Introduction to Information Retrieval
(Manning, Raghavan, Schutze)

Chapter 3
Dictionaries and Tolerant retrieval

Chapter 4
Index construction

Chapter 5
Index compression

Content

= Dictionary data structures
= “Tolerant” retrieval

= Wild-card queries

= Spelling correction

= Soundex

Dictionary

= The dictionary is the data structure for storing the
term vocabulary

= For each term, we need to store:
= document frequency
= pointers to each postings list

BRrRuTUS — | 1 2 4 11 | 31 | 45 | 173 | 174

CAESAR — | 1 2 4 5 6 | 16 o7 | 132

CALPURNIA | — [2] 31 | 54 | 101

N g A= g
~

dictionary postings

Dictionary data structures

I
= [wo main choices:
= Hash table
= ree
= Some IR systems use hashes, some trees
= Criteria in choosing hash or tree
» fixed number of terms or keep growing

= Relative frequencies with which various keys are accessed
= How many terms

Hashes

= Each vocabulary term is hashed to an integer
= (We assume you’ ve seen hashtables before)
= Pros:
» Lookup is faster than for a tree: O(1)

= Cons:
= No easy way to find minor variants:
= judgment /judgement
= No prefix search
« all terms starting with automat

= Need to rehash everything periodically if
vocabulary keeps growing

Trees

= Simplest: binary tree
= More usual: B-trees
s Pros:

» Solves the prefix problem (finding all terms
starting with automat)

= Cons:
» Slower: O(log M) [and this requires balanced tree]

= Rebalancing binary trees is expensive
« But B-trees mitigate the rebalancing problem

a-hu n-z

= Definition: Every internal nodel has a number of
children in the interval [a,b] where a, b are
appropriate natural numbers, e.g., [2,4].

Bla...

= Wild-card queries
= mon*: find all docs containing any word beginning

13 b4

mon .

= Spell correction
s Document correction

= Use different forms of inverted indexes
» Standard inverted index (chapters 1 &2)
» Permuterm index
= K-gram indexes

Chapter 3
Dictionaries and Tolerant retrieval

Chapter 4
Index construction

Chapter 5
Index compression

Index construction
-

s How do we construct an index?

= \What strategies can we use with limited
main memory?

= Many design decisions in information
retrieval are based on the characteristics
of hardware ...

= Scaling index construction

10

&

RCV1: our corpus

= Shakespeare’ s collected works definitely aren’ t
large enough for demonstrating many of the
points in this course.

= The corpus we’ Il use isn’ t really large enough
either, but it’ s publicly available and is at least a
more plausible example.

= As an example for applying scalable index
construction algorithms, we will use the Reuters
RCV1 collection.

= This is one year of Reuters newswire (part of
1995 and 1996)

11

A Reuters RCV1 document

REUTERS B

You are here: Home > News > Science > Article

Gotoa Section: U.S. International Business Markets Politics Entertainment Technology Sports Oddly Enouc
Extreme conditions create rare Antarctic clouds
Tue Aug 1, 2006 3:20am ET

Email This Articke Print This Article | Reprints

Text [+
SYDNEY (Reuters) - Rare, mother-of-pearl colored clouds
caused by extreme weather conditions above Antarctica are a
possible indication of global warming, Australian scientists said on

Tuesday.

Known as nacreous clouds, the spectacular formations showing delicate
wisps of colors were photographed in the sky over an Australian
meteorological base at Mawson Station on July 25.

12

&

Reuters RCV1 statistics

= symbol statistic value
= N documents 800,000
s L avg. # tokens perdoc 200
= M terms (= word types) 400,000
o avg. # bytes per token 6
(incl. spaces/punct.)
o avg. # bytes per token 4.5
(without spaces/punct.)
o avg. # bytes perterm 7.5
o non-positional postings 100,000,000

4.5 bytes per word token vs. 7.5 bytes per word type: why? 1o

&

Construction algorithms

= BSBI: Blocked sort-based indexing
= SPIMI: Single-pass in-memory indexing

14

Distributed indexing

s For web-scale indexing (don’ t try this at home!):
must use a distributed computing cluster

= Individual machines are fault-prone
= Can unpredictably slow down or fail

= How do we exploit such a pool of machines?

15

Google data centers

Google data centers mainly use commodity machines
Data centers are distributed around the world.

Estimate: a total of 1 million servers, 3 million
processors/cores (Gartner 2007)

Estimate: Google installs 100,000 servers each quarter.
» Based on expenditures of $200-250 million per year

This would be 10% of the computing capacity of the
world!?!

