
Chapters 8-9. Classification

n Classification: Basic Concepts
n Decision Tree Induction
n Model Evaluation/Learning Algorithm Evaluation
n Rule-Based Classification
n Bayes Classification Methods
n Bayesian Belief Networks (ch9)
n Techniques to Improve Classification
n Lazy Learners (ch9)
n Other known methods: SVM, ANN (ch9)
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Supervised vs. Unsupervised Learning

n Supervised learning (classification)

n Supervision: training data are labeled indicating classes

n New instances are classified based on training set

n Unsupervised learning (clustering)

n class labels are unknown

n Given a set of objects, establish the existence of classes or 

clusters in the data
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n Classification
n predicts categorical class labels

n Numeric prediction  
n models continuous-valued functions, i.e., predicts 

unknown or missing values 

n Typical applications
n Credit/loan approval
n Medical diagnosis
n Fraud detection
n Web page categorization

Prediction: Classification vs. Numeric Prediction
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Classification: A Two-Step Process

n Model construction: describing a set of predetermined classes
n Each tuple/sample is assumed to belong to a predefined class, as 

indicated by the class label attribute
n The set of tuples used for model construction is training set
n The model is represented as classification rules, decision trees, or 

mathematical formulae
n Model usage: for classifying future or unknown instances

n Estimate accuracy of the model
n Use an independent (of training set) testing set, compare predicted 

class labels with true class labels
n Compute accuracy (percentage of correctly classified instances)

n If the accuracy is acceptable, use the model to classify new data
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Process 1: Model Construction

Training
Data

NAME RANK YEARS TENURED
Mike Assistant Prof 3 no
Mary Assistant Prof 7 yes
Bill Professor 2 yes
Jim Associate Prof 7 yes
Dave Assistant Prof 6 no
Anne Associate Prof 3 no

Classification
Algorithms

IF rank = ‘professor’
OR years > 6
THEN tenured = ‘yes’

Classifier
(Model)
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Process 2: Using the Model in Prediction 

Classifier

Testing
Data

NAME RANK YEARS TENURED
Tom Assistant Prof 2 no
Merlisa Associate Prof 7 no
George Professor 5 yes
Joseph Assistant Prof 7 yes

Unseen Data

(Jeff, Professor, 4)

Tenured?



Issues: Data Preparation

n Data cleaning
n Preprocess data in order to reduce noise and handle 

missing values
n Relevance analysis (feature selection)

n Remove the irrelevant or redundant attributes
n Data transformation

n Generalize and/or normalize data
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Decision Tree Induction: An Example

age?

overcast

student? credit rating?

<=30 >40

no yes yes

yes

31..40

no

fairexcellentyesno

age income student credit_rating buys_computer
<=30 high no fair no
<=30 high no excellent no
31…40 high no fair yes
>40 medium no fair yes
>40 low yes fair yes
>40 low yes excellent no
31…40 low yes excellent yes
<=30 medium no fair no
<=30 low yes fair yes
>40 medium yes fair yes
<=30 medium yes excellent yes
31…40 medium no excellent yes
31…40 high yes fair yes
>40 medium no excellent no

q Training data set: Buys_computer
q Resulting tree:
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Decision Tree Properties

age?

overcast

student? credit rating?

<=30 >40

no yes yes

yes

31..40

no

fairexcellentyesno

q Exhaustive (completely covers whole instance space)
q Mutually exclusive (no conflicting predictions)
q Interpretable (axis-parallel, as in rule learning)
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Algorithm for Decision Tree Induction

n Basic algorithm (a greedy algorithm)
n Tree is constructed in a top-down (from general to specific) recursive 

divide-and-conquer manner
n At start, all the training examples are at the root
n Attributes are categorical (if continuous-valued, discretization in advance)
n Examples are partitioned recursively based on selected attributes
n Attributes are selected based on heuristic or statistical measure (e.g., 

information gain)

n When to stop
n All example for a given node belong to the same class (pure), or
n No remaining attributes to select from, or

n majority voting to determine class label for the node
n No examples left



Random Tree Induction

Let a be the number of attributes. Let v be the maximum number of 
values any attribute can take

n Upper bound on the number of trees?
n Lower bound on the number of trees?

n Random tree induction
n Randomly choose an attribute for split
n Same stopping criteria

n The design of decision trees has been largely influenced by the 
preference for simplicity.
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Occam’s Razor
n Occam’s Razor: rule of parsimony, principle of economy

n plurality should not be assumed without necessity
n meaning, one should not increase, beyond what is necessary, 

the number of entities required to explain anything

n Argument: the simplicity of nature and rarity of simple theories can 
be used to justify Occam's Razer.
n First, nature exhibits regularity and natural phenomena are more often 

simple than complex. At least, the phenomena humans choose to study 
tend to have simple explanations. 

n Second, there are far fewer simple hypotheses than complex ones, so 
that there is only a small chance that any simple hypothesis that is wildly 
incorrect will be consistent with all observations.

