Introduction to Information Retrieval
(Manning, Raghavan, Schutze)

Chapter 1
Boolean retrieval

Information Retrieval: IR

= Finding material (usually document) of an
unstructured nature (usually text) that satisfies an
information need from within large collections

= Started in the 50’ s. SIGIR (80), TREC (92)

= The field of IR also covers supporting users in
browsing or filtering document collections or
further processing a set of retrieved documents
» Clustering
» classification

= Scale: from web search to personal information
retrieval >

How good are the retrieved docs?

m Precision : Fraction of retrieved docs that are
relevant to user’ s information need

m Recall: Fraction of relevant docs in collection
that are retrieved

= More precise definitions and measurements to
follow in later lectures

Boolean retrieval

= Queries are Boolean expressions
s €.9., Brutus AND Caesar
= Shakespeare’s Collected Works
= Which plays of Shakespeare contain
the words Brutus AND Caesar?

= The search engine returns all documents
satisfying the Boolean expression.

= Does Google use the Boolean model?

n http://www.rhymezone.com/shakespeare/

http://www.rhymezone.com/shakespeare/

Example

= Which plays of Shakespeare contain the words
Brutus AND Caesar but NOT Calpurnia?

= One could grep all of Shakespeare’ s plays for
Brutus and Caesar, then strip out lines containing
Calpurnia?

= Why is grep not the solution?
» Slow (for large corpora)
= ‘Not Calpurmia” is non-trivial

= Other operations (e.g., find the word Romans near
countrymen) not feasible

= Ranked retrieval (best documents to return) 5

Term-document incidence

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 1 1 0 0 0 1
Brutus 1 1 0 1 0 0
Caesar 1 1 0 1 1 1
Calpurnia 0 1 0 0 0 0
Cleopatra 1 0 0 0 0 0
mercy 1 0 1 1 1 1
worser 1 0 1 1 1 0
Brutus AND Caesar but NOT 1 if play contains

Calpurnia word, 0 otherwise

Incidence vectors

m So we have a 0/1 vector for each term.

= [To answer query: take the vectors for Brutus,

Caesarand Calpurnia (complemented) =»
bitwise AND.

= 110100 AND 110111 AND 101111 = 100100.

Answers to query

= Antony and Cleopatra, Act lll, Scene i
s Agrippa [Aside to DOMITIUS ENOBARBUS]: Why, Enobarbus,

¥ When Antony found Julius Caesar dead,
N He cried almost to roaring; and he wept
N When at Philippi he found Brutus slain.

s Hamlet, Act lll, Scene i

m Lord Polonius: | did enact Julius Caesar | was killed i' the
O Capitol; Brutus killed me.

Big collections: cannot build the matrix

s Consider N= 1M documents, each with about 1K terms

= Avg 6 bytes/term including spaces/punctuation
» Size of document collection is about 6GB

= Say there are m = 500K distinctterms among these.

= 500K x 1M matrix has half-a-trillion 0’ s and 1’ s.
= But it has no more than one billion 1’ s.
= Mmatrix is extremely sparse.

= What' s a better representation?
= We only record the 1s

Inverted iIndex

-

m For each term 7, we must store a list of all
documents that contain 7.

Brutus| "——>

Calpurni4“9:>

Caesar] ""——>
Dictionary

Sorted by doclID

2 116 32—{64— 128
] 58113 21 —+34
13—16
_ _
——
Postings lists

10

Inverted index construction

Documents to Fﬁé - | Friends, Romans, countrymen.

be indexed. L 5

[Tokenizer}

Token stream. J_|7 Friends || Romans | | Countrymen
Linguistic W
modules
Modified tokens. il friend | |roman| |countryman
[Indexer} friend‘ DDI:> 2 > 4 —>
1 2
Inverted index. @ roman "———
countrym&“ﬁ:> 13116 1

&

Term Doc #

= Sequence of (Modified token, Document ID) pairs.

