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Abstract—State-of-the-art object detection methods applied to
satellite and drone imagery largely fail to identify cross-domain
small and dense objects. The high content variability in the
overhead imagery is due to the different sensors, terrestrial
regions, lighting conditions, and the image acquisition time of the
day. Moreover, the number and size of objects in aerial imagery
are very different than in the consumer data. We propose a small
object detection pipeline that improves the feature extraction
process by spatial pyramid pooling, cross-stage partial networks,
and heatmap-based region proposal networks. Next, we propose
the instance-aware image difficulty score that adapts the overall
focal loss to improve object localization and identification. Finally,
we add the two progressive domain adaptation blocks using
contrastive learning in the pipeline. The blocks align the local
and global features extracted from the customized CSP Darknet
backbone, as the different levels of feature alignment alleviate
the degradation of object identification in previously unseen
datasets. We create a first-ever domain adaptation benchmark
using contrastive learning for the object detection task in highly
imbalanced satellite datasets with significant domain gaps and
dominant small objects from existing satellite benchmarks—the
proposed method results in up to a 7.4% and 4.6% increase
in mAP over the best state-of-art method for the DOTA and
NWPU-VHR10 datasets, respectively.

Index Terms—Object Detection, Domain Adaptation, Satellite
Imagery, Debiased Contrastive Learning, Remote Sensing Image

I. INTRODUCTION

Deep learning has succeeded in diverse computer vision
applications [1], [2], [3], [4]. Still, there is a growing need for
automated object localization and identification systems for
overhead imagery for traffic control, national parks, wilder-
ness areas, natural disaster surveillance, agriculture, maritime
piracy, etc. Research efforts are underway in precision agri-
culture [5], emergency rescue [6], terrestrial and naval traffic
monitoring [7], and industrial surveillance [8] to integrate
accurate automated object localization and identification in
overhead systems. Oriented object detection has been used
for the precise localization of target objects [9], [10]. The
challenge lies in the fact that due to high ground sample
distance (GSD), the aerial imagery content varies significantly
within the same area of capture or drone flight. Several factors
are responsible for this dramatic change, such as significant
changes in light conditions (time of day, season, weather) and
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the type of terrestrial terrain captured in the imagery. The

Fig. 1: Visual difference between consumer images [11] and
satellite images [12]

variation between datasets, including multiple dates, terrains,
missions, object distribution and sizes, and lighting conditions,
is even higher. Figure 3, (a) shows the variations due to image
capture time and lighting conditions, Whereas Figure 3(b)
illustrates that an object can be as small as 0.01% and as large
as 70% of an image. Figure 3(b) also shows a loosely packed
nature vs. the densely packed small object characteristics in
satellite images. Further, we claim that geographical variance
is a critical challenge for domain adaptation tasks on satellite
images in Figure 3 (c); we also see that geographical variance
can also exist in a singular experimental dataset due to image
capture from regions of the world. Furthermore, in Figure 2,
we provide empirical evidence by plotting the validation set
image features fetched from the source (DIOR) and both target
domain (DOTA2.0, NWPU-VHR) datasets. To plot the features
in 2D feature space, first, we extracted the image features
from the backbone of the baseline CenterNet2 network. Next,
we used T-SNE to plot the 1024 dimension features in 2D
space. It is clear from Figure 2(a) and 2(b) that the domains
are pretty different due to the above-mentioned variations,
and both target datasets are reasonable candidates for domain
adaptation tasks.

The examples of consumer images vs. overhead images are
illustrated in Figure 1. Advancements in deep neural networks
and greater availability of computational resources have led to
enhanced object detection techniques in consumer images [13],
and the improvements include improving the Region Proposal
Network, better backbone, and integration of the weight-based
loss function for hard-example mining. State-of-the-art object
detection and domain adaptation (DA) modeling approaches
developed for consumer images do not translate to overhead
imagery due to visual variation within the cross-domain image,
the relative object size w.r.t the image, and the object density in
an image [14]. Recent advances in model detection in overhead
images do not address the domain shift and the challenges due
to high GSD in an unsupervised setting with a single pipeline
[15]. The object identification models for UAV/drone images
tend to perform better in low-altitude datasets with relatively
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fewer small and dense objects compared to our experimental
datasets [16].

Deep neural networks require large and diverse amounts of
annotated training data to guarantee reliable object localization
in unseen datasets. Collecting and annotating aerial datasets
has proven difficult and complex due to many small and dense
objects per image [17]. Only three datasets with rich class
distribution are being used to benchmark the results to date:
DOTA2.0 [18], and DIOR [12] are two satellite image collec-
tions, and VisDrone is the overhead drone collection [19]. Do-
main adaptation successfully shares acquired knowledge (re-
garding annotations and learned models) in the source domain
with the target domain. Domain adaptation has risen as one
of the approaches to speed up the pseudo-labeling of objects
in the target domain using source labels. Domain adaptation
for object recognition in consumer image datasets successfully
addresses weather, lighting conditions, geological variance,
variation in image quality, and cross-camera adaptation by
aligning the global feature distribution of data from the origin
and target domains [20]. Recent State-of-the-art (SOTA) work
of unsupervised domain adaptation for aerial imagery uses the
reconstructed feature alignment method instead of adversarial-
based feature alignment to avoid background noise alignment
[21]. Nevertheless, limited progress in the domain adaptation
task has been focused on satellite imagery. Therefore, there
is a pressing need to delve into new ideas and techniques to
achieve more improved and favorable results.

In this work, we intend to explore contrastive learning on
local and global image features to perform feature alignment
on task-specific layers. Contrastive learning is a technique that
evaluates pair-to-pair relationships by measuring the similari-
ties between different pairs, such as query-positive or query-
negative. It groups similar features closely and dissimilar
features at a distance in the feature space. We use a random
image feature as the query sample and its augmented version
as the positive sample. Negative samples are the image features
in a mini-batch that are not part of the query and positive
samples. This paper introduces the first domain adaptation
benchmark for large-scale satellite image datasets. To reduce
the global gap between the source and target domains, we
create two intermediate domains using the CycleGAN mod-
eling [22]. Then, we extracted the local and global features
extraction from feature pyramid network (FPN) layers using
the adapted domain adaptation approach. Next, we introduce
difficulty-weighted focal loss (DWFL), which uses the number
of foreground proposals and amount of neuron activation and
assigns a difficulty score for a particular image. Finally, we
introduce the noise-contrastive estimation (InfoNCE) [23] loss
to produce domain-invariant features. The methodology is
outlined in Section IV, and the novelties of the proposed
methods are:

1) Using the local-global feature alignment from the source
and target datasets using contrastive learning-based do-
main adaptation.

2) Integration of a novel difficulty estimation method and
DWFL in the detection pipeline.

3) Multiple numbers of negative samples for debiased con-
trastive learning and object detection tasks.

4) Progressive domain adaptation by creating an interme-
diate domain and minimizing the domain gap between
source and target datasets.

5) Finally, with the help of DWFL and local-global feature
alignment, the proposed method results in up to a 7.4%
and 4.6% increase in mAP over the best SOTA method
for the DOTA and NWPU-VHR10 datasets, respectively.