n Occam's two razors: The sharp and the blunt (KDD’98)
n Pedro Domingos

1288 - 1348
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Attribute Selection Measure: 
Information Gain (ID3/C4.5)

n How to obtain smallest (shortest) tree?
n Careful design on selection of attribute
n Quinlan pioneered using entropy in his ID3 algorithm
n Entropy: in information theory, also called expected 

information, is a measure of uncertainly
n Intuition: chaos, molecular disorder, temperature, 

thermodynamic system, universe
n High entropy = high disorder
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Attribute Selection Measure: 
Information Gain (ID3/C4.5)

n Select the attribute with the highest information gain
n Let pi be the probability that an arbitrary tuple in D belongs to class 

Ci, estimated by |Ci, D|/|D|
n Expected information (entropy) needed to classify a tuple in D:

n entropy: measure of uncertainty. larger entropy -> larger uncertainty 

n Information needed to classify D (aggregated entropy after using A 
to split D into v partitions) :

n Information gained (entropy dropped) by branching on attribute A 
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Attribute Selection: Information Gain

g Class P: buys_computer = “yes”
g Class N: buys_computer = “no”

means “age <=30” has 5 out of 

14 samples, with 2 yes’es  and 3 
no’s.   Hence

Similarly,

age pi ni I(pi, ni)
<=30 2 3 0.971
31…40 4 0 0
>40 3 2 0.971
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<=30 high no fair no
<=30 high no excellent no
31…40 high no fair yes
>40 medium no fair yes
>40 low yes fair yes
>40 low yes excellent no
31…40 low yes excellent yes
<=30 medium no fair no
<=30 low yes fair yes
>40 medium yes fair yes
<=30 medium yes excellent yes
31…40 medium no excellent yes
31…40 high yes fair yes
>40 medium no excellent no
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Computing Information-Gain for 
Continuous-Valued Attributes

n Let attribute A be a continuous-valued attribute

n Must determine the best split point for A

n Sort the value A in increasing order

n Typically, the midpoint between each pair of adjacent values 
is considered as a possible split point

n (ai+ai+1)/2 is the midpoint between the values of ai and ai+1

n The point with the minimum expected information 
requirement for A is selected as the split-point for A

n Split:

n D1 is the set of tuples in D satisfying A ≤ split-point, and D2 is 
the set of tuples in D satisfying A > split-point
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Gain Ratio for Attribute Selection (C4.5)

n Information gain is biased towards attributes with a large 
number of values

n C4.5 (a successor of ID3) uses gain ratio to overcome the 
problem (normalization to information gain)

n GainRatio(A) = Gain(A) / SplitInfo(A)

gain_ratio(income) = 0.029/1.557 = 0.019

n The attribute with the largest gain ratio will be selected
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Gini Index (CART, IBM IntelligentMiner)

n If a data set D contains examples from n classes, gini index, 
gini(D) is defined as

where pj is the relative frequency of class j in D
n If a data set D is split on A into two subsets D1 and D2, the gini

index gini(D) is defined as

n Reduction in Impurity:

n The attribute provides the smallest ginisplit(D) (or the largest 
reduction in impurity) is chosen to split the node (need to 
enumerate all the possible splitting points for each attribute)
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Computation of Gini Index 

n Ex.  D has 9 tuples in buys_computer = “yes” and 5 in “no”

n Suppose the attribute income partitions D into 10 in D1: {low, 
medium} and 4 in D2

Gini{low,high} is 0.458; Gini{medium,high} is 0.450.  Thus, split on the 
{low,medium} (and {high}) since it has the lowest Gini index

n All attributes are assumed continuous-valued
n May need other tools, e.g., clustering, to get the possible split 

values
n Can be modified for categorical attributes
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Comparing Attribute Selection Measures

n The three measures, in general, return good results but
n Information gain: 

n biased towards multivalued attributes
n Gain ratio: 

n tends to prefer unbalanced splits in which one partition is 
much smaller than the others

n Gini index: 
n biased to multivalued attributes

n has difficulty when # of classes is large
n tends to favor tests that result in equal-sized partitions 

and purity in both partitions
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Other Attribute Selection Measures

n CHAID: a popular decision tree algorithm, measure based on χ2 test for 

independence

n C-SEP: performs better than info. gain and gini index in certain cases

n G-statistic: has a close approximation to χ2 distribution 

n MDL (Minimal Description Length) principle (i.e., the simplest solution is 
preferred): 

n The best tree as the one that requires the fewest # of bits to both (1) 
encode the tree, and (2) encode the exceptions to the tree

n Multivariate splits (partition based on multiple variable combinations)

n CART: finds multivariate splits based on a linear comb. of attrs.

n Which attribute selection measure is the best?

n Most give good results, none is significantly superior than others



Overfitting and Tree Pruning

n Overfitting:  An induced tree may overfit the training data 
n Too many branches, some may reflect anomalies due to noise or outliers
n Poor accuracy for unseen samples

n Blue: training error, red: generalization error 

n Two approaches to avoid overfitting 
n Prepruning: Halt tree construction early—do not split a node if this would 

result in the goodness measure falling below a threshold
n Difficult to choose an appropriate threshold

n Postpruning: Remove branches from a “fully grown” tree—get a sequence 
of progressively pruned trees

n Use a set of data (validation set) different from the training data to 
decide which is the “best pruned tree”
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Enhancements to Basic Decision Tree Induction

n Allow for continuous-valued attributes
n Dynamically define new discrete-valued attributes that 

