
Chapters 8-9. Classification

n Classification: Basic Concepts
n Decision Tree Induction
n Model Evaluation/Learning Algorithm Evaluation
n Rule-Based Classification
n Bayes Classification Methods
n Bayesian Belief Networks (ch9)
n Techniques to Improve Classification
n Lazy Learners (ch9)
n Other known methods: SVM, ANN (ch9)

1

Supervised vs. Unsupervised Learning

n Supervised learning (classification)

n Supervision: training data are labeled indicating classes

n New instances are classified based on training set

n Unsupervised learning (clustering)

n class labels are unknown

n Given a set of objects, establish the existence of classes or

clusters in the data

2

n Classification
n predicts categorical class labels

n Numeric prediction
n models continuous-valued functions, i.e., predicts

unknown or missing values

n Typical applications
n Credit/loan approval
n Medical diagnosis
n Fraud detection
n Web page categorization

Prediction: Classification vs. Numeric Prediction

3

4

Classification: A Two-Step Process

n Model construction: describing a set of predetermined classes
n Each tuple/sample is assumed to belong to a predefined class, as

indicated by the class label attribute
n The set of tuples used for model construction is training set
n The model is represented as classification rules, decision trees, or

mathematical formulae
n Model usage: for classifying future or unknown instances

n Estimate accuracy of the model
n Use an independent (of training set) testing set, compare predicted

class labels with true class labels
n Compute accuracy (percentage of correctly classified instances)

n If the accuracy is acceptable, use the model to classify new data

5

Process 1: Model Construction

Training
Data

NAME RANK YEARS TENURED
Mike Assistant Prof 3 no
Mary Assistant Prof 7 yes
Bill Professor 2 yes
Jim Associate Prof 7 yes
Dave Assistant Prof 6 no
Anne Associate Prof 3 no

Classification
Algorithms

IF rank = ‘professor’
OR years > 6
THEN tenured = ‘yes’

Classifier
(Model)

6

Process 2: Using the Model in Prediction

Classifier

Testing
Data

NAME RANK YEARS TENURED
Tom Assistant Prof 2 no
Merlisa Associate Prof 7 no
George Professor 5 yes
Joseph Assistant Prof 7 yes

Unseen Data

(Jeff, Professor, 4)

Tenured?

Issues: Data Preparation

n Data cleaning
n Preprocess data in order to reduce noise and handle

missing values
n Relevance analysis (feature selection)

n Remove the irrelevant or redundant attributes
n Data transformation

n Generalize and/or normalize data

7

Chapters 8-9. Classification

n Classification: Basic Concepts
n Decision Tree Induction
n Model Evaluation/Learning Algorithm Evaluation
n Rule-Based Classification
n Bayes Classification Methods
n Bayesian Belief Networks (ch9)
n Techniques to Improve Classification
n Lazy Learners (ch9)
n Other known methods: SVM, ANN (ch9)

8

9

Decision Tree Induction: An Example

age?

overcast

student? credit rating?

<=30 >40

no yes yes

yes

31..40

no

fairexcellentyesno

age income student credit_rating buys_computer
<=30 high no fair no
<=30 high no excellent no
31…40 high no fair yes
>40 medium no fair yes
>40 low yes fair yes
>40 low yes excellent no
31…40 low yes excellent yes
<=30 medium no fair no
<=30 low yes fair yes
>40 medium yes fair yes
<=30 medium yes excellent yes
31…40 medium no excellent yes
31…40 high yes fair yes
>40 medium no excellent no

q Training data set: Buys_computer
q Resulting tree:

10

Decision Tree Properties

age?

overcast

student? credit rating?

<=30 >40

no yes yes

yes

31..40

no

fairexcellentyesno

q Exhaustive (completely covers whole instance space)
q Mutually exclusive (no conflicting predictions)
q Interpretable (axis-parallel, as in rule learning)

11

Algorithm for Decision Tree Induction

n Basic algorithm (a greedy algorithm)
n Tree is constructed in a top-down (from general to specific) recursive

divide-and-conquer manner
n At start, all the training examples are at the root
n Attributes are categorical (if continuous-valued, discretization in advance)
n Examples are partitioned recursively based on selected attributes
n Attributes are selected based on heuristic or statistical measure (e.g.,

information gain)

n When to stop
n All example for a given node belong to the same class (pure), or
n No remaining attributes to select from, or

n majority voting to determine class label for the node
n No examples left

Random Tree Induction

Let a be the number of attributes. Let v be the maximum number of
values any attribute can take

n Upper bound on the number of trees?
n Lower bound on the number of trees?

n Random tree induction
n Randomly choose an attribute for split
n Same stopping criteria

n The design of decision trees has been largely influenced by the
preference for simplicity.

12

Occam’s Razor
n Occam’s Razor: rule of parsimony, principle of economy

n plurality should not be assumed without necessity
n meaning, one should not increase, beyond what is necessary,

the number of entities required to explain anything

n Argument: the simplicity of nature and rarity of simple theories can
be used to justify Occam's Razer.
n First, nature exhibits regularity and natural phenomena are more often

simple than complex. At least, the phenomena humans choose to study
tend to have simple explanations.

n Second, there are far fewer simple hypotheses than complex ones, so
that there is only a small chance that any simple hypothesis that is wildly
incorrect will be consistent with all observations.

n Occam's two razors: The sharp and the blunt (KDD’98)
n Pedro Domingos

1288 - 1348

13

Attribute Selection Measure:
Information Gain (ID3/C4.5)

n How to obtain smallest (shortest) tree?
n Careful design on selection of attribute
n Quinlan pioneered using entropy in his ID3 algorithm
n Entropy: in information theory, also called expected

information, is a measure of uncertainly
n Intuition: chaos, molecular disorder, temperature,

thermodynamic system, universe
n High entropy = high disorder

14

15

Attribute Selection Measure:
Information Gain (ID3/C4.5)

n Select the attribute with the highest information gain
n Let pi be the probability that an arbitrary tuple in D belongs to class