The rest of this article is organized as follows. Section II
summarizes related work, and Section III introduces the pro-
posed difficulty-based small object detection pipeline. Next,
Section IV describes the contrastive learning approach and
the different feature alignment modules in the architecture.
In Section V, we evaluate the proposed framework using the
latest cross-domains detection benchmarks over three different
high-altitude (DIOR, NWPU VHR-10, and DOTA2.0) remote
sensing datasets and finally summarize the findings in Sec-
tion VI.

II. RELATED WORK

Object Detection The latest object detection techniques
are classified into single-stage or multistage detectors. As the
name suggests, single-stage detectors aim to predict object
bounding boxes and class labels directly from a single network
pass [25], [15], [26]. Single-stage detectors do not have
separate neural network modules to generate object proposals
and rely on anchor boxes of varying scales and aspect ratios.
Single-stage object detection architectures may struggle with
accurately localizing small or densely packed objects due to
the limited receptive field of the network [18], [27]. However,
Cheng et al. [28] proposed an efficient approach to generate
anchor-free region proposals for accurate localization using
oriented object detection. Multistage detectors are often more
accurate and computationally expensive than single-stage de-
tectors due to their use of region proposal networks (RPN) and
the non-maximum suppression technique (NMS) to refine the
regions of interest in images [29], [30]. NMS filters out posi-
tive instances by rejecting overlapped proposal regions in the
image with the help of IOU [31], [32] threshold. CenterNet2
[24] is a heatmap-based two-stage approach with balanced
positive/negative samples per batch. It uses a Gaussian filter
to create a heatmap peak at the object’s center to define the
proposal regions [24]. The anchor to the object is the region’s
center based on location. Thus, the one anchor per object
eliminates the need for the non-maximum suppression filtering
of the overlapping proposals without affecting the quality of
the proposal. Due to its superior characteristics in finding
densely packed and small objects, we chose CenterNet2 as
our baseline architecture.

Small and dense Object Detection As the object’s size
decreases, the chances of losing local information in deep
layers increase significantly. The outcome of the small object
detection depends on how well the backbone network [1], [3],
[33] captures the region features from the input image. Next,
different scale features from various stages of the backbone
have been successfully used for other scale predictions. The
feature pyramid network (FPN) layer also helps to strengthen
standard spatially rich features by combining semantically
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(a) Yellow circles represent the target dataset (DOTA), and blue
circles represent the source dataset (DIOR)
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(b) Yellow circles represent the target dataset (NWPU-VHR), and
blue circles represent the source dataset (DIOR)

Fig. 2: High domain gaps illustration using image features extracted from source and target domain validation set.
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Fig. 3: Domain variations from different aspects in our exper-
imental datasets: (a) lighting conditions, (b) object shape and
scale, and (c) variation due to geographical change

rich features by combining low-level and high-level features
with the fuse connection and up-sample method. An improved
FPN module uses a similarity-based fusion method capable
of extracting information for various sizes of instances [34].
Authors argue [35], pixel-level appearance features do not
contain enough information to localize small objects in an
image, the global context aggregation module and the feature
refinement module to build Global Context-Weaving Network
are required for optimal performance in small object detections
[36]. Hence, context-based feature extraction is more robust
for complex object and scene detection and performs better in

benchmark datasets [37]. Yang et al. [38] propose querydet,
which first predicts the coarse locations of small objects
on low-resolution features and then computes the accurate
detection results using high-resolution features sparsely guided
by those crude positions. This work does not rely much on
low-level feature queries because it is hard to distinguish
small objects with very low resolution on feature maps. The
above discussion verifies that small object detection requires
global/high-level features to classify objects accurately, which
motivates us to use features with high receptive field from
later layers in conjunction with the Multi-layered perceptions
(MLP) module to calculate the difficulty score for an image
(see details in section III).

Domain Adaptation for Object Detection Domain Adap-
tation techniques are used to handle the problem of domain
change between source and target data sets. In the last
few years, the unsupervised Generative Adversarial Network
(GAN) has been critical in solving the domain shift prob-
lem. The GAN-based approach expands object detection in
consumer images to other domains. The GAN-based domain
adaptation model uses a Gradient Reversal Layer (GRL) to
learn domain invariant features. Hsu et al.[39] use adversarial
learning to align the distribution of characteristics between
domains and perform progressive domain adaptation to address
the problem of significant domain gaps. Saito et al. show
domain adaptation should not be rigorous and uniform at every
point in feature space, and careful inspection is required to
align features that are very close to the inter-class boundary
to achieve optimal results [40].

On the other hand, mixing-based strategies have succeeded
in consumer image domain adaptation tasks. Mattolin et al.
[41] employed the confidence-based mixing (ConfMix) tech-
nique to integrate source and target domain images. This inte-
gration process involves the computation of instance proposal
confidence, which is determined by considering both the ob-
jectness score and bounding box uncertainty score associated
with each instance proposal within the image. Song et al. [42]
propose a similar network to our work; they propose to use
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Fig. 4: CenterNet2: Heatmap based multistage small object detection model used as a baseline [24]

local object-aware feature alignment and cross-scale attention-
aware feature alignment to highlight more foreground infor-
mation and achieve better accuracy. The Semantic-complete
Graph Matching (SIGMA) framework, introduced in the study
by Li et al. [43], represents a novel approach for the Domain
Adaptation task. This methodology addresses incongruities in
semantics and redefines adaptation through graph matching.
The major component within SIGMA, the Graph-embedded
Semantic Completion module (GSC), specifically targets mis-
matched semantics by generating hallucination graph nodes
corresponding to the absent categories.

The maximum mean and central moment discrepancy
approaches successfully produced domain-invariant features
through the alignment of feature space. Long et al. proposed
DAN [44], which matches the mean embedding of differ-
ent domain distributions from different task-specific layers
in CNN, and Zeillinger et al. [45] proposed to use means
of order-wise moment differences to match the higher-order
central moments of probability distributions. State-of-the-art
guides knowledge transfer between domains while maintaining
consistency of the relevant semantics before and after adapta-
tion [46]. Class-level distribution alignment across the source
and target domains was achieved using the Easy-to-Hard
Transfer Strategy and a Prototype Feature Alignment Network
[47]. However, some adversarial adaptation methods aim to
mitigate the need for uniform alignment among all samples;
their effectiveness remains constrained by the challenge of
achieving accurate unsupervised adaptation.

Contrastive Learning for Domain Adaptation The idea
of representation learning in contrastive fashion was first
introduced by Hadsell et al. [48] for the dimensionality re-
duction task. Later, contrastive learning became more popular
with the InfoNCE [23] loss for clustering similar features
together and dissimilar features at a distance in feature space.
Contrastive learning has gained much attention for feature
representation learning for tasks such as domain adaptation
[49], video anomaly detection[50], and video-text alignments
[51] due to its straightforward work process to produce similar
features across domains. However, it maintains discriminating
characteristics in task-specific features to represent different
classes in a singular domain. It uses a similarity function
such as cosine similarity or Euclidean distance to measure the
similarity between two vectors. As we also work with feature
vectors at both image and instance-level for satellite images,

we decided to follow feature learning with contrastive loss for
our unsupervised domain adaptation task.