partition the continuous attribute value into a discrete set of 
intervals

n Handle missing attribute values
n Assign the most common value of the attribute

n Assign probability to each of the possible values
n Attribute construction

n Create new attributes based on existing ones that are 
sparsely represented

n This reduces fragmentation, repetition, and replication
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Classification in Large Databases

n Classification—a classical problem extensively studied by 
statisticians and machine learning researchers

n Scalability: Classifying data sets with millions of examples and 
hundreds of attributes with reasonable speed

n Why is decision tree induction popular?
n relatively faster learning speed (than other classification 

methods)
n convertible to simple and easy to understand classification rules
n can use SQL queries for accessing databases
n comparable classification accuracy with other methods

n RainForest (VLDB’98 — Gehrke, Ramakrishnan & Ganti)
n Builds an AVC-list (attribute, value, class label)
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Scalability Framework for RainForest

n Separates the scalability aspects from the criteria that 
determine the quality of the tree 

n Builds an AVC-list: AVC (Attribute, Value, Class_label) 
n AVC-set  (of an attribute X )

n Projection of training dataset onto the attribute X and 
class label where counts of individual class label are 
aggregated

n AVC-group  (of a node n )

n Set of AVC-sets of all predictor attributes at the node n
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Rainforest:  Training Set and Its AVC Sets 

student Buy_Computer

yes no

yes 6 1

no 3 4

Age Buy_Computer

yes no

<=30 2 3

31..40 4 0

>40 3 2

Credit
rating

Buy_Computer

yes no

fair 6 2

excellent 3 3

age income studentcredit_ratingbuys_computer
<=30 high no fair no
<=30 high no excellent no
31…40 high no fair yes
>40 medium no fair yes
>40 low yes fair yes
>40 low yes excellent no
31…40 low yes excellent yes
<=30 medium no fair no
<=30 low yes fair yes
>40 medium yes fair yes
<=30 medium yes excellent yes
31…40 medium no excellent yes
31…40 high yes fair yes
>40 medium no excellent no

AVC-set on incomeAVC-set on Age

AVC-set on Student

Training Examples
income Buy_Computer

yes no

high 2 2

medium 4 2

low 3 1

AVC-set on 
credit_rating
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BOAT (Bootstrapped Optimistic Algorithm 
for Tree Construction)

n Use a statistical technique called bootstrapping to create 
several smaller samples (subsets), each fits in memory

n Each subset is used to create a tree, resulting in several 
trees 

n These trees are examined and used to construct a new 
tree T’

n It turns out that T’ is very close to the tree that would 
be generated using the whole data set together

n Adv: requires only two scans of DB, an incremental alg.
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Model Evaluation Metrics: Confusion Matrix

Actual class\Predicted class buy_computer
=  yes

buy_computer = 
no

Total

buy_computer = yes 6954 46 7000
buy_computer = no 412 2588 3000

Total 7366 2634 10000

n Given m classes, an entry, CMi,j in a confusion matrix indicates 
# of tuples in class i that were labeled by the classifier as class j

n May have extra rows/columns to provide totals

Confusion Matrix:
Actual class\Predicted class C1 ¬ C1

C1 True Positives (TP) False Negatives (FN)

¬ C1 False Positives (FP) True Negatives (TN)

Example of Confusion Matrix:
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Model Evaluation Metrics: Accuracy, Error 
Rate, Sensitivity and Specificity

n Accuracy, or recognition rate: 
percentage of test set tuples that 
are correctly classified
Accuracy = (TP + TN)/All

n Error rate: 1 – accuracy, or
Error rate = (FP + FN)/All

n Class Imbalance Problem: 
n One class may be rare, e.g.

fraud, or HIV-positive
n Significant majority of the 

negative class and minority of 
the positive class

n Sensitivity: True Positive 
recognition rate (recall for +)

n Sensitivity = TP/P
n Specificity: True Negative 

recognition rate (recall for -)
n Specificity = TN/N

A\P C ¬C

C TP FN P

¬C FP TN N

P’ N’ All
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Model Evaluation Metrics: 
Precision and Recall, and F-measures

n Precision: exactness – what % of tuples that the classifier (model) 
labeled as positive are actually positive

n Recall: completeness – what % of positive tuples did the classifier 
(model) label as positive?

n Perfect score is 1.0
n Inverse relationship between precision & recall
n F measure (F1 or F-score): harmonic mean of precision and recall,

n Fß:  weighted measure of precision and recall
n assigns ß times as much weight to recall as to precision
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Model Evaluation Metrics: Example

n Precision = 90/230 = 39.13%             Recall = 90/300 = 30.00%

Actual Class\Predicted class cancer = yes cancer = no Total Recognition(%)

cancer = yes 90 210 300 30.00 (sensitivity

cancer = no 140 9560 9700 98.56 (specificity)