Ci, estimated by |Ci, D|/|D|
n Expected information (entropy) needed to classify a tuple in D:

n entropy: measure of uncertainty. larger entropy -> larger uncertainty

n Information needed to classify D (aggregated entropy after using A
to split D into v partitions) :

n Information gained (entropy dropped) by branching on attribute A

)(log)(2
1

i

m

i
i ppDInfo å

=

-=

)(
||
||

)(
1

j

v

j

j
A DInfo

D
D

DInfo ´=å
=

(D)InfoInfo(D)Gain(A) A-=

16

Attribute Selection: Information Gain

g Class P: buys_computer = “yes”
g Class N: buys_computer = “no”

means “age <=30” has 5 out of

14 samples, with 2 yes’es and 3
no’s. Hence

Similarly,

age pi ni I(pi, ni)
<=30 2 3 0.971
31…40 4 0 0
>40 3 2 0.971

694.0)2,3(
14
5

)0,4(
14
4)3,2(

14
5)(

=+

+=

I

IIDInfoage

048.0)_(
151.0)(
029.0)(

=
=
=

ratingcreditGain
studentGain
incomeGain

246.0)()()(=-= DInfoDInfoageGain age
age income student credit_rating buys_computer

<=30 high no fair no
<=30 high no excellent no
31…40 high no fair yes
>40 medium no fair yes
>40 low yes fair yes
>40 low yes excellent no
31…40 low yes excellent yes
<=30 medium no fair no
<=30 low yes fair yes
>40 medium yes fair yes
<=30 medium yes excellent yes
31…40 medium no excellent yes
31…40 high yes fair yes
>40 medium no excellent no

)3,2(
14
5 I

940.0)
14
5(log

14
5)

14
9(log

14
9)5,9()(22 =--== IDInfo

17

Computing Information-Gain for
Continuous-Valued Attributes

n Let attribute A be a continuous-valued attribute

n Must determine the best split point for A

n Sort the value A in increasing order

n Typically, the midpoint between each pair of adjacent values
is considered as a possible split point

n (ai+ai+1)/2 is the midpoint between the values of ai and ai+1

n The point with the minimum expected information
requirement for A is selected as the split-point for A

n Split:

n D1 is the set of tuples in D satisfying A ≤ split-point, and D2 is
the set of tuples in D satisfying A > split-point

18

Gain Ratio for Attribute Selection (C4.5)

n Information gain is biased towards attributes with a large
number of values

n C4.5 (a successor of ID3) uses gain ratio to overcome the
problem (normalization to information gain)

n GainRatio(A) = Gain(A) / SplitInfo(A)

gain_ratio(income) = 0.029/1.557 = 0.019

n The attribute with the largest gain ratio will be selected

)
||
||

(log
||
||

)(2
1 D

D
D
D

DSplitInfo j
v

j

j
A ´-= å

=

19

Gini Index (CART, IBM IntelligentMiner)

n If a data set D contains examples from n classes, gini index,
gini(D) is defined as

where pj is the relative frequency of class j in D
n If a data set D is split on A into two subsets D1 and D2, the gini

index gini(D) is defined as

n Reduction in Impurity:

n The attribute provides the smallest ginisplit(D) (or the largest
reduction in impurity) is chosen to split the node (need to
enumerate all the possible splitting points for each attribute)

å
=

-=
n

j
p jDgini
1
21)(

)(
||
||)(

||
||)(2

2
1

1 Dgini
D
D

Dgini
D
DDginiA +=

)()()(DginiDginiAgini A-=D

20

Computation of Gini Index

n Ex. D has 9 tuples in buys_computer = “yes” and 5 in “no”

n Suppose the attribute income partitions D into 10 in D1: {low,
medium} and 4 in D2

Gini{low,high} is 0.458; Gini{medium,high} is 0.450. Thus, split on the
{low,medium} (and {high}) since it has the lowest Gini index

n All attributes are assumed continuous-valued
n May need other tools, e.g., clustering, to get the possible split

values
n Can be modified for categorical attributes

459.0
14
5

14
91)(

22

=÷
ø
ö

ç
è
æ-÷

ø
ö

ç
è
æ-=Dgini

)(
14
4)(

14
10)(21},{ DGiniDGiniDgini mediumlowincome ÷

ø
ö

ç
è
æ+÷

ø
ö

ç
è
æ=Î

21

Comparing Attribute Selection Measures

n The three measures, in general, return good results but
n Information gain:

n biased towards multivalued attributes
n Gain ratio:

n tends to prefer unbalanced splits in which one partition is
much smaller than the others

n Gini index:
n biased to multivalued attributes

n has difficulty when # of classes is large
n tends to favor tests that result in equal-sized partitions

and purity in both partitions

22

Other Attribute Selection Measures

n CHAID: a popular decision tree algorithm, measure based on χ2 test for

independence

n C-SEP: performs better than info. gain and gini index in certain cases

n G-statistic: has a close approximation to χ2 distribution

n MDL (Minimal Description Length) principle (i.e., the simplest solution is
preferred):

n The best tree as the one that requires the fewest # of bits to both (1)
encode the tree, and (2) encode the exceptions to the tree

n Multivariate splits (partition based on multiple variable combinations)

n CART: finds multivariate splits based on a linear comb. of attrs.

n Which attribute selection measure is the best?