Several versions of InfoNCE loss were derived based on
different applications. Some focus on the number of negative
examples we need to design optimal contrastive learning. Wu
et al. [52] argued that real-world datasets often introduce
noise, and incorporating too many noisy negative examples
yields sub-optimal results. Chuang et al. [53] propose reducing
bias in contrastive learning by carefully selecting negative
examples. The selection of False Negative examples can
disturb the learning process and harm the overall performance.
Contrastive learning is successful not only in single-source
domain adaptation but also in multi-source domain adaptation
[54]. Kang et al. [54] consider class information and label the
target dataset using the K-means clustering method. Kalantidis
et al. [55] use hard negative mixing strategy to amplify
the effect of negative samples with very minimum overhead
computation. Motivated by these works, we propose a new
version of InfoNCE loss for the domain adaptation task.
We present contrastive learning that is less susceptible to
false negatives from highly imbalanced datasets by carefully
selecting negative examples.

III. SMALL OBJECT DETECTION

The satellite image has a maximum of 400 million pixels
and objects are frequently smaller than 100 pixels. A typical
patch of the image is 1024× 1024, which equals 1.05 million
pixels. If an object is 10× 10 or 100 pixels, the object’s size
is < 0.0001 of the area of the image. The success of object
detection is contingent on the reliability of the pixel- and
object-feature extraction, as well as the RPN-based proposal
network within the DNN architecture. An increase in the
number of small, densely packed objects raises the possibility
of losing pixel-level information during feature extraction. The
RPN-based proposal network can miss small objects early in
the processing, leading to difficulty in detection at later stages
[56]. Furthermore, dense object arrangements result in extra
noise from surrounding information during input and more
post-processing operations.

A. Baseline Model for SOD

Figure 4 shows the Base model architecture, a pipeline
adopted from the CenterNet2 model [24] with 3 components:
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Fig. 5: SOD model: Small Object Detection model with updated backbone, new loss function, and the difficulty estimation
block.
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Fig. 6: HeatDA: Heat Domain Adaptation model with transfer learning and CycleGAN translated image domain adaptation.

Backbone, RPN, and Detection Head. To enhance performance
on overhead datasets, the image size, output channels, and
IOU were optimized in the FastRCNN Detection Head. The
Backbone employs ResNet50 as a feature extractor and FPN
for multi-scale predictions, combining features from prior
layers via residual connections to prevent vanishing gradients
problems. The Base model, with ResNet50, achieved leading
results on COCO [11] and LVIS [30] datasets. The FPN layer
extracts features at different scales from different Backbone
layers, shown in the FPN block in Figure 4. The Resnet(C3),
Resnet(C4), and Resnet(C5) blocks represent strides of 8, 16,
and 32 in the network. P3, P4, and P5 show three scale
prediction FPN outputs, which are fed into the RPN block
described in the following paragraph for scale predictions.

Region Proposal Network (RPN) in the Base model
[24] creates region suggestions through heatmaps by applying
Gaussian kernels on features from the FPN at different scales.
The heatmaps are produced by comparing the max-pool input
and the Gaussian kernel output element-wise. Max-pooling
highlights each pixel in the feature except for local maxima,
which have a value of 1. Each peak in the heatmap represents
the center of an object, as shown in Figure 10 (a) and (c).
The features at each key point are used to determine the
size of objects, leading to accurate bounding boxes even
when objects are close or overlap. To improve performance
on overhead imagery, the baseline model requires advanced
image augmentation techniques, enhanced feature extraction
methods, and an increased proposals per image and detection

per image. Detection Head is based on the Faster-RCNN
detector [31]. It takes filtered region proposals from the RPN
as input. It processes them as follows: 1) Convert proposals
into 7×7 grids with the same number of channels via region-
of-interest (ROI) pooling, 2) Flatten the pooling output and
feed it into FCN for final detection output, (N,C) for class
predictors for C classes, and (N, 4) for N region proposals
bounding boxes.

B. Small Object Detection pipeline

An extended version of our SOD model for small object
detection [57] improves upon the Base model by optimizing
the pipeline for detecting small objects. We replaced the
backbone with CSP Darknet [26] and added the Difficulty
Estimation block. We also switched to a modified focal loss
instead of cross-entropy loss (Figure 5). The effectiveness of
the RPN module depends on the backbone’s performance. If
the backbone fails to extract meaningful features for the small
object in the image, the RPN module will likely fail to include
the small object in the region proposals. Our findings found
that 75% of RPN proposals in the Base model were trivial and
repetitive (backgrounds, partial objects) as explained in [57].
To enhance the model, we used the CSP Darknet backbone
for preserving better semantic information in deeper CNN
layers [26], [58]. The research introduces a partial cross stage
for low/high-res aggregation and replaces max-pooling with
spatial pyramid-pooling for finer feature extraction.
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Fig. 7: Domain translation from Source(S) to Source as Target(SaT) using CycleGAN [22] and Object Detection from HeatDA
model.

The proposed small object detection model is illustrated in
Figure 5. The pipeline concatenates several low-level features
with high-level features channel-wise, thus propagating the
semantic information from the lower to higher levels. The re-
gion proposal network considers the multi-resolution features
from different CSP-Bottleneck layers for proposal generation,
as illustrated in Figure 5. Difficulty Estimator (DE) module
numerically captures the complexity of an image feature based
on the number of foreground object proposals and the amount
of neuron activation information in the network for an image.
It calculates the overall difficulty of each image by taking
feature input from different stages of the feature network. The
difficulty score (DS) for an FPN feature level with a resolution
of C ×W ×H for the image I is calculated in Equation 1.

DS(I) =
1

L

L∑
l=1

(
1

C ∗W ∗H

C∑
c=1

W∑
w=1

H∑
h=1

fc,w,h(I))

∗ num_prop(I) (1)

The feature output channels, width, and height at FPN level
(l) are represented by C, W, H respectively. In contrast, L
represents the number of FPN levels used to calculate diffi-
culty. The difficulty score (DS) at the FPN level is calculated
by dividing the sigmoid linear unit (SiLU) activation values
fc,w,h(I) at all pixels in an image (I) by the total dimension
of C, W, H. Using this block we calculate the number of
total neurons fired for a single image in the forward pass. The
difficulty score DS is derived from three FPN levels, averaged,
and multiplied by the number of proposals (See Equation 1).
An image can contain a single big object can have a high
amount of neuron activation and a high-intensity value. The
high amount of region proposals is more likely to correspond
to a higher number of dense small objects. The intensity
values are not always reliable for the overhead imagery. Thus,
we compute the difficulty score DS as a multiplication of
the intensity value with the neuron activation. The DS after
multiplication can be very high; for smooth learning, the final
DS value for an image (I) is obtained by normalizing the DS
value between [0.7, 1.4]. The ultimate goal of the DS is to
perform as the weight parameters in the focal loss function
(See Equation 2). So, we do not penalize the loss very much
to avoid longer convergence time as well as vanishing gradient
decent issues due to very small weight updates. We found

that an easy example with minimum DS=0.7 and a difficult
example with highest DS=1.4 works well for experimental
datasets. The complexity increase for the DS block is minimal
with constant time PyTorch operation, and its computational
time, expressed in Big (O) notation, is O(r), where r is the
number of iterations during training.