Total 230 9770 10000 96.40 (accuracy)
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Evaluating Learning Algorithm:
Holdout & Cross-Validation Methods

n Holdout method
n Given data is randomly partitioned into two independent sets

n Training set (e.g., 2/3) for model construction
n Testing set (e.g., 1/3) for accuracy (or another metric) 

estimation
n Random sampling: a variation of holdout

n Repeat holdout k times, accuracy = avg. of the accuracies 
obtained

n Cross-validation (k-fold, where k = 10 is most common)
n Randomly partition the data into k mutually exclusive subsets, 

each approximately equal size
n At i-th iteration, use Di as testing set and others as training set
n Leave-one-out: k folds where k = # of tuples, for small sized data
n Stratified cross-validation: folds are stratified so that class dist. in 

each fold is approx. the same as that in the initial data
34



Evaluating Classifier Accuracy: Bootstrap

n Bootstrap
n Works well with small data sets
n Samples the given training tuples uniformly with replacement

n i.e., each time a tuple is selected, it is equally likely to be selected 
again and re-added to the training set

n Several bootstrap methods, and a common one is .632 boostrap
n A data set with d tuples is sampled d times, with replacement, resulting in 

a training set of d samples.  The data tuples that did not make it into the 
training set end up forming the test set.  About 63.2% of the original data 
end up in the bootstrap, and the remaining 36.8% form the test set (since 
(1 – 1/d)d ≈ e-1 = 0.368)

n Repeat the sampling procedure k times, overall accuracy of the model:
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Model Selection: ROC Curves

n ROC (Receiver Operating 
Characteristics) curves: for visual 
comparison of classification models

n Originated from signal detection theory
n Shows the trade-off between the true 

positive rate and the false positive rate
n The area under the ROC curve is a 

measure of the accuracy of the model
n Rank the test tuples in decreasing 

order: the one that is most likely to 
belong to the positive class appears at 
the top of the list

n The closer to the diagonal line (i.e., the 
closer the area is to 0.5), the less 
accurate is the model

n Vertical axis 
represents the true 
positive rate

n Horizontal axis rep. 
the false positive rate

n The plot also shows a 
diagonal line

n A model with perfect 
accuracy will have an 
area of 1.0
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Model Selection Issues

n Accuracy
n classifier accuracy: predicting class label

n Speed
n time to construct the model (training time)

n time to use the model (classification/prediction time)
n Robustness: handling noise and missing values
n Scalability: efficiency in disk-resident databases 

n Interpretability
n understanding and insight provided by the model
n Model (e.g., decision tree) size or compactness 
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Using IF-THEN Rules for Classification

n Represent knowledge in the form of IF-THEN rules

R:  IF age = youth AND student = yes  THEN buys_computer = yes
n Rule antecedent/precondition vs. rule consequent

n Assessment of a rule: coverage and accuracy
n ncovers = # of tuples covered by R
n ncorrect = # of tuples correctly classified by R
coverage(R) = ncovers /|D|                         
accuracy(R) = ncorrect / ncovers

n If more than one rule are triggered, need conflict resolution
n Size ordering: assign the highest priority to the triggering rules that have 

the “toughest” requirement (i.e., with the most attribute tests)
n Class-based ordering: decreasing order of prevalence or misclassification 

cost per class
n Rule-based ordering (decision list): rules are organized into one long 

priority list, according to some measure of rule quality or by experts
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age?

student? credit rating?

<=30 >40

no yes yes

yes

31..40

no

fairexcellentyesno

n Example: Rule extraction from our buys_computer decision-tree
IF age = young AND student = no THEN buys_computer = no
IF age = young AND student = yes THEN buys_computer = yes
IF age = mid-age THEN buys_computer = yes
IF age = old AND credit_rating = excellent THEN buys_computer = no
IF age = old AND credit_rating = fair THEN buys_computer = yes

Rule Extraction from Decision Tree

n A root-to-leaf path corresponds to a rule
n Each attribute-value pair along a path forms 

a conjunction: the leaf holds the class 
prediction 

n Rules are exhaustive and mutually 
exclusive
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Rule Induction: Sequential Covering Method

n Sequential covering: Extracts rules directly from training data
n Typical sequential covering algorithms: FOIL, AQ, CN2, RIPPER
n Rules are learned sequentially, each for a given class Ci will cover 

many tuples of Ci but none (or few) of the tuples of other classes
n Steps: 

n Rules are learned one at a time
n Each time a rule is learned, the covered positive tuples are 

removed
n Repeat until termination condition is met. e.g., no more 

training examples or the quality of a rule generated is below a 
user-specified threshold

n Unlike decision-trees that learn a set of rules simultaneously
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Sequential Covering Algorithm

while (enough target tuples left)
generate a rule
remove positive target tuples satisfying this rule

Examples covered
by Rule 3

Examples covered
by Rule 2Examples covered

by Rule 1

Positive 
examples
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How to Learn One Rule?

n Start with the most general rule possible: condition = empty
n Adding new attributes by adopting a greedy depth-first strategy

n Picks the one that most improves the rule quality
n Rule-Quality measures: consider both coverage and accuracy

n Foil-gain (in FOIL & RIPPER): assesses info_gain by extending 
condition

n favors rules that have high accuracy and cover many positive tuples

n Rule pruning based on an independent set of test tuples

Pos/neg are # of positive/negative tuples covered by R.
If FOIL_Prune is higher for the pruned version of R, prune R
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Learn one rule

n To generate a rule
while(true)

find the best predicate p
if foil-gain(p) > threshold then add p to current rule
else break