n Most give good results, none is significantly superior than others

Overfitting and Tree Pruning

n Overfitting: An induced tree may overfit the training data
n Too many branches, some may reflect anomalies due to noise or outliers
n Poor accuracy for unseen samples

n Blue: training error, red: generalization error

n Two approaches to avoid overfitting
n Prepruning: Halt tree construction early—do not split a node if this would

result in the goodness measure falling below a threshold
n Difficult to choose an appropriate threshold

n Postpruning: Remove branches from a “fully grown” tree—get a sequence
of progressively pruned trees

n Use a set of data (validation set) different from the training data to
decide which is the “best pruned tree”

23

24

Enhancements to Basic Decision Tree Induction

n Allow for continuous-valued attributes
n Dynamically define new discrete-valued attributes that

partition the continuous attribute value into a discrete set of
intervals

n Handle missing attribute values
n Assign the most common value of the attribute

n Assign probability to each of the possible values
n Attribute construction

n Create new attributes based on existing ones that are
sparsely represented

n This reduces fragmentation, repetition, and replication

25

Classification in Large Databases

n Classification—a classical problem extensively studied by
statisticians and machine learning researchers

n Scalability: Classifying data sets with millions of examples and
hundreds of attributes with reasonable speed

n Why is decision tree induction popular?
n relatively faster learning speed (than other classification

methods)
n convertible to simple and easy to understand classification rules
n can use SQL queries for accessing databases
n comparable classification accuracy with other methods

n RainForest (VLDB’98 — Gehrke, Ramakrishnan & Ganti)
n Builds an AVC-list (attribute, value, class label)

26

Scalability Framework for RainForest

n Separates the scalability aspects from the criteria that
determine the quality of the tree

n Builds an AVC-list: AVC (Attribute, Value, Class_label)
n AVC-set (of an attribute X)

n Projection of training dataset onto the attribute X and
class label where counts of individual class label are
aggregated

n AVC-group (of a node n)

n Set of AVC-sets of all predictor attributes at the node n

27

Rainforest: Training Set and Its AVC Sets

student Buy_Computer

yes no

yes 6 1

no 3 4

Age Buy_Computer

yes no

<=30 2 3

31..40 4 0

>40 3 2

Credit
rating

Buy_Computer

yes no

fair 6 2

excellent 3 3

age income studentcredit_ratingbuys_computer
<=30 high no fair no
<=30 high no excellent no
31…40 high no fair yes
>40 medium no fair yes
>40 low yes fair yes
>40 low yes excellent no
31…40 low yes excellent yes
<=30 medium no fair no
<=30 low yes fair yes
>40 medium yes fair yes
<=30 medium yes excellent yes
31…40 medium no excellent yes
31…40 high yes fair yes
>40 medium no excellent no

AVC-set on incomeAVC-set on Age

AVC-set on Student

Training Examples
income Buy_Computer

yes no

high 2 2

medium 4 2

low 3 1

AVC-set on
credit_rating

28

BOAT (Bootstrapped Optimistic Algorithm
for Tree Construction)

n Use a statistical technique called bootstrapping to create
several smaller samples (subsets), each fits in memory

n Each subset is used to create a tree, resulting in several
trees

n These trees are examined and used to construct a new
tree T’

n It turns out that T’ is very close to the tree that would
be generated using the whole data set together

n Adv: requires only two scans of DB, an incremental alg.

28

Chapters 8-9. Classification

n Classification: Basic Concepts
n Decision Tree Induction
n Model Evaluation/Learning Algorithm Evaluation
n Rule-Based Classification
n Bayes Classification Methods
n Bayesian Belief Networks (ch9)
n Techniques to Improve Classification
n Lazy Learners (ch9)
n Other known methods: SVM, ANN (ch9)

29

Model Evaluation Metrics: Confusion Matrix

Actual class\Predicted class buy_computer
= yes

buy_computer =
no

Total

buy_computer = yes 6954 46 7000
buy_computer = no 412 2588 3000

Total 7366 2634 10000

n Given m classes, an entry, CMi,j in a confusion matrix indicates
of tuples in class i that were labeled by the classifier as class j

n May have extra rows/columns to provide totals

Confusion Matrix:
Actual class\Predicted class C1 ¬ C1

C1 True Positives (TP) False Negatives (FN)

¬ C1 False Positives (FP) True Negatives (TN)

Example of Confusion Matrix:

30

Model Evaluation Metrics: Accuracy, Error
Rate, Sensitivity and Specificity

n Accuracy, or recognition rate:
percentage of test set tuples that
are correctly classified
Accuracy = (TP + TN)/All

n Error rate: 1 – accuracy, or
Error rate = (FP + FN)/All

n Class Imbalance Problem:
n One class may be rare, e.g.

fraud, or HIV-positive
n Significant majority of the

negative class and minority of
the positive class

n Sensitivity: True Positive
recognition rate (recall for +)

n Sensitivity = TP/P
n Specificity: True Negative

recognition rate (recall for -)
n Specificity = TN/N

A\P C ¬C

C TP FN P

¬C FP TN N

P’ N’ All

31

Model Evaluation Metrics:
Precision and Recall, and F-measures

n Precision: exactness – what % of tuples that the classifier (model)
labeled as positive are actually positive

n Recall: completeness – what % of positive tuples did the classifier
(model) label as positive?

n Perfect score is 1.0
n Inverse relationship between precision & recall
n F measure (F1 or F-score): harmonic mean of precision and recall,

n Fß: weighted measure of precision and recall
n assigns ß times as much weight to recall as to precision

32

Model Evaluation Metrics: Example

n Precision = 90/230 = 39.13% Recall = 90/300 = 30.00%

Actual Class\Predicted class cancer = yes cancer = no Total Recognition(%)

cancer = yes 90 210 300 30.00 (sensitivity

cancer = no 140 9560 9700 98.56 (specificity)

Total 230 9770 10000 96.40 (accuracy)

