
Introduction to Information Retrieval
(Manning, Raghavan, Schutze)

Chapter 3
Dictionaries and Tolerant retrieval

Chapter 4
Index construction

Chapter 5
Index compression

1

Content

n Dictionary data structures
n “Tolerant” retrieval

n Wild-card queries
n Spelling correction
n Soundex

2

Dictionary

n The dictionary is the data structure for storing the
term vocabulary

n For each term, we need to store:
n document frequency
n pointers to each postings list

3

Dictionary data structures

n Two main choices:
n Hash table
n Tree

n Some IR systems use hashes, some trees
n Criteria in choosing hash or tree

n fixed number of terms or keep growing
n Relative frequencies with which various keys are accessed
n How many terms

4

Hashes

n Each vocabulary term is hashed to an integer
n (We assume you’ve seen hashtables before)

n Pros:
n Lookup is faster than for a tree: O(1)

n Cons:
n No easy way to find minor variants:

n judgment /judgement
n No prefix search

n all terms starting with automat
n Need to rehash everything periodically if

vocabulary keeps growing 5

Trees

n Simplest: binary tree
n More usual: B-trees
n Pros:

n Solves the prefix problem (finding all terms
starting with automat)

n Cons:
n Slower: O(log M) [and this requires balanced tree]
n Rebalancing binary trees is expensive

n But B-trees mitigate the rebalancing problem

6

B-tree

n Definition: Every internal nodel has a number of
children in the interval [a,b] where a, b are
appropriate natural numbers, e.g., [2,4].

a-hu
hy-m

n-z

7

Bla…

n Wild-card queries
n mon*: find all docs containing any word beginning
“mon”.

n Spell correction
n Document correction

n Use different forms of inverted indexes
n Standard inverted index (chapters 1 &2)
n Permuterm index
n k-gram indexes

8

Chapter 3
Dictionaries and Tolerant retrieval

Chapter 4
Index construction

Chapter 5
Index compression

9

Index construction

n How do we construct an index?
n What strategies can we use with limited

main memory?
n Many design decisions in information

retrieval are based on the characteristics
of hardware ...

n Scaling index construction

10

RCV1: our corpus

n Shakespeare’s collected works definitely aren’t
large enough for demonstrating many of the
points in this course.

n The corpus we’ll use isn’t really large enough
either, but it’s publicly available and is at least a
more plausible example.

n As an example for applying scalable index
construction algorithms, we will use the Reuters
RCV1 collection.

n This is one year of Reuters newswire (part of
1995 and 1996)

11

A Reuters RCV1 document

12

Reuters RCV1 statistics

n symbol statistic value
n N documents 800,000
n L avg. # tokens per doc 200
n M terms (= word types) 400,000
n avg. # bytes per token 6

(incl. spaces/punct.)

n avg. # bytes per token 4.5
(without spaces/punct.)

n avg. # bytes per term 7.5
n non-positional postings 100,000,000
4.5 bytes per word token vs. 7.5 bytes per word type: why?

13

Construction algorithms

n BSBI: Blocked sort-based indexing
n SPIMI: Single-pass in-memory indexing

14

Distributed indexing

n For web-scale indexing (don’t try this at home!):
must use a distributed computing cluster

n Individual machines are fault-prone
n Can unpredictably slow down or fail

n How do we exploit such a pool of machines?

15

Google data centers

n Google data centers mainly use commodity machines
n Data centers are distributed around the world.
n Estimate: a total of 1 million servers, 3 million

processors/cores (Gartner 2007)
n Estimate: Google installs 100,000 servers each quarter.

n Based on expenditures of $200–250 million per year
n This would be 10% of the computing capacity of the

world!?!

16

Distributed indexing

n Maintain a master machine directing the indexing
job – considered “safe”.

n Break up indexing into sets of (parallel) tasks.
n Master machine assigns each task to an idle

machine in a pool.

17

Parallel tasks

n We will use two sets of parallel tasks
n Parsers
n Inverters

n Break the input document corpus into splits
n Each split is a subset of documents

(corresponding to blocks in BSBI/SPIMI)

18

Parsers

n Master assigns a split to an idle parser machine
n Parser reads a document at a time and emits

(term, doc) pairs
n Parser writes pairs into j partitions
n Each partition is for a range of terms’ first letters

n (e.g., a-f, g-p, q-z) – here j=3.
n Now to complete the index inversion

19

Inverters

n An inverter collects all (term,doc) pairs (=
postings) for one term-partition.

n Sorts and writes to postings lists

n Parsers and inverters are not separate sets of
machines.

n The same machine can be a parser (in the map
phase) and an inverter (in the reduce phase).