Positive 
examples

Negative 
examples

A3=1A3=1&&A1=2
A3=1&&A1=2
&&A8=5



Trees and rules
n Most tree learners: divide and conquer
n Most rule learners: separate and conquer, i.e., sequential covering, (AQ, 

CN2, RIPPER …)
n Some conquering-without-separating (RISE, from Domingos, biased towards 

complex models), rules are learned simultaneously, instance-based

n Decision space, decision boundary

n Both are interpretable classifiers
n Other usage of rule learning: rule extraction, e.g., from ANN
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Separate and conquer vs. set cover
n Set covering problem (minimum set cover): one of the most studied 

combinatorial optimization problems
n Given a finite ground set X and S1, S2, … Sm as subsets of X, find I Í {1, … m} with Ui Î I Si = 
X such that |I| is minimized.

n select as few as possible subsets from a given family such that each element in any 
subset of the family is covered

n NP-hard
n Greedy algorithm: iteratively pick the subset that covers the maximum 

number of uncovered elements
n Achieves 1 + ln n approximation ratio, optimal

n Greedy set cover vs. sequential covering
n Select one subset (learn one rule) at a time
n Consider uncovered elements  (remove covered examples)
n Iterate until all elements (examples) are covered

n Other related problems: graph coloring, minimum clique partition 
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Bayesian Classification: Why?

n A statistical classifier: performs probabilistic prediction, i.e.,
predicts class membership probabilities

n Foundation: Based on Bayes’ Theorem. 
n Performance: A simple Bayesian classifier, naïve Bayesian 

classifier, has comparable performance with decision tree and 
selected neural network classifiers

n Incremental: Each training example can incrementally 
increase/decrease the probability that a hypothesis is correct —
prior knowledge can be combined with observed data

n Standard: Even when Bayesian methods are computationally 
intractable, they can provide a standard of optimal decision 
making against which other methods can be measured



Probability Model for Classifiers

n Let X = (x1, x2, …, xn) be a data sample (“evidence”): class 
label is unknown

n The probability model for a classifier is to determine 
P(C|X), the probability that X belongs to class C given the 
observed data sample X
n predicts X belongs to Ci iff the probability P(Ci|X) is the highest 

among all the P(Ck|X) for all the k classes
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Bayes’ Theorem

n P(C | X) : posterior
n P(C): prior, the initial probability

n E.g., one will buy computer, regardless of age, income, …
n P(X): probability that the sample X is observed
n P(X|C): likelihood, probability of observing the sample X, 

given that the hypothesis holds
n E.g., Given that X will buy computer, the prob. that X is 31..40, 

medium income

n Informally, this can be written as 
posterior = prior x likelihood / evidence
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Maximizing joint probability

n In practice we are only interested in the numerator of that 
fraction, since the denominator does not depend on H and 
the same value is shared by all classes. 

n The numerator is the joint probability
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Maximizing joint probability

repeatedly apply conditional probability, 
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Naïve Bayes Classifier: 
Assuming Conditional Independence

Simplifying assumption: features are conditionally 
independent of each other, then,

n This greatly reduces the computation cost: Only counts the 
class distribution

n Only requires a small number of training data to estimate 
the parameters
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Naïve Bayes Classifier 

n If Ak is categorical, P(xk|Ci) is the # of tuples in Ci having value xk
for Ak divided by |Ci, D| (# of tuples of Ci in D)

n If Ak is continous-valued, P(xk|Ci) is usually computed based on 
Gaussian distribution with a mean μ and standard deviation σ

and P(xk|Ci) is 
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Naïve Bayes Classifier: Training Dataset

Class:
C1:buys_computer = ‘yes’
C2:buys_computer = ‘no’

Data to be classified: 
X = (age <=30, 
Income = medium,
Student = yes
Credit_rating = Fair)

age income studentcredit_ratingbuys_computer
<=30 high no fair no
<=30 high no excellent no
31…40 high no fair yes
>40 medium no fair yes
>40 low yes fair yes
>40 low yes excellent no
31…40 low yes excellent yes
<=30 medium no fair no
<=30 low yes fair yes
>40 medium yes fair yes
<=30 medium yes excellent yes
31…40 medium no excellent yes
31…40 high yes fair yes
>40 medium no excellent no



Naïve Bayes Classifier:  Example
n X = (age <= 30 , income = medium, student = yes, credit_rating = fair)

n P(C):    P(buys_computer = “yes”)  = 9/14 = 0.643
P(buys_computer = “no”) = 5/14= 0.357

n Compute P(X|C) for each class
P(age = “<=30” | buys_computer = “yes”)  = 2/9 = 0.222
P(income = “medium” | buys_computer = “yes”) = 4/9 = 0.444
P(student = “yes” | buys_computer = “yes) = 6/9 = 0.667
P(credit_rating = “fair” | buys_computer = “yes”) = 6/9 = 0.667

P(age = “<= 30” | buys_computer = “no”) = 3/5 = 0.6
P(income = “medium” | buys_computer = “no”) = 2/5 = 0.4
P(student = “yes” | buys_computer = “no”) = 1/5 = 0.2
P(credit_rating = “fair” | buys_computer = “no”) = 2/5 = 0.4

n P(X|C) : P(X|buys_computer = “yes”) = 0.222 x 0.444 x 0.667 x 0.667 = 0.044
P(X|buys_computer = “no”) = 0.6 x 0.4 x 0.2 x 0.4 = 0.019