33

Evaluating Learning Algorithm:
Holdout & Cross-Validation Methods

n Holdout method
n Given data is randomly partitioned into two independent sets

n Training set (e.g., 2/3) for model construction
n Testing set (e.g., 1/3) for accuracy (or another metric)

estimation
n Random sampling: a variation of holdout

n Repeat holdout k times, accuracy = avg. of the accuracies
obtained

n Cross-validation (k-fold, where k = 10 is most common)
n Randomly partition the data into k mutually exclusive subsets,

each approximately equal size
n At i-th iteration, use Di as testing set and others as training set
n Leave-one-out: k folds where k = # of tuples, for small sized data
n Stratified cross-validation: folds are stratified so that class dist. in

each fold is approx. the same as that in the initial data
34

Evaluating Classifier Accuracy: Bootstrap

n Bootstrap
n Works well with small data sets
n Samples the given training tuples uniformly with replacement

n i.e., each time a tuple is selected, it is equally likely to be selected
again and re-added to the training set

n Several bootstrap methods, and a common one is .632 boostrap
n A data set with d tuples is sampled d times, with replacement, resulting in

a training set of d samples. The data tuples that did not make it into the
training set end up forming the test set. About 63.2% of the original data
end up in the bootstrap, and the remaining 36.8% form the test set (since
(1 – 1/d)d ≈ e-1 = 0.368)

n Repeat the sampling procedure k times, overall accuracy of the model:

35

Model Selection: ROC Curves

n ROC (Receiver Operating
Characteristics) curves: for visual
comparison of classification models

n Originated from signal detection theory
n Shows the trade-off between the true

positive rate and the false positive rate
n The area under the ROC curve is a

measure of the accuracy of the model
n Rank the test tuples in decreasing

order: the one that is most likely to
belong to the positive class appears at
the top of the list

n The closer to the diagonal line (i.e., the
closer the area is to 0.5), the less
accurate is the model

n Vertical axis
represents the true
positive rate

n Horizontal axis rep.
the false positive rate

n The plot also shows a
diagonal line

n A model with perfect
accuracy will have an
area of 1.0

36

Model Selection Issues

n Accuracy
n classifier accuracy: predicting class label

n Speed
n time to construct the model (training time)

n time to use the model (classification/prediction time)
n Robustness: handling noise and missing values
n Scalability: efficiency in disk-resident databases

n Interpretability
n understanding and insight provided by the model
n Model (e.g., decision tree) size or compactness

37

Chapters 8-9. Classification

n Classification: Basic Concepts
n Decision Tree Induction
n Model Evaluation/Learning Algorithm Evaluation
n Rule-Based Classification
n Bayes Classification Methods
n Bayesian Belief Networks (ch9)
n Techniques to Improve Classification
n Lazy Learners (ch9)
n Other known methods: SVM, ANN (ch9)

38

39

Using IF-THEN Rules for Classification

n Represent knowledge in the form of IF-THEN rules

R: IF age = youth AND student = yes THEN buys_computer = yes
n Rule antecedent/precondition vs. rule consequent

n Assessment of a rule: coverage and accuracy
n ncovers = # of tuples covered by R
n ncorrect = # of tuples correctly classified by R
coverage(R) = ncovers /|D|
accuracy(R) = ncorrect / ncovers

n If more than one rule are triggered, need conflict resolution
n Size ordering: assign the highest priority to the triggering rules that have

the “toughest” requirement (i.e., with the most attribute tests)
n Class-based ordering: decreasing order of prevalence or misclassification

cost per class
n Rule-based ordering (decision list): rules are organized into one long

priority list, according to some measure of rule quality or by experts

40

age?

student? credit rating?

<=30 >40

no yes yes

yes

31..40

no

fairexcellentyesno

n Example: Rule extraction from our buys_computer decision-tree
IF age = young AND student = no THEN buys_computer = no
IF age = young AND student = yes THEN buys_computer = yes
IF age = mid-age THEN buys_computer = yes
IF age = old AND credit_rating = excellent THEN buys_computer = no
IF age = old AND credit_rating = fair THEN buys_computer = yes

Rule Extraction from Decision Tree

n A root-to-leaf path corresponds to a rule
n Each attribute-value pair along a path forms

a conjunction: the leaf holds the class
prediction

n Rules are exhaustive and mutually
exclusive

41

Rule Induction: Sequential Covering Method

n Sequential covering: Extracts rules directly from training data
n Typical sequential covering algorithms: FOIL, AQ, CN2, RIPPER
n Rules are learned sequentially, each for a given class Ci will cover

many tuples of Ci but none (or few) of the tuples of other classes
n Steps:

n Rules are learned one at a time
n Each time a rule is learned, the covered positive tuples are

removed
n Repeat until termination condition is met. e.g., no more

training examples or the quality of a rule generated is below a
user-specified threshold

n Unlike decision-trees that learn a set of rules simultaneously

42

Sequential Covering Algorithm

while (enough target tuples left)
generate a rule
remove positive target tuples satisfying this rule

Examples covered
by Rule 3

Examples covered
by Rule 2Examples covered

by Rule 1

Positive
examples

43

How to Learn One Rule?

n Start with the most general rule possible: condition = empty
n Adding new attributes by adopting a greedy depth-first strategy

n Picks the one that most improves the rule quality
n Rule-Quality measures: consider both coverage and accuracy

n Foil-gain (in FOIL & RIPPER): assesses info_gain by extending
condition

n favors rules that have high accuracy and cover many positive tuples

n Rule pruning based on an independent set of test tuples

Pos/neg are # of positive/negative tuples covered by R.
If FOIL_Prune is higher for the pruned version of R, prune R

)log
''