FL(pt, y) = αt ∗ (1− pt)
γ ∗ CE(p, y),

DWFL(x, pt, y) = DS(I) ∗ FL(pt, y), (2)

Difficulty weighted Focal Loss is calculated from the
difficulty scores for each image, and we propose replacing
the loss of cross-entropy with the loss of custom focus, as
illustrated in Figure 5. The difficulty scores are calculated
using Equation 1 for each image by a difficulty estimator block
as a weight factor to focus more on complex images with many
small objects and a high variation in pixel-level features. The
basic form of the focal loss function is outlined in Equation 2.

∀c ∈ C,α′
c = −1 ∗ log

(
|Cc|

|C1 ∪ C2 ∪ ...|

)
⇒ αc = β ∗ α′

c −min(αc)

max(αc)−min(αc)
(3)

The pt is the probability distribution of the target t, and y
is the ground truth of the object being a specific class, γ is
the modulating factor, αt is used as a weighting factor, and
CE represents the cross-entropy function. We propose a new
measure, the Difficulty Weighted Focal Loss (DWFL) in Equa-
tion 2 as a product of difficulty score, DS(I) in Equation 1,
and focal loss for the image, FL(pt, y) in Equation 2. The
value α is used in the FL(pt, y) calculation to control the
class imbalance problem in our source and target data sets.
The αc is calculated as in Equation 3 for each class, where
the modulating factor α′

c depends on the frequency |Cc| of a
particular class in the data set and |C1 ∪ C2 ∪ C3...| is the
total number of all instances of all classes in the data set.
The normalized αc values from Equation 3 are used across
different classes c, c ∈ C to mitigate the imbalance of object
class labels. In the experiment section V we confirm that the
proposed normalization of αc in Equation 3 is more effective
and gives a stable loss calculation for a highly unbalanced
class count in the data set.



IEEE TGRS, VOL. X, NO. Y, 2024 7

Region
Proposals

FastRCNN
Detection

Head

Custom Focal
Loss

Mini-Batch

Bottleneck
100X100X3

Local Feature Alignment
with Contrastive

Learning

Bottleneck
50X50X3

Global Feature
Alignment

with Contrastive
Learning

Local Contrastive Loss

Global Contrastive Loss

Total Loss =

DWFL(x,p,y)
+

InfoNCEglobal
+

InfoNCElocal 

FPN Features
from only S and

SaT

S SaT

T TaS

Difficulty Estimation
Block

CSP Darknet
Backbone

Lo
w

-le
ve

l F
ea

tu
re

s
H

ig
h-

le
ve

l F
ea

tu
re

s

MLP

MLP

CycleGAN

CycleGAN

Fig. 8: Local and Global Domain Adaptation(LGDA) model with contrastive learning.

IV. DOMAIN ADAPTATION METHODS

Different overhead image datasets are usually taken at dif-
ferent geographical locations, and different types of satellites
were used to capture images with different orientations under
various weather and lighting conditions. There are a handful
of annotated overhead image collections [59], and they all
have different object class annotations, both in frequency and
assigned object labels. This contributes to a large domain
gap between our source and target data sets. Object detection
performance on target degrades drastically when the domain
gap is very w.r.t source dataset. Domain adaptation (DA)
methods are key to solving this problem. Using domain
adaptation methods, we can perform better in unseen datasets
not introduced during the training phase. The self-supervised
or unsupervised domain adaptation aims to produce invariant
features for a particular class across domains. In the experi-
ment section V, we confirm that the domain adaptation of the
source in the training process improves the object detection
performance.

A. HeatDA model: Heat Domain Adaptation Model

Here, we propose a pre-processing step for the pipeline
outlined in Figure 5 and map the source domain into the
target domain first, as illustrated in Figure 6, as we have
found that closing the source and target gap using progressive
domain adaptation leads to better object detection in the
previously unseen overhead imagery. Using source and target
image examples, we train the CycleGAN domain discrimi-
nator [22], [60]. The resulting domain discriminator model
translates the source image to the target domain, as illustrated
in Figure 7. This additional CycleGAN domain discriminator
model illustrated in Figure 6 allows us to align pixel-level
features between two domains and use the source image and
the translated source image to train the SOD network, as
illustrated in Figure 6. The conversion of the source to the
target domain allows us to incorporate target-like domain
characteristics without relying on the object-level annotations
that might or might not be present. Training the HeatDA
using target-like images helps to align pixel-level semantic
information for the source and target domain, thus improving
the detection performance (see Figure 7) in the target dataset.

B. LGDA Model: Local Global Domain Adaptation Model

Contrastive learning [48], [61] is a simple process of mea-
suring pair-to-pair relationships based on the similarities be-
tween different pairs, such as query-positive or query-negative.
Figure 9 illustrates the functional strategy of contrastive loss.
Feature representation of the source and target objects differs
in the feature space, and there is a huge gap due to lightning,
geographic, weather, and acquisition differences, and the dif-
ference is illustrated by a green line in Figure 9. Contrastive
learning brings similar points to close together and pushes
dissimilar points separate from each other by calculating
similarities between pairs [54], [20]. A pair of feature vectors
with high similarity are placed close together, and vector pairs
with low similarity are placed distantly in feature space. In the
ideal case, the contrastive domain adaptation maps the feature
space of the source dataset to the target dataset so that the
features representing objects in the same class in the source
and the target domain dataset are closer together. In this light,
we propose to enforce contrastive learning on local features
to minimize the domain gap w.r.t the local characteristics in
the image i.e. color and texture captured by deep features
of the pixel and its nearest surroundings. Here, we produce
domain-invariant object features for source and target domains
by increasing similarities between Query-Positive pair and de-
creasing similarities between Query-Negative pairs. We intro-
duce the Informative Noise Contrastive Estimation (InfoNCE)
loss measure of finding similarities and dissimilarities between
features in Equation 4. Similarity of two features u and v is
captured by a cosine score sim(u, v) = uT /(||u|| ∗ ||v||). The
Query is from the source, the Positive example is from the
translated source domain denoted as SaT in Figure 8, and
negative examples are with different classes than the Query
example and from the target domain. Contrastive learning
increases the similarity between Query and the Positive sample
and increases the dissimilarity between Query and N negative
samples Negativen, n ∈ [1, N ] s outlined in Equation 4.

InfoNCE = −log
exp(sim(Query, Pos)/τ)∑N

n=1 exp(sim(Query,Negn)/τ)
(4)

The Informative Noise Contrastive Estimation (InfoNCE)
loss measure is low when the similarity between the Query
and the Positive example is high and when then the similarity
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Domain boundary Class boundary

Fig. 9: Domain Adaptation with contrastive learning. Here,
different colors indicate different domain distributions, and
the different shapes represent different classes in a domain.
The Green and Orange lines represent the domain and class
boundaries, respectively.

between Query to all Negative examples is low. Using this
loss, we are learning domain invariant features. N is the mini-
batch size during the training phase, and τ is the temperature
that controls the strength of penalties in hard negative samples.
Our implementation ensures that we find a similar example as
Positive case and dissimilar examples as Negative cases. Fig-
ure 8 illustrates the proposed Local Global Domain Adaptation
LGDA model and incorporates the proposed approach in the
small object detection framework. This architecture focuses
on performing domain adaptation on a highly class-label
imbalance dataset where labeled objects are small compared to
the image size. We added two modules to two new modules:
Local Feature Alignment and Global Feature Alignment for
contrastive learning. Our proposed model takes input from
four different distributions; among them, two are the source
and target domains, and the other two are new intermediate
domains, Source as Target (SaT) and Target as Source(TaS),
from the source and target datasets, respectively, generated
from the CycleGAN [22] network to reduce the gap between
the source (S) and target (T) domains.