P(C, X) = P(X|C)*P(C) 
P(X|buys_computer = “yes”) * P(buys_computer = “yes”) = 0.028
P(X|buys_computer = “no”) * P(buys_computer = “no”) = 0.007

Therefore,  X belongs to class (“buys_computer = yes”)

age income studentcredit_ratingbuys_computer
<=30 high no fair no
<=30 high no excellent no
31…40 high no fair yes
>40 medium no fair yes
>40 low yes fair yes
>40 low yes excellent no
31…40 low yes excellent yes
<=30 medium no fair no
<=30 low yes fair yes
>40 medium yes fair yes
<=30 medium yes excellent yes
31…40 medium no excellent yes
31…40 high yes fair yes
>40 medium no excellent no
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Avoiding the Zero-Probability Problem

n Naïve Bayesian prediction requires each conditional prob. be non-
zero.  Otherwise, the predicted prob. will be zero

n Suppose training set has 1000 tuples for class buys_computer= yes.  0 
for income=low, 990 for income=medium, and 10 for income=high

n Use Laplacian correction (or Laplacian estimator)
n Adding 1 to each case

Prob(income = low | buys_computer = “yes”) = 1/1003
Prob(income = medium | buys_computer = “yes”) = 991/1003
Prob(income = high | buys_computer = “yes”) = 11/1003

n The “corrected” prob. estimates are close to their “uncorrected”
counterparts

Õ
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Naïve Bayes Classifier: Comments

n Advantages 
n Easy to implement 
n Good results obtained in most of the cases. Optimal if

assumption holds true.
n Disadvantages

n Assumption: class conditional independence, loss of accuracy
n Practically, dependencies exist among variables 

n E.g.,  hospitals: patients: Profile: age, family history, etc. 
Symptoms: fever, cough etc., Disease: lung cancer, 

diabetes, etc. 
n Dependencies among these cannot be modeled by Naïve 

Bayes Classifier
n How to deal with these dependencies? Bayesian Belief Networks 

(Chapter 9)



Chapters 8-9. Classification

n Classification: Basic Concepts
n Decision Tree Induction
n Model Evaluation/Learning Algorithm Evaluation
n Rule-Based Classification
n Bayes Classification Methods
n Bayesian Belief Networks (ch9)
n Techniques to Improve Classification
n Lazy Learners (ch9)
n Other known methods: SVM, ANN (ch9)
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Bayesian Belief Networks

n Bayesian belief network relieves the conditional independence 
assumption in naïve bayes

n A graphical model of causal relationships
n Represents dependency among the variables 
n Gives a specification of joint probability distribution 

X Y

Z
P

q Nodes: random variables
q Links: dependency
q X and Y are the parents of Z, and Y is 
the parent of P
q No dependency between Z and P
q Has no loops or cycles
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Bayesian Belief Network: An Example

Family
History

LungCancer

PositiveXRay

Smoker

Emphysema

Dyspnea

LC

~LC

(FH, S) (FH, ~S) (~FH, S) (~FH, ~S)

0.8

0.2

0.5

0.5

0.7

0.3

0.1

0.9

Bayesian Belief Networks

The conditional probability table
(CPT) for variable LungCancer:

Õ
=

=
n
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CPT shows the conditional probability for 
each possible combination of its parents

Derivation of the probability of a 
particular combination of values of X, 
from CPT:

61



Training Bayesian Networks

n Several scenarios:
n Given both the network structure and all variables 

observable: learn only the CPTs
n Network structure known, some hidden variables: 

gradient descent (greedy hill-climbing) method, 
analogous to neural network learning

n Network structure unknown, all variables observable: 
search through the model space to reconstruct 
network topology 

n Unknown structure, all hidden variables: No good 
algorithms known for this purpose

n Ref. D. Heckerman: Bayesian networks for data mining
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Example
n Two events could cause 

grass to be wet: either the 
sprinkler is on or it's raining

n The rain has a direct effect 
on the use of the sprinkler
n when it rains, the sprinkler 

is usually not turned on

Then the situation can be modeled with a Bayesian network. 
All three variables have two possible values, T and F.
The joint probability function is:

P(G,S,R) = P(G | S,R)P(S | R)P(R)

where G = Grass wet, S = Sprinkler, and R = Rain
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Example

n The model can answer questions like "What is the 
probability that it is raining, given the grass is wet?"

