
Chapter 6: Mining Frequent Patterns,
Association and Correlations

n Basic concepts
n Frequent itemset mining methods
n Constraint-based frequent pattern mining (ch7)
n Association rules

1

What Is Frequent Pattern Analysis?
n Frequent pattern: a pattern (a subset of items, subsequences,

substructures, etc.) that occurs frequently in a data set
n First proposed by Agrawal, Imielinski, and Swami [AIS93] in the context

of frequent itemsets and association rule mining
n Motivation: Finding inherent regularities in data

n What products were often purchased together?— Beer and diapers?!
n What are the subsequent purchases after buying a PC?
n What kinds of DNA are sensitive to this new drug?
n Can we automatically classify web documents?

n Applications
n Basket data analysis, cross-marketing, catalog design, sale campaign

analysis, Web log (click stream) analysis, and DNA sequence analysis.
2

Why Is Freq. Pattern Mining Important?

n Freq. pattern: intrinsic and important property of data sets
n Foundation for many essential data mining tasks

n Association, correlation, and causality analysis
n Sequential, structural (e.g., sub-graph) patterns
n Pattern analysis in spatiotemporal, multimedia, time-

series, and stream data
n Classification: associative classification
n Cluster analysis: frequent pattern-based clustering
n Data warehousing: iceberg cube and cube-gradient
n Semantic data compression: fascicles
n Broad applications

3

Basic Concepts: Frequent Patterns

n itemset: A set of items
n k-itemset X = {x1, …, xk}
n (absolute) support or support

count of X: Frequency or
occurrence of an itemset X

n (relative) support of X: the
fraction of transactions that
contains X (i.e., the probability
that a transaction contains X)

n An itemset X is frequent if X’s
support is no less than a minsup
threshold

Customer
buys diaper

Customer
buys both

Customer
buys beer

Tid Items bought
10 Beer, Nuts, Diaper
20 Beer, Coffee, Diaper
30 Beer, Diaper, Eggs
40 Nuts, Eggs, Milk
50 Nuts, Coffee, Diaper, Eggs, Milk

4

Closed Patterns and Max-Patterns
n A long pattern contains a combinatorial number of sub-patterns, e.g.,

{a1, …, a100} contains 2100 – 1 = 1.27*1030 sub-patterns!
n Solution: Mine closed patterns and max-patterns instead
n An itemset X is a closed pattern if X is frequent and there exist no

super-patterns with the same support
n all super-patterns must have smaller support

n An itemset X is a max-pattern if X is frequent and there exist no
super-patterns that are frequent

n Relationship between the two?
n Closed patterns are a lossless compression of freq. patterns, whereas

max-patterns are a lossy compression
n Lossless: can derive all frequent patterns as well as their support
n Lossy: can derive all frequent patterns

5

Closed Patterns and Max-Patterns: Example

n DB = {<a1, …, a100>, < a1, …, a50>}
n min_sup = 1

n What is the set of closed patterns?
n <a1, …, a100>: 1
n < a1, …, a50>: 2
n How to derive frequent patterns and their support values?

n What is the set of max-patterns?
n <a1, …, a100>: 1
n How to derive frequent patterns?

n What is the set of all patterns?
n {a1}: 2, …, {a1, a2}: 2, …, {a1, a51}: 1, …, {a1, a2, …, a100}: 1
n A big number: 2100 – 1

6

Closed Patterns: Derivation

For a given dataset with min_sup = 8 (absolute
support), the closed patterns are {a,b,c,d} with
support of 10, {a,b,c} with support of 12, and {a,
b,d} with support of 14. Derive the frequent 2-
itemsets together with their support values

{a,b}: 14 {a,c}: 12 {a,d}: 14
{b,c}: 12 {b,d}: 14 {c,d}: 10

7

Chapter 6: Mining Frequent Patterns,
Association and Correlations

8

n Basic concepts
n Frequent itemset mining methods
n Constraint-based frequent pattern mining (ch7)
n Association rules

Scalable Frequent Itemset Mining Methods

n Three major approaches
n Apriori: A Candidate Generation-and-Test Approach

n Agrawal & Srikant@VLDB’94

n FP-Growth: A Frequent Pattern-Growth Approach
n Han, Pei & Yin @SIGMOD’00

n ECLAT: Frequent Pattern Mining with Vertical Data Format
n Zaki & Hsiao @SDM’02

n FP-Growth and ECLAT improve efficiency

9

Apriori: Downward Closure Property

n Apriori leverages the downward closure property to
prune the search space and gain efficiency

n The downward closure (anti-monotonic) property of
frequent patterns
n Any subset of a frequent itemset must be frequent
n If {beer, diaper, nuts} is frequent, so is {beer, diaper}
n i.e., every transaction having {beer, diaper, nuts} also

contains {beer, diaper}

10

Apriori: High-level Description

n Apriori pruning principle: If there is any itemset that is
infrequent, its superset should not be generated/tested

n Method:
n Initially, scan DB once to get frequent 1-itemset
n Generate length (k+1) candidate itemsets from length k

frequent itemsets
n Test the candidates against DB
n Terminate when no frequent or candidate set can be