'(log'_ 22 negpos
pos

negpos
posposGainFOIL

+
-

+
´=

negpos
negposRPruneFOIL

+
-

=)(_

44

Learn one rule

n To generate a rule
while(true)

find the best predicate p
if foil-gain(p) > threshold then add p to current rule
else break

Positive
examples

Negative
examples

A3=1A3=1&&A1=2
A3=1&&A1=2
&&A8=5

Trees and rules
n Most tree learners: divide and conquer
n Most rule learners: separate and conquer, i.e., sequential covering, (AQ,

CN2, RIPPER …)
n Some conquering-without-separating (RISE, from Domingos, biased towards

complex models), rules are learned simultaneously, instance-based

n Decision space, decision boundary

n Both are interpretable classifiers
n Other usage of rule learning: rule extraction, e.g., from ANN

45

Separate and conquer vs. set cover
n Set covering problem (minimum set cover): one of the most studied

combinatorial optimization problems
n Given a finite ground set X and S1, S2, … Sm as subsets of X, find I Í {1, … m} with Ui Î I Si =
X such that |I| is minimized.

n select as few as possible subsets from a given family such that each element in any
subset of the family is covered

n NP-hard
n Greedy algorithm: iteratively pick the subset that covers the maximum

number of uncovered elements
n Achieves 1 + ln n approximation ratio, optimal

n Greedy set cover vs. sequential covering
n Select one subset (learn one rule) at a time
n Consider uncovered elements (remove covered examples)
n Iterate until all elements (examples) are covered

n Other related problems: graph coloring, minimum clique partition
46

Chapters 8-9. Classification

n Classification: Basic Concepts
n Decision Tree Induction
n Model Evaluation/Learning Algorithm Evaluation
n Rule-Based Classification
n Bayes Classification Methods
n Bayesian Belief Networks (ch9)
n Techniques to Improve Classification
n Lazy Learners (ch9)
n Other known methods: SVM, ANN (ch9)

47

48

Bayesian Classification: Why?

n A statistical classifier: performs probabilistic prediction, i.e.,
predicts class membership probabilities

n Foundation: Based on Bayes’ Theorem.
n Performance: A simple Bayesian classifier, naïve Bayesian

classifier, has comparable performance with decision tree and
selected neural network classifiers

n Incremental: Each training example can incrementally
increase/decrease the probability that a hypothesis is correct —
prior knowledge can be combined with observed data

n Standard: Even when Bayesian methods are computationally
intractable, they can provide a standard of optimal decision
making against which other methods can be measured

Probability Model for Classifiers

n Let X = (x1, x2, …, xn) be a data sample (“evidence”): class
label is unknown

n The probability model for a classifier is to determine
P(C|X), the probability that X belongs to class C given the
observed data sample X
n predicts X belongs to Ci iff the probability P(Ci|X) is the highest

among all the P(Ck|X) for all the k classes

49

Bayes’ Theorem

n P(C | X) : posterior
n P(C): prior, the initial probability

n E.g., one will buy computer, regardless of age, income, …
n P(X): probability that the sample X is observed
n P(X|C): likelihood, probability of observing the sample X,

given that the hypothesis holds
n E.g., Given that X will buy computer, the prob. that X is 31..40,

medium income

n Informally, this can be written as
posterior = prior x likelihood / evidence

)(
)|()()|(X

XX P
CPCPCP =

50

Maximizing joint probability

n In practice we are only interested in the numerator of that
fraction, since the denominator does not depend on H and
the same value is shared by all classes.

n The numerator is the joint probability

),...2,1,(),()|()(XnXXCPCPCPCP == XX

)(
)|()()|(X

XX P
CPCPCP =

51

Maximizing joint probability

repeatedly apply conditional probability,

)1,...2,1,|()...1,|2()|1()(
)2,1,|,...3()1,|2()|1()(

)1,|,...2()|1()(
)|,...2,1()(

-=
=
=
=

XnXXCXnPXCXPCXPCP
XXCXnXPXCXPCXPCP

XCXnXPCXPCP
CXnXXPCP

),...2,1,(),()|()(XnXXCPCPCPCP == XX

52

Naïve Bayes Classifier:
Assuming Conditional Independence

Simplifying assumption: features are conditionally
independent of each other, then,

n This greatly reduces the computation cost: Only counts the
class distribution

n Only requires a small number of training data to estimate
the parameters

)|(),|(CXiPXjCXiP =

)|()...|2()|1()(
)1,...2,1,|()...1,|2()|1()(

),...2,1,(

CXnPCXPCXPCP
XnXXCXnPXCXPCXPCP

XnXXCP

=
-=

53

54

Naïve Bayes Classifier

n If Ak is categorical, P(xk|Ci) is the # of tuples in Ci having value xk
for Ak divided by |Ci, D| (# of tuples of Ci in D)

n If Ak is continous-valued, P(xk|Ci) is usually computed based on
Gaussian distribution with a mean μ and standard deviation σ

and P(xk|Ci) is
2

2

2
)(

2
1),,(s

µ

sp
sµ

-
-

=
x

exg

),,()|(
ii CCkxgCiP sµ=X

55

Naïve Bayes Classifier: Training Dataset

Class:
C1:buys_computer = ‘yes’
C2:buys_computer = ‘no’

Data to be classified:
X = (age <=30,
Income = medium,
Student = yes
Credit_rating = Fair)

age income studentcredit_ratingbuys_computer
<=30 high no fair no
<=30 high no excellent no
31…40 high no fair yes
>40 medium no fair yes
>40 low yes fair yes
>40 low yes excellent no
31…40 low yes excellent yes
<=30 medium no fair no
<=30 low yes fair yes
>40 medium yes fair yes
<=30 medium yes excellent yes
31…40 medium no excellent yes
31…40 high yes fair yes
>40 medium no excellent no