The joint probability function is:

P(G,S,R) = P(G | S,R)P(S | R)P(R)

where G = Grass wet, S = Sprinkler, and R = Rain
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Chapters 8-9. Classification

n Classification: Basic Concepts
n Decision Tree Induction
n Model Evaluation/Learning Algorithm Evaluation
n Rule-Based Classification
n Bayes Classification Methods
n Bayesian Belief Networks (ch9)
n Techniques to Improve Classification
n Lazy Learners (ch9)
n Other known methods: SVM, ANN (ch9)
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Ensemble Methods: Increasing the Accuracy

n Ensemble methods
n Use a combination of models to increase accuracy
n Combine a series of k learned models, M1, M2, …, Mk, with 

the aim of creating an improved model M*
n Popular ensemble methods

n Bagging: averaging the prediction over a collection of 
classifiers

n Boosting: weighted vote with a collection of classifiers
n Ensemble: combining a set of heterogeneous classifiers
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Bagging: Boostrap Aggregation

n Analogy: Diagnosis based on multiple doctors’majority vote
n Training

n Given a set D of d tuples, at each iteration i, a training set Di of d tuples 
is sampled with replacement from D (i.e., bootstrap)

n A classifier model Mi is learned for each training set Di

n Classification: classify an unknown sample X
n Each classifier Mi returns its class prediction
n The bagged classifier M* counts the votes and assigns the class with the 

most votes to X
n Prediction: can be applied to the prediction of continuous values by taking 

the average value of each prediction for a given test tuple
n Accuracy

n Often significantly better than a single classifier derived from D
n For noise data: not considerably worse, more robust 
n Proved improved accuracy in prediction
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Boosting

n Analogy: Consult several doctors, based on a combination of 
weighted diagnoses—weight assigned based on the previous 
diagnosis accuracy

n How boosting works?
n Weights are assigned to each training tuple
n A series of k classifiers is iteratively learned
n After a classifier Mi is learned, the weights are updated to 

allow the subsequent classifier, Mi+1, to pay more attention to 
the training tuples that were misclassified by Mi

n The final M* combines the votes of each individual classifier, 
where the weight of each classifier's vote is a function of its 
accuracy

n Boosting algorithm can be extended for numeric prediction
n Comparing with bagging: Boosting tends to have greater accuracy, 

but it also risks overfitting the model to misclassified data
68



69

Adaboost (Freund and Schapire, 1997)

n Given a set of d class-labeled tuples, (X1, y1), …, (Xd, yd)
n Initially, all the weights of tuples are set the same (1/d)
n Generate k classifiers in k rounds.  At round i,

n Tuples from D are sampled (with replacement) to form a training set 
Di of the same size

n Each tuple’s chance of being selected is based on its weight
n A classification model Mi is derived from Di

n Its error rate is calculated using Di as a test set
n If a tuple is misclassified, its weight is increased, o.w. it is decreased

n Error rate: err(Xj) is the misclassification error of tuple Xj. Classifier Mi
error rate is the sum of the weights of the misclassified tuples: 

n The weight of classifier Mi’s vote is

)(
)(1log

i

i

Merror
Merror-

å ´=
d

j
ji errwMerror )()( jX



Random Forest (Breiman 2001) 

n Random Forest: 
n Each classifier in the ensemble is a decision tree classifier and is 

generated using a random selection of attributes at each node to 
determine the split

n During classification, each tree votes and the most popular class is 
returned

n Two Methods to construct Random Forest:
n Forest-RI (random input selection):  Randomly select, at each node, F 

attributes as candidates for the split at the node. The CART methodology 
is used to grow the trees to maximum size

n Forest-RC (random linear combinations): Creates new attributes (or 
features) that are a linear combination of the existing attributes 
(reduces the correlation between individual classifiers)

n Comparable in accuracy to Adaboost, but more robust to errors and outliers 
n Insensitive to the number of attributes selected for consideration at each 

split, and faster than bagging or boosting
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Classification of Class-Imbalanced Data Sets

n Class-imbalance problem: Rare positive example but numerous 
negative ones, e.g., medical diagnosis, fraud, oil-spill, fault, etc. 

n Traditional methods assume a balanced distribution of classes 
and equal error costs: not suitable for class-imbalanced data

n Typical methods for imbalance data in 2-class classification: 
n Oversampling: re-sampling of data from positive class
n Under-sampling: randomly eliminate  tuples from negative 

class
n Threshold-moving: moves the decision threshold, t, so that 

the rare class tuples are easier to classify, and hence, less 
chance of costly false negative errors

n Ensemble techniques: Ensemble multiple classifiers 
introduced above

n Still difficult for class imbalance problem on multiclass tasks
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Chapters 8-9. Classification

n Classification: Basic Concepts
n Decision Tree Induction
n Model Evaluation/Learning Algorithm Evaluation
n Rule-Based Classification
n Bayes Classification Methods
n Bayesian Belief Networks (ch9)
n Techniques to Improve Classification
n Lazy Learners (ch9)
n Other known methods: SVM, ANN (ch9)
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Lazy vs. Eager Learning
n Lazy vs. eager learning

n Lazy learning (e.g., instance-based learning): Simply 
stores training data (or only minor processing) and 
waits until it is given a test tuple

n Eager learning (the above discussed methods): Given 
a set of training tuples, constructs a classification model 
before receiving new (e.g., test) data to classify

n Lazy: less time in training but more time in predicting
n Accuracy

n Lazy method effectively uses a richer hypothesis space 
since it uses many local linear functions to form an 
implicit global approximation to the target function

n Eager: must commit to a single hypothesis that covers 
the entire instance space
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Lazy Learner: Instance-Based Methods

n Instance-based learning: 
n Store training examples and delay the processing (“lazy 

evaluation”) until a new instance must be classified
n Typical approaches

n k-nearest neighbor approach
n Instances represented as points in a Euclidean 

space.
n Locally weighted regression

n Constructs local approximation
n Case-based reasoning

n Uses symbolic representations and knowledge-based 
inference
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The k-Nearest Neighbor Algorithm

n All instances correspond to points in the n-D space
n The nearest neighbor are defined in terms of 