As shown in Figure 8, mini-batch inputs are passed into CSP
DarkNet backbone. Next, local and global features extracted
from the backbone are fed into Local Feature Alignment
and Global Feature Alignment modules for calculating Local
Contrastive Loss and Global Contrastive Loss, respectively.
We use the generalized Equation 5 and 6 for calculating the
losses, where F represents the specific type of feature used for
contrastive learning. Finally, RPN produces region proposals
from only Source (S) and Source-as-Target (SaT) domain
features as we have ground truth for these two domains. The
later part of the architecture is a traditional RCNN-style object
detector with classification and regression modules.

InfoNCES,SaT
Features = −log

exp(sim(FS
i , FSaT

i )/τ)∑N
j=1 exp(sim(FS

i , FSaT
j )/τ)

− log
exp(sim(FSaT

i , FS
i )/τ)∑N

j=1 exp(sim(FSaT
i , FS

j )/τ)
, j ̸= i (5)

InfoNCET,TaS
Features = −log

exp(sim(FT
i , FTaS

i )/τ)∑N
j=1 exp(sim(FT

i , FTaS
j )/τ)

− log
exp(sim(FTaS

i , FT
i )/τ)∑N

j=1 exp(sim(FTaS
i , FT

j )/τ)
, j ̸= i (6)

Local Domain Adaptation focuses on the local features
in an image and assumes there is no ground truth object
labeling for the target dataset, only for the source dataset.
Local features capture low-level descriptions of a pixel and
its neighbors in an image. The images from a mini-batch
pass through the backbone, and local features are saved from
the earlier layers of the backbone. The saved local features
are 256 × 100 × 100, where dimensions are C, W, and
H, respectively. To reduce the necessity of computational
power and GPU memory and improve similarity computation
performance, we pass the features into the bottleneck module
as shown in Figure 8 and downgrade the shape to 3×100×100.
In Figure 8, S and T are images drawn from the source
and target datasets, respectively, where SaT and TaS are the
corresponding images of S and T in translated form produced
by the CycleGAN network. Let us denote the local feature
vectors from S, SaT, T and TaS as LS

k , LSaT
k , LT

k , and LTaS
k ,

respectively. Where k is the index of the mini-batch. For the
adaptation of the S and SaT domain, we select a local feature
LS
i ∈ LS as a query and the corresponding feature from

LSaT
i ∈ LSaT as the positive case. Negative cases are all

other local characteristics LSaT
j ∈ LSaT , where j ̸= i. The

local domain loss between (S, SaT) and (T, TaS) is calculated
using the previously defined Equation 5 and 6. We replace
the F in Equation 5 and 6 by local feature L. The local
domain loss between (S, SaT) and (T, TaS) can be denoted
by InfoNCES,SaT

local and InfoNCET,TaS
local , respectively.

After accumulating loss for all query images in a minibatch,
the total bidirectional local domain adaptation loss can be
formulated as below in Equation 7.

InfoNCElocal = InfoNCES,SaT
local + InfoNCET,TaS

local (7)

Global Domain Adaptation relies on the global alignment
of features between the source and the target dataset. The
global features represent a more abstract formation of objects
in the image and are saved from the last layer of the backbone.
The shape of the global features is 256× 25× 25, where the
dimensions are C, W, and H, respectively. Again, the same as
for local features, we use a bottleneck module to reduce the
size of global features to 3×25×25. Global features are high-
level features in the DNN pipeline. Global domain adaptation
and feature alignment are also performed at the mini-batch
level to restrict computational and GPU memory expense.

The global feature vectors of training mini-batch input: S,
SaT, T, and TaS are indexed as GS

k , GSaT
k , GT

k and GTaS
k ,

where k is the index of the mini-batch. The global contrastive
loss for S and SaT is calculated by selecting a query sample
GS

i ∈ GS and a positive case from the corresponding image
feature LSaT

i ∈ LSaT and vice versa. We take the negative
cases as all the other global features GSaT

j ∈ GSaT , where j ̸=
i. The adaptation formula for (S, SaT) and (T, TaS) domains



IEEE TGRS, VOL. X, NO. Y, 2024 9

N
W

PU
 V

H
R

-1
0

D
O

TA

(a) LGDA Heatmap (c) LGDA Heatmap (d) LGDA Detection(b) LGDA Detection

DS: 1.12 DS: 0.88

DS: 1.29 DS: 1.18

Fig. 10: Proposals heatmaps and detection results from the LGDA model for DOTA2.0 and NWPU VHR-10 target datasets.
Here DS = Difficulty score for a particular image.

in global feature space can be derived from Equation 5 and 6,
respectively, by replacing the F term with global features G.

The accumulated bi-directional global domain adaptation
loss in a mini-batch is now calculated in Equation 8.

InfoNCEglobal = InfoNCES,SaT
global

+ InfoNCET,TaS
global (8)

Finally, the LGDA model combines the local and global
contrastive loss with the detection loss and the final loss
function is now calculated as in Equation 9:

TotalLoss = W1 ∗InfoNCEglobal+W2 ∗InfoNCElocal

+DWFL(x, p, y) (9)

In the above Equation 9, the W1 and W2 denotes the weight
we put on the two different modules.

V. EXPERIMENTS

We evaluated the proposed approach in the three largest an-
notated satellite image collections, DIOR [12], DOTA2.0[18],
and NWPU VHR-10 [62] with four state-of-the-art domain
adaptation models. DIOR is the data set for the source domain,
and we used the ground-truth annotation for DIOR in our
detection module and model evaluation. DOTA2.0 and NWPU
VHR-10 are the target data set that adapts to the local and
global domains, as presented in Table I. We assume that the
DOTA2.0 and NWPU VHR-10 annotations are unavailable at
the object detection training time, and we use ground truth to

evaluate the system’s performance only at the testing time. In
our experiments, we kept only common classes available in the
DIOR and DOTA2.0 datasets. We assigned the same class label
to each corresponding class in each dataset, as demonstrated
for the reduced DIOR, DOTA2.0, and NWPU VHR-10 dataset
in Table I. We describe the experimental dataset in Subsection
V-A, the setup and implementation details in Section V-B,
the performance comparison in Section V-C, and lastly, the
ablation study in Section V-D.

Class Name # of Ins. # of Ins. # of Ins.
DIOR DOTA NWPU VHR-10

Bridge 176 1039 124
Vehicle 2079 85479 598
Harbor 254 5704 224

Storage.T 2623 5416 655
Stadium 40 393 -
Baseball 250 516 390

Track 138 417 163
Basketball 171 358 159

Tennis 580 1662 524
Airport 25 153 -

TABLE I: Test set instance distribution statistics of the DIOR,
DOTA2.0, and NWPU VHR-10 datasets across common cat-
egories.
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Fig. 11: Example of False Negative occurrence in a highly
imbalanced dataset.

