
Introduction to Information Retrieval
(Manning, Raghavan, Schutze)

Chapter 2
The term vocabulary and

postings lists

1

Assumptions in simple Boolean
retrieval system

n We know what a document is

n We know what a term is

n Both issues can be complex in reality

n We’ll discuss a little on what a document is

n But mostly on terms: how do we define and
process the vocabulary of terms of a
collection?

2

Parsing a document

n Before we start worrying about terms …
need to know format and language of each
document

n What format is it in?
n pdf/word/excel/html?

n What language is it in?

n What character set is in use?

n Each of these is a classification problem,
n But often done heuristically

3

Complications: Format/language

n Documents being indexed can include docs
from many different languages
n A single index may have to contain terms of

several languages.

n Sometimes a document or its components can
contain multiple languages/formats
n French email with a German pdf attachment.

4

What is a unit of document?

n A file?
n Traditional Unix stores a sequence of emails in

one file, but you might want to regard each email
as a separate document

n An email with 5 attachments?

n Indexing granularity, e.g. a collection of books
n Each book as a document?
n Each chapter? Each paragraph? Each sentence?

n Precision recall tradeoff
n Small unit: good precision, poor recall
n Big unit: good recall, poor precision 5

Determining the vocabulary
of terms

6

Definitions

n Token: an instance of a sequence of characters in
some particular document that are grouped
together as a useful semantic unit for processing

n Type: the class of all tokens containing the same
character sequence

n Term: a (perhaps normalized) type that is included
in the IR system’s dictionary

n E.g., to sleep perchance to dream
n 5 tokens
n 4 types
n 3 terms (if to is omitted from the index as stop word)

7

Tokenization

n Input: “Friends, Romans, Countrymen”

n Output: Tokens
n Friends

n Romans

n Countrymen

n Each such token is now a candidate for an
index entry, after further processing
n Described below

n But what are valid tokens to emit?

8

Tokenization

n Issues in tokenization:
n Finland’s capital ®

Finland? Finlands? Finland’s?

n Hewlett-Packard ® Hewlett and Packard
as two tokens?

n state-of-the-art: break up hyphenated sequence.

n co-education

n lowercase, lower-case, lower case ?
n It’s effective to get the user to put in possible hyphens

n San Francisco: one token or two? How do
you decide it is one token? 9

Numbers

n 3/12/91 Mar. 12, 1991

n 55 B.C.

n B-52

n My PGP key is 324a3df234cb23e

n (800) 234-2333

n Often have embedded spaces

n Will often index “meta-data” separately
n Creation date, format, etc.

10

Tokenization: language issues

n French
n L'ensemble ® one token or two?

n L ? L’ ? Le ?

n Want l’ensemble to match with un ensemble

n German noun compounds are not
segmented
n Lebensversicherungsgesellschaftsangestellter

n ‘life insurance company employee’

n German retrieval systems benefit greatly from a
compound splitter module

11

Tokenization: language issues
n Chinese and Japanese have no spaces

between words:
n 莎拉波娃现在居住在美国东南部的佛罗里达。
n Not always guaranteed a unique tokenization

n Further complicated in Japanese, with
multiple alphabets intermingled
n Dates/amounts in multiple formats

フォーチュン500社は情報不足のため時間あた$500K(約6,000万円)
Katakana Hiragana Kanji Romaji

End-user can express query entirely in hiragana! 12

Tokenization: language issues

n Arabic (or Hebrew) is basically written right
to left, but with certain items like numbers
written left to right

n Words are separated, but letter forms within
a word form complex ligatures

← → ← → ← start

n ‘Algeria achieved its independence in 1962
after 132 years of French occupation.’

n With Unicode, the surface presentation is
complex, but the stored form is straightforward

13

Common terms: stop words

n Stop words = extreme common words which
would appear of little value in helping select
document in matching a user need
n a, an, and, are, as, at, be, by, for, from, has, he, in, is, it, its,

of, on, that, the, to, was, were, will, with

n There are a lot of them: ~30% of postings for top 30 words

n Stop word elimination used to be standard in
older IR systems
n Size of stop list: 200-300; 7-12

14

Current trend

n The trend is away from doing this:
n Good compression techniques (lecture 5) means the

space for including stopwords in a system is very small

n Good query optimization techniques mean you pay little
at query time for including stop words.