Indexer steps

enact
julius
caesar
|
was
killed
i
the
capitol
brutus
killed
Doc 1 Doc 2 —
SO
let

it

| did enact Julius So let it be with =

with

Caesar | was killed Caesar. The noble cassar

I"the Capitol; Brutus hath told you e
Brutus killed me. Caesar was ambitious .

caesar
was
ambitious

[\)l\)l\)NN[\)N[\)N[\)N[\)NNN______________\

12

= Sort by terms.
4

Core indexing step.

Term Doc #
|

did
enact
julius
caesar
|

was
killed
i

the
capito
brutus
killed
me

SO

let

it

be
with
caesar
the
noble
brutus
hath
told
you
caesar
was
ambitious

N NDNDNDNNNDNMNDNNNDNNMNMNDNMNNN-_A 22 A A a a aAaaa a

Term Doc #
ambitious
be
brutus
brutus
capito
caesar
caesar
caesar
did
enact
hath

julius
killed
killed
let
me
noble
SO
the
the
told
you
was
was
with

13

= Multiple term entries in a
single document are
merged.

= Frequency information is
added.

=

Why frequency?

Term Doc #
ambitious
be
brutus
brutus
capito
caesar
caesar
caesar
did
enact
hath

I

I

i

it
julius
killed
killed
let

me
noble
o)

the
the
told
you
was
was
with

NN 2D DNDNDDNDNLCNNDNDN DN A AN A A A aaaadNDNN_aE a2

Term Doc #
ambitious
be
brutus
brutus
capito
caesar
caesar
did
enact
hath

I

i

it
julius
killed
let

me
noble
SO

the
the
told
you
was
was
with

NN -2IDNDNDNDDNDN 22NN 2N AN 2 AN 22 AN 222N =22DNDN

Term freq

SlAalAalalaialialalaalalND a2 alND=_a a2 alNDaaaaaala

14

= The result is split into a Dictionary file and a

Postings file.

Term Doc #
ambitious 2 1 Doc # Freq
be 2 1 Term N docs Coll freq / 5
brutus 1 1 ambitious 1 1 M 5
brutus 2 1 be 1 1 - 1
capitol 1 1 brutus 2 2 > 5
caesar 1 1 capitol 1 1 : 1
caesar 2 2 Z?desar ? :13 \: 1

. , :
did ! ! enact 1 1 > 1
enact 1 1 hath 1 1 \ :
hath 2 1 i :) >

2

: 1 2 i 1 1 > :
' ! 1 it 1 1 \ 1
I 2 1 julius 1 1 , .
julius 1 1 killed 1 2 \ :
killed 1 2 et : 1 |
let 2 1 me 1 1 \
me 1 1 noble 1 1 \ 2
noble 2 1 SO 1 1 \ ;
o) 2 1 the 2 2 \
the 1 1 told 1 1 \: |
the 2 1 you 1 1 1
told 2 1 was 2 2 2
you 2 1 with 1 1 \ 2
was 1 1 f
was 2 1 !
with 2 1 2

N N N Y Y Y N QU N (R N QS N N Y G) [N G N R N O) QN N RN O J) (R N QS N L\ L N QU N . N

15

= Where do we pay in storage?
]

Doc # Freq

2 1
Tern.1. Ndocs Colif,q = ———* 2 1 Document
ambitious 1 1 / 1 1
& : P . frequency
brutus 2 2 > 1 1
capitol 1 1 \i 1 1
caesar 2 3 7 2 2
did 1 - = 1 . Collection
enact 1 L 2 1 frequency
hath 1 1 1 2
| 1 2 h 1 1
i 1 1 \ 2 1
it 1 1 \ ! !

Terms :> julius 1 1 \ . : Term
killed 1 20—
et 1 1% ; : VR
me 1 1 2 1
noble 1 1 ! !
SO 1 1 \ ; 1
the 2 2 . 1
told 1 1 1 1
you 1 1 2 1
was 2 2 2 1
with 1 1 {}
16

Pointers

Boolean query processing: AND

= Consider processing the query:
Brutus AND Caesar
» Locate Brutus in the Dictionary;
=« Retrieve its postings.
» Locate Caesarin the Dictionary;
=« Retrieve its postings.
= ‘Merge” the two postings:

2481632 —64— 128 | Brutus

h1 {21531 5181413 21 b 34 | Caesar

17

The merge

= Walk through the two postings simultaneously, in
time linear in the total number of postings entries

2—4—8—16—32—64 —128| Brutus
8 h
1152153518113 bl 21 .+ 34 | Caesar

If the list lengths are x and y, the merge takes O(x+y)
operations.
Crucial: postings sorted by doclID.