16

Distributed indexing

= Maintain a master machine directing the indexing
job — considered “safe”.

= Break up indexing into sets of (parallel) tasks.

= Master machine assigns each task to an idle
machine in a pool.

17

Parallel tasks

= We will use two sets of parallel tasks
= Parsers
= Inverters
= Break the input document corpus into splits

= Each split is a subset of documents
(corresponding to blocks in BSBI/SPIMI)

18

Parsers

= Master assigns a split to an idle parser machine

s Parser reads a document at a time and emits
(term, doc) pairs

s Parser writes pairs into j partitions

= Each partition is for a range of terms’ first letters
= (e.g., a-f, g-p, g-z) — here j=3.

= Now to complete the index inversion

19

Inverters

e
= An inverter collects all (term,doc) pairs (=
postings) for one term-partition.
= Sorts and writes to postings lists

= Parsers and inverters are not separate sets of
machines.

= The same machine can be a parser (in the map
phase) and an inverter (in the reduce phase).

20

Data flow

assign/[MaSte l‘}“~~~~~~-\g§sign

&7

n
o-ciooo

=

n

a-f|g-p|g-z
I
Map S .
t fil
s egment Ttiles

Tt

Cinverter -

Reduce
phase

21

MapReduce

= [he index construction algorithm we just
described is an instance of MapReduce.

= MapReduce (Dean and Ghemawat 2004) is a

robust and conceptually simple architecture for
distributed computing ...

= ... without having to write code for the distribution
part.

22

MapReduce

= MapReduce breaks a large computing problem into
smaller parts by recasting it in terms of manipulation of
key-value pairs
» Forindexing, (termlD, doclD)

= Map: mapping splits of the input data to key-value pairs

= Reduce: all values for a given key to be stored close
together, so that they can be read and processed quickly

» This is achieved by partitioning the keys into j terms
partitions and having the parsers write key-value pairs for
each term partition into a separate segment file

23

MapReduce

= They describe the Google indexing system (ca. 2002)
as consisting of a number of phases, each
Implemented in MapReduce.

= Index construction was just one phase.

= Another phase: transforming a term-partitioned index
Into document-partitioned index.
s Term-partitioned: one machine handles a subrange of terms
= Document-partitioned: one machine handles a subrange of
documents
= (As we discuss in the web part of the course) most
search engines use a document-partitioned index ...

better load balancing, etc.) o

Dynamic indexing

= Up to now, we have assumed that collections are static

= They rarely are:
= Documents come in over time and need to be inserted.

» Documents are deleted and modified.
= [his means that the dictionary and postings lists have
to be modified:
» Postings updates for terms already in dictionary
= New terms added to dictionary

25

Other sorts of indexes

= Boolean retrieval systems: doclD-sorted index
= new documents are inserted at the end of postings

= Ranked retrieval systems: impact-sorted index
» Postings are often ordered by weight or impact
= Postings with highest impact first

= Insertion can occur anywhere, complicating the
update of inverted index

26

Chapter 3
Dictionaries and Tolerant retrieval

Chapter 4
Index construction

Chapter 5
Index compression

27

Why compression?

Use less disk space (saves money)
Keep more stuff in memory (increases speed)

Increase speed of transferring data from disk to
memory (increases speed)

» [read compressed data and decompress] is faster
than [read uncompressed data]

Premise: Decompression algorithms are fast
= True of the decompression algorithms we use

In most cases, retrieval system runs faster on
compressed postings lists than on uncompressed
postings lists. 28

Compression in inverted indexes
-
= First, we will consider space for dictionary
» Make it small enough to keep in main memory
= [hen the postings

= Reduce disk space needed, decrease time to read
from disk

» Large search engines keep a significant part of
postings in memory

= (Each postings entry is a docID)

29

Index parameters vs. what we index

(details Table 5.1 p80)
I

Unfiltered

No numbers
Case folding
30 stopwords
150 stopwords

stemming

dictionary

Size(K)
484
474
392
391
391
322

A%

-0
-17

T%

-2
-19
-19
-19
-33

non-positional index

Size (K)
109,971
100,680

96,969
83,390
67,002
63,812

A%

-8
-3
14
-30
-4

T %

-39
-42

positional index

Size (K)
197,879
179,158
179,158
121,858

94,517

94,517

A %

T%

A%: reduction in size from the previous line, except that “30 stopwords” and
“150 stopwords” both use “case folding” as refereence line.
T%: cumulative (total) reduction from unfiltered

30

Lossless vs. lossy compression
-
= Lossless compression: All information is preserved.
= What we mostly do in IR.
= Lossy compression: Discard some information

= Several of the preprocessing steps can be viewed
as lossy compression: case folding, stop words,
stemming, number elimination.