Naïve Bayes Classifier: Example
n X = (age <= 30 , income = medium, student = yes, credit_rating = fair)

n P(C): P(buys_computer = “yes”) = 9/14 = 0.643
P(buys_computer = “no”) = 5/14= 0.357

n Compute P(X|C) for each class
P(age = “<=30” | buys_computer = “yes”) = 2/9 = 0.222
P(income = “medium” | buys_computer = “yes”) = 4/9 = 0.444
P(student = “yes” | buys_computer = “yes) = 6/9 = 0.667
P(credit_rating = “fair” | buys_computer = “yes”) = 6/9 = 0.667

P(age = “<= 30” | buys_computer = “no”) = 3/5 = 0.6
P(income = “medium” | buys_computer = “no”) = 2/5 = 0.4
P(student = “yes” | buys_computer = “no”) = 1/5 = 0.2
P(credit_rating = “fair” | buys_computer = “no”) = 2/5 = 0.4

n P(X|C) : P(X|buys_computer = “yes”) = 0.222 x 0.444 x 0.667 x 0.667 = 0.044
P(X|buys_computer = “no”) = 0.6 x 0.4 x 0.2 x 0.4 = 0.019

P(C, X) = P(X|C)*P(C)
P(X|buys_computer = “yes”) * P(buys_computer = “yes”) = 0.028
P(X|buys_computer = “no”) * P(buys_computer = “no”) = 0.007

Therefore, X belongs to class (“buys_computer = yes”)

age income studentcredit_ratingbuys_computer
<=30 high no fair no
<=30 high no excellent no
31…40 high no fair yes
>40 medium no fair yes
>40 low yes fair yes
>40 low yes excellent no
31…40 low yes excellent yes
<=30 medium no fair no
<=30 low yes fair yes
>40 medium yes fair yes
<=30 medium yes excellent yes
31…40 medium no excellent yes
31…40 high yes fair yes
>40 medium no excellent no

56

57

Avoiding the Zero-Probability Problem

n Naïve Bayesian prediction requires each conditional prob. be non-
zero. Otherwise, the predicted prob. will be zero

n Suppose training set has 1000 tuples for class buys_computer= yes. 0
for income=low, 990 for income=medium, and 10 for income=high

n Use Laplacian correction (or Laplacian estimator)
n Adding 1 to each case

Prob(income = low | buys_computer = “yes”) = 1/1003
Prob(income = medium | buys_computer = “yes”) = 991/1003
Prob(income = high | buys_computer = “yes”) = 11/1003

n The “corrected” prob. estimates are close to their “uncorrected”
counterparts

Õ
=

=
n

k
CixkPCiXP

1
)|()|(

58

Naïve Bayes Classifier: Comments

n Advantages
n Easy to implement
n Good results obtained in most of the cases. Optimal if

assumption holds true.
n Disadvantages

n Assumption: class conditional independence, loss of accuracy
n Practically, dependencies exist among variables

n E.g., hospitals: patients: Profile: age, family history, etc.
Symptoms: fever, cough etc., Disease: lung cancer,

diabetes, etc.
n Dependencies among these cannot be modeled by Naïve

Bayes Classifier
n How to deal with these dependencies? Bayesian Belief Networks

(Chapter 9)

Chapters 8-9. Classification

n Classification: Basic Concepts
n Decision Tree Induction
n Model Evaluation/Learning Algorithm Evaluation
n Rule-Based Classification
n Bayes Classification Methods
n Bayesian Belief Networks (ch9)
n Techniques to Improve Classification
n Lazy Learners (ch9)
n Other known methods: SVM, ANN (ch9)

59

Bayesian Belief Networks

n Bayesian belief network relieves the conditional independence
assumption in naïve bayes

n A graphical model of causal relationships
n Represents dependency among the variables
n Gives a specification of joint probability distribution

X Y

Z
P

q Nodes: random variables
q Links: dependency
q X and Y are the parents of Z, and Y is
the parent of P
q No dependency between Z and P
q Has no loops or cycles

60

Bayesian Belief Network: An Example

Family
History

LungCancer

PositiveXRay

Smoker

Emphysema

Dyspnea

LC

~LC

(FH, S) (FH, ~S) (~FH, S) (~FH, ~S)

0.8

0.2

0.5

0.5

0.7

0.3

0.1

0.9

Bayesian Belief Networks

The conditional probability table
(CPT) for variable LungCancer:

Õ
=

=
n

i
xiParentsxiPxxP n

1
))(|(),...,(1

CPT shows the conditional probability for
each possible combination of its parents

Derivation of the probability of a
particular combination of values of X,
from CPT:

61

Training Bayesian Networks

n Several scenarios:
n Given both the network structure and all variables

observable: learn only the CPTs
n Network structure known, some hidden variables:

gradient descent (greedy hill-climbing) method,
analogous to neural network learning

n Network structure unknown, all variables observable:
search through the model space to reconstruct
network topology

n Unknown structure, all hidden variables: No good
algorithms known for this purpose

n Ref. D. Heckerman: Bayesian networks for data mining

62

Example
n Two events could cause

grass to be wet: either the
sprinkler is on or it's raining

n The rain has a direct effect
on the use of the sprinkler
n when it rains, the sprinkler

is usually not turned on

Then the situation can be modeled with a Bayesian network.
All three variables have two possible values, T and F.
The joint probability function is:

P(G,S,R) = P(G | S,R)P(S | R)P(R)

where G = Grass wet, S = Sprinkler, and R = Rain

63

Example

n The model can answer questions like "What is the
probability that it is raining, given the grass is wet?"