A. Datasets

The DIOR data set originally consisted of 24,500 Google
Earth images from 80 countries. However, after selecting
only common classes, the reduced dataset has 11,402 images.
The images varied in quality and were captured in different
seasons and weather conditions. The dataset boasts a wide
range of spatial resolutions, object sizes, object orientations,
and a diverse class distribution, as shown in Fig. I. The
spatial resolution of the images ranges from [0.5m, 30m], with
each image measuring 800 × 800 pixels. The data set has
97,450 annotated objects, classified into ten classes [12]. Out
of the 11,402 images, 10,888 are in the training set, and the
remaining 512 images are in the testing set.

The DOTA2.0 dataset comprises 2,430 overhead images
sourced from Google Earth, Gaofen-2 (GF-2), and Jilin-1 (JL-
1) satellites [18]. The image sizes range from 800 × 800 to
29, 200 × 27, 620 pixels. The GSD in the data set ranges
from 0.1 to 0.87 m, and each image contains an average
of 220 objects. In the experiment, large images were split
into overlapping tiles of 1024× 1024 pixels with a 200-pixel
overlap, resulting in 23,300 images from the original DOTA2.0
dataset. The reduced DOTA2.0 dataset has 11,551 images in
the training set and 3,488 in the validation set, classified into
ten classes (See Table I). In this paper, we interchangeably use
DOTA and DOTA2.0 for referring to this dataset.

The NWPU VHR-10 has in total 800 High-resolution
images in the dataset, of which 715 images were collected
from Google Earth, and the remaining are very-high-spatial-
resolution pan-sharpened color infrared (CIR) images col-
lected from the Vaihingen dataset [63]. The GSD in the dataset
ranges from 0.5 to 2m, and the image size range from 800
to 1267. Among the 800 High-resolution images, 650 are
positive images with the available target in the annotation. In
contrast, the rest of the images do not contain the target object
considered a negative image. We only use positive images from
the dataset for our Domain Adaptation task experiments. The
reduced NWPU VHR-10 dataset has 450 images in the training
and 200 images in the test set, distributed among eight classes
(See Table I). In this paper, we interchangeably use NWPU
VHR-10 and NWPU for referring to this dataset.

B. Experimental Setup and Implementation

Source as Target (SaT) and Target as Source (TaS) synthe-
sized data are created using the PyTorch implementation of
the CycleGAN [22], [60] network with the setup: the learning
rate was 0.001; the number of training epochs was 2; load size
was 800; and the crop size was 640.

The proposed model for object detection architecture LGDA
is illustrated in Figure 8 and is described in Section IV-B is
an extension of the CenterNet2 [24] and SOD [57] model.
The work in [57] uses Darknet53 as the backbone as it is
shown to preserve better semantic information from the small
objects with the help of Cross-Stage-Partial(CSP) network than
the residual-based feature extractor networks [26], [58]; RPN
heatmap-based approach to identify dense small objects and
remove NMS; and the detection block is Faster-RCNN [31].

We developed our code implementation by leveraging an
open-source computer vision library Detectron2 [67] and
some part of CenterNet2 [24]. We implemented two new
DA modules for local and global domain adaptation using the
contrastive learning technique. To train our LGDA model,
we have resized all images to 800 × 800 pixels, and the
mini-batch size in each epoch is set to 8. The loss of InfoNCE
in Equation 4 requires the same image from different domains
as in the query and the positive case. To achieve this goal,
we created a custom data loader in PyTorch that fetches
the exact image of the different domains in a mini-batch.
This custom data loader ensures that the Query and Positive
examples are in the mini-batch sample during the training. In
our experiments, eight is the size of the mini-batch, and the
8 × 4 = 32 images were fed into the LGDA model in each
mini-batch. The number of negative cases and the temperature
were set to 7 and 0.12, respectively, for contrastive learning.
Our research found that passing the S and SaT for the object
detection task during the full training time makes the model
over-fitted to the source domain. To eliminate this problem,
we implemented random sample selection, randomly selecting
8 of 16 images from S and SaT and passing them on to the
object detection module. Li et al. [68] found that Global
Average Pooling (GAP) loses important context information
when working with satellite images, so we replaced GAP
with the bottleneck and MLP module for channel reduction.
We have used NVIDIA 2 x RTX 6000 GPU with 49GB
of memory, 11th generation Intel® CoreTM i9-11900K @
3.50GHz × 16 CPU, and 167GB of system memory to carry
out all experiments.

C. Performance Measures and Comparisons

We use Average Precision (AP ), and Average Precision
(mAP ) to evaluate and compare the models. The precision
(P ), recall (R), F1 score (F1), and Mean Average Precision
(mAP ) are computed using Equation 10 and 11. True positives
(TP ) are instances correctly predicted by the model, false
positives (FP ) are instances missed by the model, and true
negatives (TN ) are instances incorrectly predicted by the
model. We use an IOU threshold of 0.5 for all experiments,
and the number of proposals per image is 256. Precision
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Method Detector+Backbone Bridge Vehicle Harbor Storage Baseball Track B.Ball Tennis Stadium Airport DIOR → DOTA
Tank Field Field Court Court mAP mAP

Baseline [24] CenNet2 ResNet50 10.5 8.9 42.1 40.6 46.5 31.4 46.7 74.2 0.0 28.3 64.8 32.1
QueryDET [38] RetinaNet ResNet50 14.1 14.5 38.2 50.8 43.0 33.4 46.6 77.5 5.3 35.1 69.7 35.8
EPM [64] FCOS ResNet101 10.1 10.8 40.6 47.7 46.2 34.8 48.7 81.9 1.2 35.5 65.5 35.7
MGADA [65] FCOS VGG16 13.1 10.8 45.9 48.5 46.0 37.7 50.1 84.3 0.0 37.2 66.9 37.3
SAPNET [66] FCOS ResNet50 10.9 11.0 23.5 24.4 35.3 27.8 32.2 74.1 0.0 22.7 54.7 26.1
MGADA [65] F-RCNN ResNet101 15.9 14.0 48.1 46.5 47.6 39.3 52.6 87.2 1.8 37.9 72.6 39.4
SOD CenNet2 Darknet53 13.9 15.8 36.7 48.1 46.3 31.7 45.3 78.6 4.1 32.9 70.1 35.2
HeatDA CenNet2 Darknet53 14.4 17.4 39.1 50.9 46.1 35.5 48.0 80.1 4.8 37.6 70.1 37.4
LGDA* CenNet2 ResNet50 22.0 26.8 48.6 59.7 56.9 44.6 56.7 85.4 5.5 38.2 74.6 44.3
LGDA CenNet2 Darknet53 24.5 27.9 51.3 62.0 59.2 47.9 58.6 87.8 6.1 38.7 76.9 46.7
Oracle Baseline 46.2 40.4 82.6 65.8 64.4 60.0 77.2 93.5 27.2 54.3 59.7 61.2

TABLE II: Quantitative performance comparisons (mAP) across classes for DIOR → DOTA benchmark(IOU=0.5), where
DIOR is considered as the source and DOTA as the target dataset. Class-wise performance is presented only for target dataset.