= One recent research topic (Cha 7): Prune postings
entries that are unlikely to turn up in the top k list
for any query.

= Almost no loss quality for top k list.

31

Vocabulary vs. collection size

= Can we assume an upper bound on vocabulary?
= Not really

= Vocabulary keeps growing with collection size
= Heaps’ Law: M = kT?

= M s the size of the vocabulary, T is the number
of tokens in the collection.

= Typical values: 30 < k<100 and b= 0.5.

= In a log-log plot of vocabulary vs. T, Heaps’ law

IS a line.
32

HeaES’ Law: M = kTP Fig 5.1 p81

Vocabulary size M as a

function of collection size T

For RCV1, the dashed line
log,oM = 0.49 log,oT + 1.64

is the best least squares fit. S -
Thus, M = 1071647049)

so k= 10"%4= 44
and b = 0.49. - 1

33

Zipf s law
|
= Heaps’ Law gives the vocabulary size in collections.
= We also study the relative frequencies of terms.

= In a natural language, there are very few very frequent
terms and very many very rare terms.

= Zipf s law: The ith most frequent term has frequency
proportional to 1/i .

s cf; < 1/i = a/i where a is a normalizing constant

= cf; is collection frequency: the number of occurrences
of the term t; in the collection.

34

Zipf consequences

= If the most frequent term (the) occurs cf, times, then

» the second most frequent term (of) occurs cf,/2 times
= the third most frequent term (and) occurs cf./3 times ...

= Equivalent: cf;=a/i, so
nm logcf.=loga-logi
= Linear relationship
between log cf; and log /

Zipf’ s law for Reuters

35

Zipf's law: rank x frequency ~

constant
- .

English: Rank R | Word Frequency f | R X f
10 | he 877 8770
20 | but 410 8200
30 | be 294 8820
800 | friends 10 8000
1000 | family 8 8000
German: Rank R | Word Frequency f RXF
10 | sich 1,680,106 | 16,801,060
100 | immer 197,502 | 19,750,200
500 | Mio 36,116 | 18,059,500
1,000 | Medien 19,041 | 19,041,000
5,000 | Miete 3,755 | 19,041,000
10,000 | vorlaufige 1.664 | 16,640,000

Zipf's law examples

Top 10 most frequent words in a large language sample:

English
the 61,347
of 29,301
and 26 817
a 21,626
in 18,214
to 16,284
it 10,875
is 9 032
to 9 343
was 9,230

der
die
und
in
den
von
Al
das
mit
sich

German

T.311.879
7,036,002
4,813,169
3,768,565
2,11t 1)
2,250,642
1,992,268
1,983,589
1,878,243
1,680,106

Spanish
que 32,894
de 32116
no 29 897
a 22:313
la 21 129
el 8112
es 16,620
Y 15,743
en 15,303
lo 14,010

ltalian

non
di
che
e

la

il

un

per

05 757
22 868
22 738

8,624
17,600
16,404
14,765
14,460
13,915
10,501

Dutch
de 4.770
en 2,709
het/'t 2,469
van 2,250
ik 1,090
te 1,935
dat 1,875
die 1,807
in 1,630
een 1,037

37

Dictionary compression

I
= Dictionary is relatively small but we want
to keep it in memory

= Also, competition with other applications,
cell phones, onboard computers, fast
startup time

= S0 compression of dictionary is important

38

&

Postings compression

= The postings file is much larger than the
dictionary, factor of at least 10.

s Key desideratum: store each posting compactly.
= A posting for our purposes is a doclD.

= For Reuters (800,000 documents), we would use
32 bits per doclD when using 4-byte integers.

= Alternatively, we can use log, 800,000 = 20 bits
per docliD.

= Our goal: use a lot less than 20 bits per doclD.

39

&

Index compression summary

= \We can now create an index for highly efficient
Boolean retrieval that is very space efficient

x On

= On
col

y 4% of the total size of the collection
y 10-15% of the total size of the text in the

ection

= However, we’ ve ignored positional information

= Hence, space savings are less for indexes used
In practice
» But techniques substantially the same.

40