The joint probability function is:

P(G,S,R) = P(G | S,R)P(S | R)P(R)

where G = Grass wet, S = Sprinkler, and R = Rain

64

Chapters 8-9. Classification

n Classification: Basic Concepts
n Decision Tree Induction
n Model Evaluation/Learning Algorithm Evaluation
n Rule-Based Classification
n Bayes Classification Methods
n Bayesian Belief Networks (ch9)
n Techniques to Improve Classification
n Lazy Learners (ch9)
n Other known methods: SVM, ANN (ch9)

65

Ensemble Methods: Increasing the Accuracy

n Ensemble methods
n Use a combination of models to increase accuracy
n Combine a series of k learned models, M1, M2, …, Mk, with

the aim of creating an improved model M*
n Popular ensemble methods

n Bagging: averaging the prediction over a collection of
classifiers

n Boosting: weighted vote with a collection of classifiers
n Ensemble: combining a set of heterogeneous classifiers

66

Bagging: Boostrap Aggregation

n Analogy: Diagnosis based on multiple doctors’majority vote
n Training

n Given a set D of d tuples, at each iteration i, a training set Di of d tuples
is sampled with replacement from D (i.e., bootstrap)

n A classifier model Mi is learned for each training set Di

n Classification: classify an unknown sample X
n Each classifier Mi returns its class prediction
n The bagged classifier M* counts the votes and assigns the class with the

most votes to X
n Prediction: can be applied to the prediction of continuous values by taking

the average value of each prediction for a given test tuple
n Accuracy

n Often significantly better than a single classifier derived from D
n For noise data: not considerably worse, more robust
n Proved improved accuracy in prediction

67

Boosting

n Analogy: Consult several doctors, based on a combination of
weighted diagnoses—weight assigned based on the previous
diagnosis accuracy

n How boosting works?
n Weights are assigned to each training tuple
n A series of k classifiers is iteratively learned
n After a classifier Mi is learned, the weights are updated to

allow the subsequent classifier, Mi+1, to pay more attention to
the training tuples that were misclassified by Mi

n The final M* combines the votes of each individual classifier,
where the weight of each classifier's vote is a function of its
accuracy

n Boosting algorithm can be extended for numeric prediction
n Comparing with bagging: Boosting tends to have greater accuracy,

but it also risks overfitting the model to misclassified data
68

69

Adaboost (Freund and Schapire, 1997)

n Given a set of d class-labeled tuples, (X1, y1), …, (Xd, yd)
n Initially, all the weights of tuples are set the same (1/d)
n Generate k classifiers in k rounds. At round i,

n Tuples from D are sampled (with replacement) to form a training set
Di of the same size

n Each tuple’s chance of being selected is based on its weight
n A classification model Mi is derived from Di

n Its error rate is calculated using Di as a test set
n If a tuple is misclassified, its weight is increased, o.w. it is decreased

n Error rate: err(Xj) is the misclassification error of tuple Xj. Classifier Mi
error rate is the sum of the weights of the misclassified tuples:

n The weight of classifier Mi’s vote is

)(
)(1log

i

i

Merror
Merror-

å ´=
d

j
ji errwMerror)()(jX

Random Forest (Breiman 2001)

n Random Forest:
n Each classifier in the ensemble is a decision tree classifier and is

generated using a random selection of attributes at each node to
determine the split

n During classification, each tree votes and the most popular class is
returned

n Two Methods to construct Random Forest:
n Forest-RI (random input selection): Randomly select, at each node, F

attributes as candidates for the split at the node. The CART methodology
is used to grow the trees to maximum size

n Forest-RC (random linear combinations): Creates new attributes (or
features) that are a linear combination of the existing attributes
(reduces the correlation between individual classifiers)

n Comparable in accuracy to Adaboost, but more robust to errors and outliers
n Insensitive to the number of attributes selected for consideration at each

split, and faster than bagging or boosting
70

Classification of Class-Imbalanced Data Sets

n Class-imbalance problem: Rare positive example but numerous
negative ones, e.g., medical diagnosis, fraud, oil-spill, fault, etc.

n Traditional methods assume a balanced distribution of classes
and equal error costs: not suitable for class-imbalanced data

n Typical methods for imbalance data in 2-class classification:
n Oversampling: re-sampling of data from positive class
n Under-sampling: randomly eliminate tuples from negative

class
n Threshold-moving: moves the decision threshold, t, so that

the rare class tuples are easier to classify, and hence, less
chance of costly false negative errors

n Ensemble techniques: Ensemble multiple classifiers
introduced above

n Still difficult for class imbalance problem on multiclass tasks
71

Chapters 8-9. Classification

n Classification: Basic Concepts
n Decision Tree Induction
n Model Evaluation/Learning Algorithm Evaluation
n Rule-Based Classification
n Bayes Classification Methods
n Bayesian Belief Networks (ch9)
n Techniques to Improve Classification
n Lazy Learners (ch9)
n Other known methods: SVM, ANN (ch9)

72

73

Lazy vs. Eager Learning
n Lazy vs. eager learning

n Lazy learning (e.g., instance-based learning): Simply
stores training data (or only minor processing) and
waits until it is given a test tuple

n Eager learning (the above discussed methods): Given
a set of training tuples, constructs a classification model
before receiving new (e.g., test) data to classify

n Lazy: less time in training but more time in predicting
n Accuracy

n Lazy method effectively uses a richer hypothesis space
since it uses many local linear functions to form an
implicit global approximation to the target function

n Eager: must commit to a single hypothesis that covers
the entire instance space

74

Lazy Learner: Instance-Based Methods

n Instance-based learning:
n Store training examples and delay the processing (“lazy

evaluation”) until a new instance must be classified
n Typical approaches

n k-nearest neighbor approach
n Instances represented as points in a Euclidean

space.
n Locally weighted regression

n Constructs local approximation
n Case-based reasoning

n Uses symbolic representations and knowledge-based
inference

75

The k-Nearest Neighbor Algorithm

n All instances correspond to points in the n-D space
n The nearest neighbor are defined in terms of

Euclidean distance, dist(X1, X2)
n Target function could be discrete- or real- valued
n For discrete-valued, k-NN returns the most common

value among the k training examples nearest to xq
n Vonoroi diagram: the decision surface induced by 1-

NN for a typical set of training examples

.
_

+
_ xq

+

_ _
+

_

_

+

.
.

