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ABSTRACT
Signed network graphs provide a way to model complex relation-
ships and interdependencies between entities: negative edges allow
for a deeper study of social dynamics. One approach to achieving
balance in a network is to model the sources of conflict through
structural balance. Current methods focus on computing the frus-
tration index or finding the largest balanced clique, but these do
not account for multiple ways to reach a consensus or scale well
for large, sparse networks. In this paper, we propose an expansion
of the frustration cloud computation and compare various tree-
sampling algorithms that can discover a high number of diverse
balanced states. Then, we compute and compare the frequencies
of balanced states produced by each. Finally, we investigate these
techniques’ impact on the consensus feature space.
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1 INTRODUCTION AND RELATEDWORK
State-of-the-art techniques for processing unsigned homogeneous
graphs can handle trillions of edges and billions of nodes. In con-
trast, signed graph benchmarks are limited to a few thousand nodes
and hundreds of thousands of edges. Signed network graphs pro-
vide a way to model complex relationships, and interdependencies
between entities as negative edges allow for a deeper study of social
dynamics and stability in domains such as friendship and enmity
[Antal et al. 2006; Leskovec et al. 2010] or brain behavior [Saberi
et al. 2021]. However, current benchmarks for signed graph analy-
sis are too small and do not accurately reflect the complexity and
diversity of real-world signed networks. Recent research has also
shown that proposed algorithms for signed graph analysis lack a
principled direction and make assumptions that do not apply to
real-world data [Cucuringu et al. 2021; Tomasso et al. 2022] and
are limited to narrow-band tasks such as finance [Aref et al. 2016],
polypharmacy [Liu et al. 2021a], bioinformatics [Li et al. 2021] and
sensor data analysis [Casas et al. 2020; Liu et al. 2021b]. Balance
theory is a concept that describes how attitudes and relationships
change over time. It suggests that people tend to become friends
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with friends of their friends and enemies with enemies of their
enemies. The foundations of social balance theory were established
by Heider [Heider 1946] and Harary [Cartwright and Harary 1956;
Harary and Cartwright 1968] provided the mathematical founda-
tions for signed graphs and introduced the concept of k-way balance.
These concepts have been applied in various ways, such as pre-
dicting edge sentiment, recommending content and products, and
identifying unusual trends [Derr et al. 2020; Interian et al. 2022].
In a balanced network, every fundamental cycle must contain an
even number of negative edges. The frustration cloud analysis of
a signed graph in [Rusnak and Tešić 2021] and the efficient data
structure and algorithm to efficiently compute fundamental cycles
in [Alabandi et al. 2021]. Graph 𝐺 = (𝑉 , 𝐸) is a set of vertices 𝑉
connected by the set of edges 𝐸. The number of vertices in the
graph 𝐺 is |𝑉 |, and the number of edges is |𝐸 |. Path is a sequence
of distinct edges that connect a sequence of distinct vertices. Cy-
cle is a path that begins and ends at the same vertex. Connected
graph is a graph in which a path joins two vertices. Subgraph is a
graph with all edges and vertices in a larger graph, for example,
Path and Cycle. Signed graph Σ is a tuple of a graph 𝐺 = (𝑉 , 𝐸)
and an edge signing function 𝜎 : 𝐸 → {+1,−1}. The edge can be
positive + or negative −, 𝑒 ∈ [𝑒+, 𝑒−], 𝐸+, and 𝐸− are sets of posi-
tive and negative edges of 𝐺 . Sign of a subgraph is product of the
edges signs. Balanced signed graph is a signed graph where every
cycle is positive. Harary bipartition separates the vertices of the
balanced graph into two sets such that the vertices of both sets
internally agree with each other but disagree with the vertices of
the other set[Cartwright and Harary 1956]. Near-balanced graph
Σ′ is a balanced graph that requires a minimum number of edge
sign switches to produce a balanced graph from the signed graph Σ.
Frustration cloud FΣ is a set of all signed near-balanced graphs of Σ:
FΣ =