n You need them for:
n Phrase queries: “King of Denmark”

n Various song titles, etc.: “Let it be”, “To be or not to be”

n “Relational” queries: “flights to London”

n Nowadays search engines generally do not
eliminate stop words

15

Normalization

n Need to “normalize” terms in indexed text as well
as query terms into the same form
n We want to match U.S.A. and USA

n We most commonly implicitly define equivalence
classes of terms
n e.g., by deleting periods in a term

n Alternative is to do asymmetric expansion:
n Enter: window Search: window, windows

n Enter: windows Search: Windows, windows, window

n Enter: Windows Search: Windows (no expansion)

n Two approaches for the (more powerful) alternative
n Index unnormalized tokens and expand query terms

n Expand during index construction
n Both less efficient than equivalent claassing

16

Case folding

n Reduce all letters to lower case
n exception: upper case in mid-sentence?

n e.g., General Motors

n Fed vs. fed

n SAIL vs. sail

n Often best to lower case everything, since
users will use lowercase regardless of
‘correct’ capitalization…

17

More equivalent classing

n Soundex: phonetic equivalence
n Traditional class of heuristics to expand a

query into phonetic equivalents

n Language specific – mainly for names
n Invented for the US Census

n E.g., chebyshev ® tchebycheff

n Thesauri: semantic equivalence
n Hand-constructed equivalence classes

n e.g., car = automobile
n color = colour

18

Lemmatization

n Reduce inflectional/variant forms to base form
n am, are, is ® be

n car, cars, car's, cars' ® car

n the boy's cars are different colors ® the boy
car be different color

n Lemmatization implies doing “proper”
reduction to dictionary headword form

19

Stemming

n Reduce terms to their “roots” before
indexing

n “Stemming” suggest crude affix chopping
n language dependent

n e.g., automate(s), automatic, automation all
reduced to automat.

for example compressed
and compression are both
accepted as equivalent to
compress.

for exampl compress and
compress ar both accept
as equival to compress

20

Porter’s algorithm (1980)

n Most common algorithm for stemming English
n Results suggest it’s at least as good as other

stemming options

n 5 phases of reductions
n phases applied sequentially

n With each phase, there are various conventions of
selecting rules

n E.g., Sample convention: Of the rules in a
compound command, select the one that applies to
the longest suffix.

n http://www.tartarus.org/~martin/PorterStemmer/
21

http://www.tartarus.org/~martin/PorterStemmer/

Typical rules in Porter

n sses ® ss

n ies ® i

n ational ® ate

n tional ® tion

n Weight of word sensitive rules: loosely
check the number of syllables to see
whether a word is long enough …

n (m>1) EMENT →
n replacement → replac
n cement → cement 22

Other stemmers exist

n Older Lovins stemmer (1968)
n Newer Paice/Husk stemmer (1990)

n Rather than stemmer, we can use lemmatizer:
a NLP tool that does full morphological
analysis to accurately identify the lemma for
each word
n at most modest benefits for retrieval

23

24

Discussion

n Do stemming and other normalizations help?
n English: very mixed results

n Helps recall but harms precision
n operate operating operates operation operative

operatives operational => oper (by Porter)

n Definitely useful for Spanish, German, Finnish, …

25

Faster postings merges:
Skip pointers/Skip lists

26

Recall basic merge

n Walk through the two postings
simultaneously, in time linear in the total
number of postings entries

128

31

2 4 8 41 48 64

1 2 3 8 11 17 21

Brutus

Caesar
2 8

If the list lengths are m and n, the merge takes O(m+n)
operations.

Can we do better (sub-linear)?
Yes (if index isn’t changing too fast). 27

Augment postings with skip
pointers (at indexing time)

n Why?
n To skip postings that will not figure in the search results

n This makes intersecting postings lists more efficient

n Some postings contains several million entries, so efficiency
can be an issue even if basic intersection is linear

n How?

n Where do we place skip pointers?

1282 4 8 41 48 64

311 2 3 8 11 17 21
3111

41 128

28

Query processing with skip
pointers

1282 4 8 41 48 64

311 2 3 8 11 17 21
3111

16 128

Suppose we’ve stepped through the lists until we
process 8 on each list. We match it and advance.

We then have 41 and 11 on the lower. 11 is smaller.

But the skip successor of 11 on the lower list is 31, so
we can skip ahead past the intervening postings.

29

Where do we place skips?

n Tradeoff:
n More skips ® shorter skip spans Þ more

likely to skip. But lots of comparisons to skip
pointers.

n Fewer skips ® few pointer comparison, but
then long skip spans Þ few successful skips.