generated

11

Apriori: Example

DB

1st scan

C1
L1

L2
C2 C2

2nd scan

C3 L33rd scan

Tid Items
10 a, c, d
20 b, c, e
30 a, b, c, e
40 b, e

Itemset sup
{a} 2
{b} 3
{c} 3
{d} 1
{e} 3

Itemset sup
{a} 2
{b} 3
{c} 3
{e} 3

Itemset
{a, b}
{a, c}
{a, e}
{b, c}
{b, e}
{c, e}

Itemset sup
{a, b} 1
{a, c} 2
{a, e} 1
{b, c} 2
{b, e} 3
{c, e} 2

Itemset sup
{a, c} 2
{b, c} 2
{b, e} 3
{c, e} 2

Itemset
{b, c, e}

Itemset sup
{b, c, e} 2

min_sup= 2

12

The Apriori Algorithm (Pseudo-code)

Ck: Candidate itemset of size k
Lk : frequent itemset of size k

L1 = {frequent items};
for (k = 1; Lk !=Æ; k++) do begin

Ck+1 = candidates generated from Lk;
for each transaction t in database do

increment the count of all candidates in Ck+1
that are contained in t

Lk+1 = candidates in Ck+1 with min_support
end

return Èk Lk;

13

Implementation of Apriori
n Generate candidates, then count support for the generated candidates
n How to generate candidates?

n Step 1: self-joining Lk

n Step 2: pruning
n Example:

n L3={abc, abd, acd, ace, bcd}
n Self-joining: L3*L3

n abcd from abc and abd
n acde from acd and ace

n Pruning:
n acde is removed because ade is not in L3

n C4={abcd}
n The above procedures do not miss any legitimate candidates. Thus Apriori

mines a complete set of frequent patterns.
14

How to Count Support of Candidates?

n Why counting support of candidates a problem?
n The total number of candidates can be very huge
n One transaction may contain many candidates

n Method:
n Candidate itemsets are stored in a hash-tree
n Leaf node of hash-tree contains a list of itemsets and

counts
n Interior node contains a hash table
n Subset function: finds all the candidates contained in

a transaction

15

Example: Counting Support of Candidates

1,4,7
2,5,8

3,6,9
Subset function

2 3 4
5 6 7

1 4 5 1 3 6

1 2 4
4 5 7 1 2 5

4 5 8
1 5 9

3 4 5 3 5 6
3 5 7
6 8 9

3 6 7
3 6 8

Transaction: 1 2 3 5 6

1 + 2 3 5 6

1 2 + 3 5 6

1 3 + 5 6

16

Further Improvement of the Apriori Method

n Major computational challenges
n Multiple scans of transaction database
n Huge number of candidates

n Tedious workload of support counting for candidates
n Improving Apriori: general ideas

n Reduce passes of transaction database scans
n Shrink number of candidates
n Facilitate support counting of candidates

17

Apriori applications beyond pattern mining

n Given a set S of students, we want to find each subset of
S such that the age range of the subset is less than 5.
n Apriori algorithm, level-wise search using the downward

closure property for pruning to gain efficiency

n Can be used to search for any subsets with the downward
closure property (i.e., anti-monotone constraint)

n CLIQUE for subspace clustering used the same Apriori
principle, where the one-dimensional cells are the items

18

Chapter 6: Mining Frequent Patterns,
Association and Correlations

19

n Basic concepts
n Frequent itemset mining methods
n Constraint-based frequent pattern mining

(ch7)
n Association rules

Constraint-based (Query-Directed) Mining

n Finding all the patterns in a database autonomously? — unrealistic!
n The patterns could be too many but not focused!

n Data mining should be an interactive process
n User directs what to be mined using a data mining query

language (or a graphical user interface)
n Constraint-based mining

n User flexibility: provides constraints on what to be mined
n Optimization: explores such constraints for efficient mining —

constraint-based mining: constraint-pushing, similar to push
selection first in DB query processing

n Note: still find all the answers satisfying constraints, not finding
some answers in “heuristic search”

20

Constrained Mining vs. Constraint-Based Search

n Constrained mining vs. constraint-based search/reasoning
n Both are aimed at reducing search space
n Finding all patterns satisfying constraints vs. finding

some (or one) answer in constraint-based search in AI
n Constraint-pushing vs. heuristic search
n It is an interesting research problem on how to integrate

them
n Constrained mining vs. query processing in DBMS

n Database query processing requires to find all
n Constrained pattern mining shares a similar philosophy

as pushing selections deeply in query processing

Constraints

n Pattern space pruning constraints
n Anti-monotonic: If constraint c is violated, its further mining can be

terminated
n Monotonic: If c is satisfied, no need to check c again

n Succinct: c must be satisfied, so one can start with the data sets satisfying c

n Convertible: c is not monotonic nor anti-monotonic, but it can be converted into it if items in the
transaction can be properly ordered

n Data space pruning constraint

n Data succinct: Data space can be pruned at the initial pattern mining process

n Data anti-monotonic: If a transaction t does not satisfy c, t can be pruned from its further mining