{
Σ′
𝑖
|𝑖 ∈ [1, 𝑁 ] ∧ 𝐹𝑟 (Σ′

𝑖
) = 0

}
. Many previous tree-sampling

Algorithm 1: Tree-Based Signed Graph Balancing
Data: Signed graph Σ
Data: Spanning tree 𝑇 of Σ
Result: Balanced graph Σ′

𝑇

1 forall edges 𝑒 , 𝑒 ∈ Σ \𝑇 do
2 if fundamental cycle 𝑇 ∪ 𝑒 is negative then
3 switch edge sign in Σ′

𝑇
: 𝑒− → 𝑒+; 𝑒+ → 𝑒− ;

4 end

techniques were proposed to generate randomized spanning trees.
For instance, we have Wilson’s algorithm, which creates a random
walk with a random node. If it encounters a visited node, it erases
the resulting loop before continuation [Wilson and Propp 1996].
Aldous-Broder algorithm produces a random uniform spanning
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Figure 1: (a) Harary cuts of nearest balanced states (edges v1-v2 & v3-v4 are negative while edges v1-v4 & v2-v3 are positive) (b)
consensus attributes derived for Σ: status(v)-authority(e); influence(v)-agreement(e); and resolution(v)-strength(e).

tree by performing a random walk on a finite graph with any ini-
tial vertex and stops after all vertices have been visited [Hu et al.
2021]. The partial rejection tree sampling algorithm randomly se-
lects neighboring nodes in the graph. If the cycle is present in the
selection, all edges of the loops are removed, and neighbors are
selected again [Jerrum 2021]. Kruskal’s algorithm with randomized
weights produces a spanning tree that does not require a root node,
is randomized in almost every run, and does not follow a static
pattern [Hagberg et al. 2008]. Concerning consensus features, they
are defined in [Rusnak and Tešić 2021].

Algorithm 2: Graph Balancing
Data: Signed graph Σ and spanning trees sampling

method𝑀
Result: frustration cloud FΣ = B:(C)

1 Generate set T𝑀𝑘 of 𝑘 spanning trees of Σ using𝑀 ;
2 Empty FΣ; ;
3 foreach spanning trees 𝑇 , 𝑇 ∈ T𝑘 do
4 Find nearest balanced state Σ′

𝑇
using Alg. 1;

5 Transform Σ′
𝑇
balanced state to string B ;

6 if 𝐵 ∉ B then
7 add key B to B;
8 C(𝐵) = 1 ;
9 else
10 C(B)++ ;
11 end

2 METHODOLOGY
First, we extend the definition of frustration cloud FΣ from a set
to a (key,value) tuple collection FΣ = B:(C). The key is the unique
balanced state B(𝑖), and the value is the count of balanced states
occurring in iteration C(𝑖). In each balancing iteration, we exam-
ine the resulting balance state (Alg. 2). Σ′

𝑇
in relation to B. We

represent the balanced state Σ′
𝑇
as a string B to make the process

more efficient. The balanced state Σ′
𝑇
represents the 3 edge vectors

(src,tgt,sign). If an edge 𝑖 is defined by two vertices (𝑢, 𝑣) and a sign
𝑠 , the algorithm graphB+ balances the graph by storing the edges
as src(i)=u, tgt(i)=v, sign(i)=s [Alabandi et al. 2021].

We propose an efficient transform (O(|E|)) of the balanced state
output Σ′ to the string hash key B for comparison with other bal-
anced states (Alg. 2 line 5). First, the triple edge vector is inserted
into a set of tuple data structures to organize the edges and prepare
for string conversion automatically. Then, it is transformed to a
string format "src(i)->tgt(i): sign(i)," and then all edge strings are
concatenated in order, separated by the delimiter "|" and stored as
the B key in B. If B is in B, we increase the corresponding C(𝐵)
value count, where 𝐵 is the existing balanced state Σ′

𝑇
. If Σ′

𝑇
is

not in B, we add (Σ′
𝑇
,(1)) pair to the collection. If the state was

previously unseen, we add the new balanced state in an efficient
matrix format to the hashmap as a string key as illustrated in Alg. 2.
Then, we add 1 to the end of the count stack C. As the number
of iterations increases, more elements will be added to B, and the
space complexity is linear. This can become an issue for graphs
with millions of nodes and vertices as the frustration cloud is too
big for the main memory.