Euclidean distance, dist(X1, X2)
n Target function could be discrete- or real- valued
n For discrete-valued, k-NN returns the most common 

value among the k training examples nearest to xq
n Vonoroi diagram: the decision surface induced by 1-

NN for a typical set of training examples
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Discussion on the k-NN Algorithm

n k-NN for real-valued prediction for a given unknown tuple
n Returns the mean values of the k nearest neighbors

n Distance-weighted nearest neighbor algorithm
n Weight the contribution of each of the k neighbors 

according to their distance to the query xq

n Give greater weight to closer neighbors
n Robust to noisy data by averaging k-nearest neighbors
n Curse of dimensionality: distance between neighbors could 

be dominated by irrelevant attributes   
n To overcome it, axes stretch or elimination of the least 

relevant attributes
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SVM—Support Vector Machines

n A new classification method for both linear and nonlinear data
n It uses a nonlinear mapping to transform the original training 

data into a higher dimension
n With the new dimension, it searches for the linear optimal 

separating hyperplane (i.e., “decision boundary”)
n With an appropriate nonlinear mapping to a sufficiently high 

dimension, data from two classes can always be separated by 
a hyperplane

n SVM finds this hyperplane using support vectors (“essential”
training tuples) and margins (defined by the support vectors)
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History and Applications

n Vapnik and colleagues (1992)—groundwork from Vapnik 
& Chervonenkis’ statistical learning theory in 1960s

n Features: training can be slow but accuracy is high owing 
to their ability to model complex nonlinear decision 
boundaries (margin maximization)

n Used both for classification and prediction
n Applications: 

n handwritten digit recognition, object recognition, 
speaker identification, benchmarking time-series 
prediction tests 
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General Philosophy

Support Vectors

Small Margin Large Margin
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When Data Is Linearly Separable

!

Let data D be (X1, y1), …, (X|D|, y|D|), where Xi is the set of training tuples 
associated with the class labels yi
There are infinite lines (hyperplanes) separating the two classes but we want to 
find the best one (the one that minimizes classification error on unseen data)
SVM searches for the hyperplane with the largest margin, i.e., maximum 
marginal hyperplane (MMH)
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Kernel functions
n Instead of computing the dot product on the transformed data tuples, 

it is mathematically equivalent to instead applying a kernel function 
K(Xi, Xj) to the original data, i.e., K(Xi, Xj) = Φ(Xi) Φ(Xj) 

n Typical Kernel Functions

n SVM can also be used for classifying multiple (> 2) classes and for 
regression analysis (with additional user parameters)
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Why Is SVM Effective on High Dimensional Data?

n The complexity of trained classifier is characterized by the # of 
support vectors rather than the dimensionality of the data

n The support vectors are the essential or critical training examples —
they lie closest to the decision boundary (MMH)

n If all other training examples are removed and the training is 
repeated, the same separating hyperplane would be found

n The number of support vectors found can be used to compute an 
(upper) bound on the expected error rate of the SVM classifier, which 
is independent of the data dimensionality

n Thus, an SVM with a small number of support vectors can have good 
generalization, even when the dimensionality of the data is high
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SVM—Introduction Literature
n “Statistical Learning Theory” by Vapnik: extremely hard to understand, 

containing many errors too.
n C. J. C. Burges. A Tutorial on Support Vector Machines for Pattern 

Recognition. Knowledge Discovery and Data Mining, 2(2), 1998.
n Better than the Vapnik’s book, but still written too hard for 

introduction, and the examples are so not-intuitive 
n The book “An Introduction to Support Vector Machines” by N. 

Cristianini and J. Shawe-Taylor
n Also written hard for introduction, but the explanation about the 

mercer’s theorem is better than above literatures
n The neural network book by Haykins

n Contains one nice chapter of SVM introduction
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SVM Related Links

n SVM Website

n http://www.kernel-machines.org/

n Representative implementations

n LIBSVM: an efficient implementation of SVM, multi-class 

classifications, nu-SVM, one-class SVM, including also various 

interfaces with java, python, etc.

n SVM-light: simpler but performance is not better than LIBSVM, 

support only binary classification and only C language

n SVM-torch: another recent implementation also written in C.
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ANN—Artificial Neural Network
(Classification by Backpropagation)

n An artificial neural network is 
an interconnected group of 
nodes, akin to the vast 
network of neurons in a brain. 
Here, each circular node 
represents an artificial neuron 
and an arrow represents a 
connection from the output of 
one neuron to the input of 
another.

n Deep learning: deep neural 
networks
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SVM vs. ANN

n SVM
n Relatively new concept
n Deterministic
n Nice Generalization 

properties
n Hard to learn – learned 

in batch mode using 
quadratic programming 
techniques

n Using kernels can learn 
very complex functions

n ANN
n Relatively old (but …)
n Nondeterministic
n Generalizes well but 

doesn’t have strong 
mathematical foundation

n Can easily be learned in 
incremental fashion

n To learn complex 
functions—use multilayer 
perceptron (not that 
trivial)
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