.
. .

76

Discussion on the k-NN Algorithm

n k-NN for real-valued prediction for a given unknown tuple
n Returns the mean values of the k nearest neighbors

n Distance-weighted nearest neighbor algorithm
n Weight the contribution of each of the k neighbors

according to their distance to the query xq

n Give greater weight to closer neighbors
n Robust to noisy data by averaging k-nearest neighbors
n Curse of dimensionality: distance between neighbors could

be dominated by irrelevant attributes
n To overcome it, axes stretch or elimination of the least

relevant attributes

2),(
1

ixqxd
wº

Chapters 8-9. Classification

n Classification: Basic Concepts
n Decision Tree Induction
n Model Evaluation/Learning Algorithm Evaluation
n Rule-Based Classification
n Bayes Classification Methods
n Bayesian Belief Networks (ch9)
n Techniques to Improve Classification
n Lazy Learners (ch9)
n Other known methods: SVM, ANN (ch9)

77

SVM—Support Vector Machines

n A new classification method for both linear and nonlinear data
n It uses a nonlinear mapping to transform the original training

data into a higher dimension
n With the new dimension, it searches for the linear optimal

separating hyperplane (i.e., “decision boundary”)
n With an appropriate nonlinear mapping to a sufficiently high

dimension, data from two classes can always be separated by
a hyperplane

n SVM finds this hyperplane using support vectors (“essential”
training tuples) and margins (defined by the support vectors)

78

History and Applications

n Vapnik and colleagues (1992)—groundwork from Vapnik
& Chervonenkis’ statistical learning theory in 1960s

n Features: training can be slow but accuracy is high owing
to their ability to model complex nonlinear decision
boundaries (margin maximization)

n Used both for classification and prediction
n Applications:

n handwritten digit recognition, object recognition,
speaker identification, benchmarking time-series
prediction tests

79

General Philosophy

Support Vectors

Small Margin Large Margin

80

When Data Is Linearly Separable

!

Let data D be (X1, y1), …, (X|D|, y|D|), where Xi is the set of training tuples
associated with the class labels yi
There are infinite lines (hyperplanes) separating the two classes but we want to
find the best one (the one that minimizes classification error on unseen data)
SVM searches for the hyperplane with the largest margin, i.e., maximum
marginal hyperplane (MMH)

81

Kernel functions
n Instead of computing the dot product on the transformed data tuples,

it is mathematically equivalent to instead applying a kernel function
K(Xi, Xj) to the original data, i.e., K(Xi, Xj) = Φ(Xi) Φ(Xj)

n Typical Kernel Functions

n SVM can also be used for classifying multiple (> 2) classes and for
regression analysis (with additional user parameters)

82

Why Is SVM Effective on High Dimensional Data?

n The complexity of trained classifier is characterized by the # of
support vectors rather than the dimensionality of the data

n The support vectors are the essential or critical training examples —
they lie closest to the decision boundary (MMH)

n If all other training examples are removed and the training is
repeated, the same separating hyperplane would be found

n The number of support vectors found can be used to compute an
(upper) bound on the expected error rate of the SVM classifier, which
is independent of the data dimensionality

n Thus, an SVM with a small number of support vectors can have good
generalization, even when the dimensionality of the data is high

83

SVM—Introduction Literature
n “Statistical Learning Theory” by Vapnik: extremely hard to understand,

containing many errors too.
n C. J. C. Burges. A Tutorial on Support Vector Machines for Pattern

Recognition. Knowledge Discovery and Data Mining, 2(2), 1998.
n Better than the Vapnik’s book, but still written too hard for

introduction, and the examples are so not-intuitive
n The book “An Introduction to Support Vector Machines” by N.

Cristianini and J. Shawe-Taylor
n Also written hard for introduction, but the explanation about the

mercer’s theorem is better than above literatures
n The neural network book by Haykins

n Contains one nice chapter of SVM introduction
84

http://www.kernel-machines.org/papers/Burges98.ps.gz

SVM Related Links

n SVM Website

n http://www.kernel-machines.org/

n Representative implementations

n LIBSVM: an efficient implementation of SVM, multi-class

classifications, nu-SVM, one-class SVM, including also various

interfaces with java, python, etc.

n SVM-light: simpler but performance is not better than LIBSVM,

support only binary classification and only C language

n SVM-torch: another recent implementation also written in C.

85

http://www.kernel-machines.org/

ANN—Artificial Neural Network
(Classification by Backpropagation)

n An artificial neural network is
an interconnected group of
nodes, akin to the vast
network of neurons in a brain.
Here, each circular node
represents an artificial neuron
and an arrow represents a
connection from the output of
one neuron to the input of
another.

n Deep learning: deep neural
networks

86

http://en.wikipedia.org/wiki/Neuron
http://en.wikipedia.org/wiki/Brain

SVM vs. ANN

n SVM
n Relatively new concept
n Deterministic
n Nice Generalization

properties
n Hard to learn – learned

in batch mode using
quadratic programming
techniques

n Using kernels can learn
very complex functions

n ANN
n Relatively old (but …)
n Nondeterministic
n Generalizes well but

doesn’t have strong
mathematical foundation

n Can easily be learned in
incremental fashion

n To learn complex
functions—use multilayer
perceptron (not that
trivial)

87