We propose the randomization and hybridization of the standard
tree sampling approaches to maximize the chances of discovering
the optimal nearest balanced state in Alg. 2. Depth first search
(DFS) algorithm [Cormen 2009] begins the traverse at the root node
and proceeds through the nodes as far as possible until it reaches
the node with all the nearby nodes visited. Breadth first search
(BFS) algorithm [Cormen 2009] is a graph traversal approach in
which the algorithm first passes through all nodes on the same
level before moving on to the next level. The main drawback of
efficient implementation of the efficient vertex search is the static
order in accessing vertices in the adjacency lists. As a result, the
efficient spanning tree algorithm can repeat the exact tree sampling
and misses several unique trees. Randomized Depth First Search
(RDFS) algorithm in Alg. 3 transforms DFS into a non-deterministic
algorithm by eliminating the static ordering of the adjacency lists.
The time complexity of the DFS is known to be O(|𝑉 | + |𝐸 |), where
|𝑉 | is the number of vertices and |𝐸 | is the number of edges in the
signed network. The algorithm also runs in linear timeO(𝑛), where𝑛
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is the number of nodes adjacent to a specific node in the network, so
the total time complexity is O(|𝑉 | + |𝐸 |). Like RDFS, we also shuffled
the adjacency lists for BFS in the Randomized Breadth First
Search (RBFS) algorithm. The Hybridized Sampler randomly
uses one of the two samplers (BFS & RDFS) in a specific iteration
as shown in Alg 4.

Algorithm 3: RDFS: Random Edge Switching for Depth-
First Search Spanning Tree Sampling
Data: Signed graph Σ and root node 𝑛
Result: Spanning tree 𝑇 of Σ

1 Set visited[𝑛] → 𝑇𝑟𝑢𝑒;
2 get uniformly distributed random number, 𝑧;
3 shuffle adjacency list of 𝑛 using seed 𝑧, adj[𝑛];
4 forall nodes 𝑁 , 𝑥 ∈ 𝑎𝑑 𝑗 [𝑛] do
5 if visited[𝑥] is false then
6 Recursively call Alg.3 on signed graph Σ and root

node 𝑥
7 end

Algorithm 4: Hybridized RDFS-BFS Sampling
Data: Signed graph Σ and a root Node 𝑛
Result: Spanning tree 𝑇 of Σ

1 Get uniformly distributed random number 0 or 1, 𝑧 ;
2 if 𝑧 is 0 then
3 Run BFS algorithm [Burtscher 2021]
4 else if 𝑧 is 1 then
5 Run Alg. 3

3 EXPERIMENTS AND RESULTS
3.1 Variation of the Frustration Cloud Size

Using Different Tree-Sampling Techniques

signed graph BFS RBFS DFS RDFS Hybrid
highland 125 125 8 522 290
sampson18 164 164 13 957 496
rainFall 306 306 175 1000 762
wikiElec 1000 1000 969 1000 1000
slashdot 1000 1000 943 1000 984
epinions 1000 1000 965 1000 1000
S&P1500 1000 1000 631 1000 1000
wikiRfa 1000 1000 915 1000 1000

Table 2: Number of unique balanced states for various signed net-
work signed graphs with different samplers after 1000 iterations.

Executing algorithm 2 using different sampling techniques defined
in section 2 in many signed networks and for 1000 iterations yielded
different sizes for the frustration cloud. We can observe from ta-
ble 2 that RDFS has produced the highest number of unique bal-
anced states in all signed networks, whereas DFS has the lowest.
In addition, this indicates that for smaller datasets (highland and
sampson18), 1000 iterations are sufficient to induce the repetition
in the resulting balanced states when all the nodes have already
been selected as roots for BFS and DFS.