(P ) represents the fraction of relevant instances recovered by
the model, while recall (R) measures the fraction of relevant
instances correctly identified by the model among all relevant
instances.

P =
TP

TP + FP
, R =

TP

TP + FN
, F1 =

2PR

P +R
(10)

AP =

k=n−1∑
k=0

[R(k)−R(k + 1)] ∗ P (k),

mAP =
1

n

k=n∑
k=1

AP (k) (11)

The F1 score provides a single measure of the model’s
performance when given a class imbalance dataset. The mAP
is calculated as shown in Equation 11, where n is the number
of classes in the test set, and AP (k) is the Average Precision
(AP) of class k in the test set. Here, AP is the weighted sum
of precision at each threshold (n is the number of thresholds),
and the weight is the increase in recall (Equation 11).

Object Detection Comparisons: To compare our proposed
model with recent state-of-the-art (SOTA) models, we set
a lower-bound and an upper-bound on the performance for
each dataset. We use CenterNet2 as the baseline/ lower-
bound for comparisons, where we use annotations from only
the source datasets during the training phase to evaluate
the target dataset. On the other hand, oracle is the upper
bound, which uses CenterNet as the detection model and uses
annotation from Target dataset while training to evaluate the
target dataset. We choose CenterNet2 as our baseline model
because of its ability to work better with small and dense
objects leveraging the power of heatmap-based RPN. We use
our extended version of the SOD pipeline for small object
detection architecture. We have compared our SOD model
performance with a recent small object detection SOTA model
QueryDet [38] in Table II and III. We can see that our
model performs very close to the QueryDet method for the
DOTA dataset, and outperforms the QueryDet by 2.1% of
mAP on the NWPU VHR-10 dataset. Moreover, using 12GB

GPU memory QueryDet trains 2 images per batch whereas
using SOD we can set batch size up to 8 images, so we
decided to continue further experiments using SOD as the
small object pipeline. As the domain adaptation SOTA models,
we used feature alignment DA methods such as MGADA
[65] and a spatial attention-based domain adaptation network
SAPNet [66] for the performance measurements. Also, we
introduced EPM [64], a domain adaptation framework that
accounts for each pixel via predicting pixel-wise centerness
and objectness for state-of-the-art comparisons. Later we keep
track of the performance improvement of our new proposed
model LGDA and try to minimize the gap between LGDA and
oracle for domain adaptation task. Except for the oracle, all
other comparing models use annotation from only the source
dataset and images from the source and target datasets during
the training phase. Next, we evaluate the performance of the
models based on the test set of both source and target datasets.
By this, we show that our proposed UDA models perform
satisfactorily on the target domain, and there is no performance
degradation in the source domain due to induced noise from
the DA operation.

We start our DA evaluation in Table II, using DIOR as
the source and DOTA as the target. Table II shows that the
CenterNet2-based baseline model gives an mAP of 64.8%
on the source and 32.1% mAP on the target dataset. We
improve the baseline model with the integration of Custom
Focal Loss, Difficulty Estimation Block and Strong Backbone
as illustrated in Figure 5 and propose a new model SOD
verified to work better on satellite imagery [57]. Table II
shows significant improvements on both datasets for small
objects such as harbors, vehicles, and storage tanks. The range
of α′

c values in the DIOR dataset is 0.2 to 0.79, and the
range of α′

c values in the DOTA2.0 dataset is 0.15 to 0.96,
which represents a very tight scaling factor for FL in both
data sets. The SOD model also shows reasonable promise
in performance improvement with a gain of 6.0% and 3.0%
of mAP for the DIOR and DOTA datasets, respectively, by
dealing with small objects and challenging images. The first
step towards DA operation was introducing transfer learning
and using CycleGAN-generated composite target images for
the DA training. We name the model as HeatDA, which
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Method Detector+Backbone Bridge Vehicle Harbor Storage Baseball Track B.Ball Tennis DIOR → NWPU
Tank Field Field Court Court mAP mAP

Baseline [24] CenNet2 ResNet50 32.5 27.1 76.5 48.4 30.3 66.1 63.6 67.0 66.8 52.0
QueryDet [38] RetinaNet ResNet50 43.2 33.9 80.4 54.7 37.1 69.5 70.1 72.6 72.4 57.6
EPM [64] FCOS ResNet101 49.6 39.4 86.7 61.6 43.9 76.1 75.7 77.0 68.9 64.0
MGADA [65] FCOS VGG16 48.8 37.1 85.5 59.6 42.3 76.8 72.6 77.2 66.5 62.6
SAPNET [66] FCOS ResNet50 35.8 22.6 70.1 41.4 25.5 60.1 56.5 61.4 60.8 46.7
MGADA [65] F-RCNN ResNet101 54.2 43.9 88.5 65.0 49.9 77.2 76.6 77.0 69.2 66.8
SOD CenNet2 Darknet53 47.5 36.4 83.9 54.5 38.5 69.0 72.6 72.8 71.5 59.7
HeatDA CenNet2 Darknet53 48.8 38.2 85.5 56.9 49.5 70.6 74.5 73.0 71.9 62.1
LGDA* CenNet2 ResNet50 54.0 43.9 90.5 62.0 53.9 76.2 78.6 81.0 73.8 67.9
LGDA CenNet2 Darknet53 57.6 51.5 90.4 65.7 60.1 79.8 81.3 84.7 74.6 71.4
Oracle Baseline 69.5 60.9 96.5 79.4 64.3 96.1 93.6 97.8 60.6 84.4

TABLE III: Quantitative performance comparisons (mAP) across classes for DIOR → NWPU VHR-10 benchmark(IOU=0.5),
where DIOR is considered as the source and NWPU as the target dataset. Class-wise performance is presented only for the
target dataset.

uses the target domain pixel-level context and gives 5.3%
mAP improvement on the target dataset. Our final proposed
model LGDA is an extension of HeatDA model by adding
local and global domain adaptation modules. Compared to the
baseline model, our LGDA model gains 12.2% and 14.6%
of mAP on the target dataset using ReseNet50 and CSP-
Darknet53 backbone, respectively. The detection results from
LGDA model are illustrated in Figure 10, where the proposals
generated from heatmaps are shown in Figure 10(a) and (c),
and the object detection performance is shown in Figure 10(b)
and (d). Figure 10 also shows us the value of image difficulty
for a particular image. It is evident that an image with a
higher number of objects and pixel diversity score more
difficulty value than an image with fewer objects and less pixel
variations. Among the other SOTA models, MGADA performs
best with an mAP of 39.4%, and SAPNet gives the lowest
mAP of 26.1%. However, Our proposed novel contrastive
learning method with a small object-focused pipeline helps
us to outperform other SOTA models by a minimum margin
of 7.3 % on the target dataset.

Method Backbone TL LDA GDA DWFL DOTA NWPU
Baseline 32.1 52.0
w/DWFL ✓ 35.2 59.7
w/TL ✓ ✓ 37.4 61.8
w/LDA DarkNet53 ✓ ✓ 40.6 64.2
w/GDA ✓ ✓ 41.5 66.6
LGDA ✓ ✓ ✓ ✓ 46.7 71.4

TABLE IV: Ablation study for our proposed LGDA method.
Here, TL= Transfer Learning, DWFL= Difficulty Weighted
Focal Loss, LDA= pixel-level local domain adaptation, and
GDA= abstract-level global domain adaptation.