30

Placing skips

n Simple heuristic: for postings of length P,
use ÖP evenly-spaced skip pointers.

n This ignores the distribution of query terms.

n Easy if the index is relatively static; harder if
P keeps changing because of updates.

n This definitely used to help
n With modern hardware (fast CPUs) it may not

n The I/O cost of loading a bigger postings list
can outweigh the gains from quicker in
memory merging! 31

Phrase queries and positional
indexes

32

Phrase queries

n Want to be able to answer queries such as
“stanford university” – as a phrase

n “The inventor Stanford Ovshinsky never
went to univerisity” is not a match.
n The concept of phrase queries has proven

easily understood by users

n 10% of web queries are phrase queries

n For this, it no longer suffices to store only

<term : docs> entries

any ideas? 33

A first attempt: Biword indexes

n Index every consecutive pair of terms in the text
as a phrase

n For example the text “Friends, Romans,
Countrymen” would generate the biwords
n friends romans

n romans countrymen

n Each of these biwords is now a dictionary term
n Two-word phrase query-processing is now

immediate.

34

Longer phrase queries

n Longer phrases are processed as we did with
wild-cards:

n stanford university palo alto can be
broken into the Boolean query on biwords:

stanford university AND university palo AND
palo alto

Without the docs, we cannot verify that the
docs matching the above Boolean query do
contain the phrase.

Can have false positives!
35

Extended biwords

n Parse the indexed text and perform part-of-speech-
tagging (POST).

n Bucket the terms into (say) Nouns (N) and
articles/prepositions (X).

n Now deem any string of terms of the form NX*N to
be an extended biword.
n Each such extended biword is now made a term in the

dictionary.

n Example: catcher in the rye
N X X N

n Query processing: parse it into N’s and X’s
n Segment query into enhanced biwords

n Look up index 36

Issues for biword indexes

n Why biword indexes rarely used?

n False positives, as noted before

n Index blowup due to bigger dictionary

n For extended biword index, parsing longer
queries into conjunctions:
n E.g., the query tangerine trees and

marmalade skies is parsed into

n tangerine trees AND trees and marmalade
AND marmalade skies

37

Solution 2: Positional indexes

n In the postings, store, for each term, entries
of the form:
<term, number of docs containing term;
doc1: position1, position2 … ;

doc2: position1, position2 … ;
etc.>

38

Positional index example

n The word be has a document frequency
178239, and occurs 2 times in document 1
at positions 17 and 25

be: 178239:
<1, 2: <17, 25>;
4, 5: <17, 191, 291, 430, 434>;
5, 3: <14, 19, 101>; …>

39

Processing a query phrase

n We use a merge algorithm recursively at the
document level

n But we now need to deal with more than just
equality

n Returns the actual matching positions, not just a
list of documents

n Very inefficient for frequent words, especially
stop words

40

Example query: to be or not to be

n Extract inverted index entries for each
distinct term: to, be, or, not.

n Merge their doc:position lists to enumerate
all positions with “to be or not to be”.

n to:

n 2:1,17,74,222,551; 4:8,16,190,429,433;
7:13,23,191; ...

n be:

n 1:17,25; 4:17,191,291,430,434;
5:14,19,101; ...

41

Proximity queries: same idea

n employment /3 place
n Find all document that contain employment

and place within 3 words of each other
n Employment agencies that place healthcare

workers are seeing growth
n hit

n Employment agencies that help place
healthcare workers are seeing growth
n not a hit

n Clearly, positional indexes can be used for
such queries; biword indexes cannot. 42

Positional index size

n You can compress position values/offsets:
covered in chapter 5

n Nevertheless, a positional index expands
postings storage substantially
n Need an entry for each occurrence, not just

once per document

n Compare to biword: “Index blowup due to
bigger dictionary”

n Nevertheless, a positional index is now
standardly used because of the power and
usefulness of phrase and proximity queries

43

Rules of thumb

n A positional index is 2–4 as large as a non-
positional index

n Positional index size 35–50% of volume of
original text

n Caveat: the above holds for English-like
languages.

44

Combination schemes

n These two approaches can be profitably combined
n For particular phrases (“Michael Jackson”, “Britney

Spears”) it is inefficient to keep on merging
positional postings lists

n Even more so for phrases like “The Who”

n Williams et al. (2004) evaluate a more
sophisticated mixed indexing scheme
n A typical web query mixture was executed in ¼ of

the time of using just a positional index
n It required 26% more space than having a positional

index alone
45