3.2 Frequencies of Nearest Balanced States in
Frustration Cloud

In this subsection, we compare the balanced states along with their
frequencies for the same number of iterations. We ran Alg. 2 over
1000 iterations for 5 different tree-spanning sampling algorithms on
a signed network in Figure 1. For BFS, only three of the five closest
balanced states were recovered, e.g. Σ1, Σ3, and Σ4 with respective
frequencies of 500, 250, and 250. RDFS was able to recover the
five balanced states in the frustration cloud with frequencies 612,
111, 83, 86, and 108. We summarize the results incorporating other
samplers in Table 3. BFS and RBFS seem to perform the same, and
applying randomization to the adjacency lists did not affect the
result.

Sampler Σ1 Σ2 Σ3 Σ4 Σ5
BFS 500 0 250 250 0
RBFS 500 0 250 250 0
DFS 500 250 250 0 0
RDFS 612 111 83 86 108
Hybrid 565 68 151 173 43

Table 3: Comparison of the frequencies of balanced states computed
by different samplers for Σ in 1000 iterations

3.3 Impact of Tree-Sampling Techniques on
Consensus Features

(a) BFS (b) RDFS

Figure 2: 1D Status Space for Wiki-Elec after 1000 iterations.

Because RDFS produced the most balanced states in the frustra-
tion cloud, more ways to cut the graph will exist. Hence, The same
node will have less probability of winding up in the larger Harary
bipartition. The result would be that the nodes will be less spread
than those in the status space. It is also true that the more itera-
tions we apply to a signed network, the more unique and nearest
balanced states produced, the higher chance a node that was in, the
smaller bipartition in the previous iteration to be in the larger bipar-
tition, the narrower and tighter the nodes will be in the status space.
Figure 2 (a) shows that with BFS, with 1000 iterations, nodes’ status
ranges from 0.0 to 1.0. This signifies that some nodes will never
make it to the larger Harary bipartition because of the restricted
number of balanced states and Harary cuts. These same nodes will
also be falsely labeled as outliers in some applications. However, in
Figure 2 (b), with RDFS and with the same number of iterations, it
is observed that the nodes’ status fluctuates approximately between
0.4 and 0.6.
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vertices edges vertex degrees attributes
signed graph |𝑉 | |𝐸 | % positive average median max density 𝑏𝑎𝑙3
Σ Fig. 1 4 5 60 2.5 2.5 3 0.833 0.0
test10 [Alabandi et al. 2021] 10 13 53.85 2.6 2.5 4 0.288 0.5
highland [Read 1954] 16 58 50 7.25 7.5 10 0.483 0.868
sampson18 [Sampson 1968] 18 112 54.4 12.44 12.50 16 0.732 0.6
rainFall [Cucuringu et al. 2021] 306 93,636 68.78 305.00 305 305 1.0 0.717
S&P1500 [Cucuringu et al. 2021] 1,193 711,028 75.13 1,192 1,192 1,192 0.833 0.718
wikiElec [Leskovec and Krevl 2014] 7,539 112,058 73.33 28.16 15 1,079 0.004 0.798
wikiRfa [Leskovec and Krevl 2014] 7,634 175,787 77.91 43.99 13 1,233 0.005 0.717
epinions [Leskovec and Krevl 2014] 119,130 704,267 83.23 11.82 2 3,558 < 0.001 0.890
slashdot [Leskovec and Krevl 2014] 82,140 500,481 77.03 12.19 2 2,548 < 0.001 0.856

Table 1: Signed graph attributes: |𝑉 | is several vertices; |𝐸 | is a number of edges in a graph; % positive is the number of positive
edges divided by 𝑒; Vertex degree statistics are calculated in terms of the average, mean and maximum node degree; graph
density 𝑑 is calculated by dividing 2 ∗ |𝐸 | by |𝑉 | ∗ |𝑉 − 1| and 𝑏𝑎𝑙3 is the percentage of triangles in the graph that are balanced.

4 CONCLUSION
In this work, we show that the selection of the spanning tree sam-
pling methods can influence the outcome of the analysis based on
the balancing algorithms. The implication lies in the alteration of
the values of the consensus features and the frequency in which
every possible nearest balanced condition occurs. Because one sam-
pler might capture a balanced state that the other cannot, one
should harness multiple sampling techniques when balancing a
signed network regardless of network size. We also show that the
randomized depth-first search generates the most unique, balanced
states for a given signed graph and a balancing method.
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