Next, we use Table III to demonstrate the DA perfor-
mance and SOTA comparison for DIOR and NWPU VHR-
10 datasets. The DIOR and NWPU VHR-10 are two high-
variability image datasets, as shown in Table I captured from
satellites. Here we evaluate target dataset performance over

eight different categories. It is observed during experiments
that we have not only demonstrated outstanding performance
on the target dataset but also we have attained a notable
74.6% mAP(refer to Table III) on the source dataset. Our
baseline CenterNet2 method trained on only source dataset
archives 52.0% of mAP, whereas our LGDA method achieves
71.4% of mAP using contrastive learning with local and global
domain adaptation. Also, we have a +4.6% gain margin com-
pared to the best state-of-the-art MGADA method. Moreover,
compared to the baseline model, we were able to shrink the
performance gap between the oracle and our model from
32.4% to 13.0% using the Local-Golbal DA. Table III and
Figure 10(b) and (d) demonstrate the effectiveness of our
method in detecting objects from challenging and less frequent
categories, including track, bridge, and basketball fields. Table
III further illustrates that a meticulously designed backbone
can augment the performance by approximately +3.5% on the
target domain, mainly when dealing with densely populated
objects.

Finally, we perform an in-depth performance analysis in
Table V using Precision, Recall, and F1-Score for the four
proposed models. For the DOTA dataset, we gain the optimal
result in all metrics using the final version of the LGDA model,
with a Precision, Recall, and F1-Score of 46.7, 60.2, and 52.6,
respectively. However, for NWPU, we got the optimal value
of Precision and F1-Score from the LGDA model and recall
from the HeatDA model.

D. Ablation study

In this section, we first perform an ablation study on each
component of our proposed LGDA method to demonstrate the
effectiveness of each element, as shown in Table IV. Our
ablation study is carried out on two target datasets: DOTA and
NWPU VHR-10. Next, we perform an ablation study on each
important hyper-parameters; the summary of the ablation study
is illustrated in Figure 12. Table IV shows that integrating
Difficulty Weighted Focal Loss (DWFL) was crucial for our
proposed model as we made 3.1% and 7.7% increase in mAP
for DOTA and NWPU, respectively. The intermediate version
of our proposed model is HeatDA, where we investigate the
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Precision Recall F1
Dataset CenterNet2 SOD HeatDA LGDA CenterNet2 SOD HeatDA LGDA CenterNet2 SOD HeatDA LGDA
DOTA 32.1 35.2 37.4 46.7 46.9 47.7 50.4 60.2 38.1 46.1 42.9 52.6

NWPU VHR-10 52.0 59.4 61.8 71.4 58.8 63.5 67.9 66.8 61.1 61.3 64.7 69.0

TABLE V: Comparison of Precision, Recall, and F1 score between our proposed models for the DOTA and NWPU VHR-10
target datasets.

Fig. 12: Ablation Study on Hyper-parameters: (a) mAP vs. Negative Examples, (b) mAP vs. Epochs, and (c) mAP
vs.Temperature.

amount of efficiency we can leverage from Transfer Learning,
Synthetic images, and DWFL. The Synthetic image generated
from GAN networks provides primary pixel-level color and
texture information, and we can notice a slight gain of mAP in
Table IV for both target datasets. Then we integrate contrastive
learning into our DA process and propose two new modules;
the first is for aligning local features between the source and
target domain, and the latter is for aligning a more abstract
view of features with a high-receptive field. The local feature
alignment with contrastive learning (LDA) helped us gain over
8% and 12% mAP on DOTA and NWPU VHR-10 by putting a
weight of 0.1 on the loss function. On the other side, from the
GDA module, we even get better results than the LDA with a
weight of 0.01 on contrastive learning. Finally, integrating all
small modules, we propose the LGDA method, which achieves
46.7% and 71.4% of mAP on DOTA and NWPU VHR-10
target datasets, respectively.

Next, we look for the optimal value for the number of
negative examples for the hyper-parameters study, as shown in
Figure 12(a). We started our experiments with a value of 2, and
we can see that the model did not perform well with fewer neg-
ative examples in the contrastive loss. We increased the value
to 7 to generalize learning and recorded our best performance
in the DOTA target dataset. Increasing the negative examples
further did not help us learn in target datasets due to the
imbalanced nature of the data set. The vehicle class dominates
our DOTA data set, as shown in Table I. Increasing the number
of negative examples also increases the chances of getting false
negative (FN) examples, as shown in Figure 11 in contrastive
learning. In highly imbalanced datasets such as DOTA2.0, the
FN example makes the model biased toward a particular class,
and the model’s overall performance degrades significantly.
However, there was a slight improvement for the NWPU VHR-

10 dataset with negative example 12, as NWPU is much more
balanced than DOTA. The adverse effect of bias is evident in
Figure 12(a) when trained with 16 negative examples. After
careful inspection and to reduce computational expense, we set
the number of negative measures equal to 7 for both datasets.

Second, our baseline model was trained for 30 epochs, and
the LGDA model was trained for 30 more epochs as we
added two more loss functions for contrastive learning. As
illustrated in Figure 12(b), our experiments found that training
for more epochs does not significantly improve performance.
Therefore, all results were recorded with 60 training epochs.
Lastly, the temperature value in contrastive loss is susceptible
and small changes in value can drastically change the outcome.
This is evident in Figure 12(c); placing a 50% penalty on
contrastive loss dramatically reduces performance, and using
a 12% penalty shows the optimal result on target datasets.

VI. CONCLUSION AND FUTURE WORK

Object detection in aerial images is one of the most chal-
lenging tasks in computer vision research because many small
and overlapped objects exist in the photos. The success of
DNN object localization depends on a large amount of anno-
tated training data and a reliable feature extractor module in
the pipeline. This paper presents a robust feature extractor that
captures balanced low- and high-level features for small ob-
jects. Moreover, we offer the heat-map-based region proposal
module to better grab small things. The domain gap in satellite
images is more significant than in consumer images because of
weather conditions, geographic changes, and camera orienta-
tions. We perform progressive domain alignment by creating
two intermediate domains, w.r.t. source and target datasets.
The proposed method LGDA performed exceptionally well
with more than 60% mAP for several classes such as storage
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tank, harbor, and tennis court in the DOTA and NWPU
VHR-10 target data sets. We also use contrastive learning to
adapt to local and global domains. Careful selection of the
training pipeline, the number of negative samples, the down-
sampling strategy, and the temperature value can improve the
effectiveness of contrastive learning. Finally, we validate our
approach in two challenging high-variability target datasets
that showed significant performance gain over available state-
of-the-art methods. For the DOTA and NWPU VHR-10 target
datasets, we outperformed the latest state-of-the-art MGADA
method by +7.3% and +4.6% mAP, respectively. In future
work, we plan to introduce clustering-based pseudo-labeling,
debiased instance-level domain adaptation, and unknown class
discovery for satellite images.
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