22

Anti-Monotonicity in Constraint Pushing

n Anti-monotonicity
n When an itemset S violates the

constraint, so does any of its superset
n sum(S.Price) £ v is anti-monotonic
n sum(S.Price) ³ v is not anti-monotonic

n C: range(S.profit) £ 15 is anti-monotonic
n Itemset ab violates C
n So does every superset of ab

n support count >= min_sup is anti-
monotonic
n core property used in Apriori

TID Transaction

10 a, b, c, d, f
20 b, c, d, f, g, h
30 a, c, d, e, f
40 c, e, f, g

TDB (min_sup=2)

Item Profit
a 40
b 0
c -20
d 10
e -30
f 30
g 20
h -10

Item Profit
a 40
b 0
c -20
d 10
e -30
f 30
g 20
h -10

24

n Monotonicity
n When an itemset S satisfies the

constraint, so does any of its superset
n sum(S.Price) ³ v is monotonic
n min(S.Price) £ v is monotonic

n C: range(S.profit) ³ 15
n Itemset ab satisfies C
n So does every superset of ab

Monotonicity for Constraint Pushing

Succinctness

n Given A1, the set of items satisfying a succinctness constraint C, then any
set S satisfying C is based on A1 , i.e., S contains a subset belonging to A1

n Idea: Without looking at the transaction database, whether an itemset S
satisfies constraint C can be determined based on the selection of items

n If a constraint is succinct, we can directly generate precisely the sets that
satisfy it, even before support counting begins.

n Avoids substantial overhead of generate-and-test,
n i.e., such constraint is pre-counting pushable

n min(S.Price) £ v is succinct
n sum(S.Price) ³ v is not succinct

Constraint-Based Mining—A General Picture

Constraint Antimonotone Monotone Succinct
v Î S no yes yes
S Ê V no yes yes

S Í V yes no yes
min(S) £ v no yes yes

min(S) ³ v yes no yes
max(S) £ v yes no yes

max(S) ³ v no yes yes
count(S) £ v yes no weakly

count(S) ³ v no yes weakly

sum(S) £ v (a Î S, a ³ 0) yes no no
sum(S) ³ v (a Î S, a ³ 0) no yes no

range(S) £ v yes no no
range(S) ³ v no yes no

avg(S) q v, q Î { =, £, ³ } convertible convertible no
support(S) ³ x yes no no

support(S) £ x no yes no

26

Chapter 6: Mining Frequent Patterns,
Association and Correlations

27

n Basic concepts
n Frequent itemset mining methods
n Constraint-based frequent pattern mining (ch7)
n Association rules

Basic Concepts

n An association rule is of the form X à Y, where X,Y Ì I, X Ç Y = f
n A rule is strong if it satisfies both support and confidence thresholds.

n {onions, potatoes} -> {burger} from sales data would indicate that if a customer
buys onions and potatoes together, they are likely to also buy hamburger meat.
n Such information can be used for marketing activities such as promotional pricing or

product placements
n support(X->Y): probability that a transaction contains X È Y

n i.e., support(X->Y) = P(X U Y)
n Can be estimated by support_count(X È Y) / total number of transactions (the percentage

of transactions in DB that contain X È Y)
n confidence(X->Y): conditional probability that a transaction having X also contains Y

n i.e. confidence(X->Y) = P(Y|X)
n Can be estimated by support_count(X È Y) / support_count(X)

n confidence(X->Y) can be easily derived from the support count of X and the support
count of X È Y. Thus association rule mining can be reduced to frequent
pattern mining

28

Association rules: Example
Tid Items bought

10 Beer, Nuts, Diaper

20 Beer, Coffee, Diaper

30 Beer, Diaper, Eggs

40 Nuts, Eggs, Milk

50 Nuts, Coffee, Diaper, Eggs, Milk

Customer
buys diaper

Customer
buys both

Customer
buys beer

Let minsup = 50%, minconf = 50%
Freq. Pat.: Beer:3, Nuts:3, Diaper:4, Eggs:3,

{Beer, Diaper}:3

n Association rules: (many more!)
n Beer à Diaper (60%, 100%)
n Diaper à Beer (60%, 75%)

If {a} => {b} is an association rule, then
{b} => {a} is also an association rule?
q Same support, different confidence

If {a,b} => {c} is an association rule, then
{b} => {c} is also an association rule?

If {b} => {c} is an association rule then
{a,b} => {c} is also an association rule?

29

Interestingness Measure: Correlations (Lift)

n play basketball Þ eat cereal [40%, 66.7%] is misleading
n The overall % of students eating cereal is 75% > 66.7%.
n play basketball Þ not eat cereal [20%, 33.3%] is more accurate,

although with lower support and confidence
n Support and confidence are not good to indicate correlations

n Measure of dependent/correlated events: lift

89.0
5000/3750*5000/3000

5000/2000),(==CBlift

Basketball Not basketball Sum (row)

Cereal 2000 1750 3750

Not cereal 1000 250 1250

Sum(col.) 3000 2000 5000)()(
)(
BPAP
BAPlift È

=

33.1
5000/1250*5000/3000

5000/1000),(==¬CBlift

30