18

Boolean queries: Exact match

= [he Boolean Retrieval model is being able to ask a
query that is a Boolean expression:

» Boolean Queries are queries using AND, OR and
NOT to join query terms
= Views each document as a set of words
= |s precise: document matches condition or not.

= Primary commercial retrieval tool for 3 decades.

= Professional searchers (e.g., lawyers) still like
Boolean queries:

= You know exactly what you're getting.
= Many search systems you use are Boolean
= Email, Intranet etc.

Examp|eZ WeStLaW http://www.westlaw.com/

= Commercially successful Boolean retrieval

= Largest commercial (paying subscribers) legal
search service (started 1975; ranking added 1992)

= Tens of terabytes of data; 700,000 users
= Majority of users still use boolean queries
= Example query:

= What is the statute of limitations in cases involving
the federal tort claims act?

n LIMIT! /3 STATUTE ACTION /S FEDERAL /2 TORT
/3 CLAIM

s /3 = within 3 words, /S =in same sentence 20

Examp|eZ WeStLaW http://www.westlaw.com/

= Another example query:

= Requirements for disabled people to be able to
access a workplace

= disabl! /p access! /s work-site work-place
(employment /3 place

= Note that SPACE is disjunction, not conjunction!

= Long, precise queries; proximity operators;
incrementally developed; not like web search

s Professional searchers often like Boolean search:
= Precision, transparency and control

= But that doesn’ t mean they actually work better....

Boolean queries: more general merges
I

= Exercise: Adapt the merge for the queries:
(a)Brutus AND NOT Caesar
(b)Brutus OR NOT Caesar

Can we still run through the merge in time O(x+))?
What can we achieve?

22

Merging

What about an arbitrary Boolean formula?
(Brutus OR Caesar) AND NOT
(Anfony OR Cleopatra)

= Can we always merge in “linear” time?
» Linear in what?

m Can we do better?

23

Query optimization

= What is the best order for query processing?
= Consider a query that is an AND of fterms.
= For each of the fterms, get its postings, then

AND them together.
Brutus "“——=[214 16] 32] 64[128
Calpurniq™———>[] 518 [16] 21] 34
Caesary "——[13]16

Query: Brutus AND Calpurnia AND Caesar

Query optimization example

= Process in order of increasing freq:
n Start with smallest sel, then keep cutting further.

4?

This is why we kept
freq in dictionary

Brutuss '——>[214] 8] 16] 32] 64128

Calpurniq®——>[11 2] 31 518 [13 21 34

Caesar "——>[13]16

Execute the query as (Caesar AND Brutus) AND Calpurnia.

25

More general optimization

m €.9., (madding OR crowd) AND (ignoble
OR strife)

= Get freq’ s for all terms.

= Estimate the size of each OR by the sum
of its freq’ s (conservative).

= Process in increasing order of OR sizes.

26

Exercise

= Recommend a query
processing order for

(tangerine OR trees) AND Term Freq

(marmalade OR skies) AND eyes 213312

(kaleidoscope OR eyes) kaleidoscope 87009
marmalade 107913
skies 271658

Kaleidoscope OR eyes (300,321) _ 46653
Tangerine OR trees (363,465) tangerine
Marmalade OR skies (379,571) trees 316812

27

Coverage
- OO ——

. Introduction

. Term vocabulary and postings lists

. Dictionaries (briefly)

. Index construction (briefly)

. Index compression (briefly)

: Term weighting and vector space model

: Computing scores (briefly)

8: Evaluation and result summaries

19: Web search basics

21: Link analysis 2

~N O O B WODN -

