected Principal and School Attributes in the SASS dataset. Value (1 0): If

the statement is true, the attribute value is 1. Otherwise it is 0.
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