20

Data flow

splits

Parser

Parser

Parser

Master

a-f g-p q-z

a-f g-p q-z

a-f g-p q-z

Inverter

Inverter

Inverter

Postings

a-f

g-p

q-z

assign assign

Map
phase

Segment files Reduce
phase 21

MapReduce

n The index construction algorithm we just
described is an instance of MapReduce.

n MapReduce (Dean and Ghemawat 2004) is a
robust and conceptually simple architecture for
distributed computing …

n … without having to write code for the distribution
part.

22

MapReduce

n MapReduce breaks a large computing problem into
smaller parts by recasting it in terms of manipulation of
key-value pairs
n For indexing, (termID, docID)

n Map: mapping splits of the input data to key-value pairs
n Reduce: all values for a given key to be stored close

together, so that they can be read and processed quickly
n This is achieved by partitioning the keys into j terms

partitions and having the parsers write key-value pairs for
each term partition into a separate segment file

23

MapReduce

n They describe the Google indexing system (ca. 2002)
as consisting of a number of phases, each
implemented in MapReduce.

n Index construction was just one phase.
n Another phase: transforming a term-partitioned index

into document-partitioned index.
n Term-partitioned: one machine handles a subrange of terms
n Document-partitioned: one machine handles a subrange of

documents
n (As we discuss in the web part of the course) most

search engines use a document-partitioned index …
better load balancing, etc.)

24

Dynamic indexing

n Up to now, we have assumed that collections are static
n They rarely are:

n Documents come in over time and need to be inserted.
n Documents are deleted and modified.

n This means that the dictionary and postings lists have
to be modified:
n Postings updates for terms already in dictionary
n New terms added to dictionary

25

Other sorts of indexes

n Boolean retrieval systems: docID-sorted index
n new documents are inserted at the end of postings

n Ranked retrieval systems: impact-sorted index
n Postings are often ordered by weight or impact
n Postings with highest impact first
n Insertion can occur anywhere, complicating the

update of inverted index

26

Chapter 3
Dictionaries and Tolerant retrieval

Chapter 4
Index construction

Chapter 5
Index compression

27

Why compression?

n Use less disk space (saves money)
n Keep more stuff in memory (increases speed)
n Increase speed of transferring data from disk to

memory (increases speed)
n [read compressed data and decompress] is faster

than [read uncompressed data]
n Premise: Decompression algorithms are fast

n True of the decompression algorithms we use
n In most cases, retrieval system runs faster on

compressed postings lists than on uncompressed
postings lists. 28

Compression in inverted indexes

n First, we will consider space for dictionary
n Make it small enough to keep in main memory

n Then the postings
n Reduce disk space needed, decrease time to read

from disk
n Large search engines keep a significant part of

postings in memory
n (Each postings entry is a docID)

29

Index parameters vs. what we index
(details Table 5.1 p80)

size of word types (terms) non-positional
postings

positional postings

dictionary non-positional index positional index

Size(K) ∆% T% Size (K) ∆% T % Size (K) ∆ % T%

Unfiltered 484 109,971 197,879
No numbers 474 -2 -2 100,680 -8 -8 179,158 -9 -9
Case folding 392 -17 -19 96,969 -3 -12 179,158 0 -9
30 stopwords 391 -0 -19 83,390 -14 -24 121,858 -31 -38
150 stopwords 391 -0 -19 67,002 -30 -39 94,517 -47 -52
stemming 322 -17 -33 63,812 -4 -42 94,517 0 -52

∆%: reduction in size from the previous line, except that “30 stopwords” and
“150 stopwords” both use “case folding” as refereence line.
T%: cumulative (total) reduction from unfiltered 30

Lossless vs. lossy compression

n Lossless compression: All information is preserved.
n What we mostly do in IR.

n Lossy compression: Discard some information
n Several of the preprocessing steps can be viewed

as lossy compression: case folding, stop words,
stemming, number elimination.

n One recent research topic (Cha 7): Prune postings
entries that are unlikely to turn up in the top k list
for any query.
n Almost no loss quality for top k list.

31

Vocabulary vs. collection size

n Can we assume an upper bound on vocabulary?
n Not really

n Vocabulary keeps growing with collection size
n Heaps’ Law: M = kTb

n M is the size of the vocabulary, T is the number
of tokens in the collection.

n Typical values: 30 ≤ k ≤ 100 and b ≈ 0.5.
n In a log-log plot of vocabulary vs. T, Heaps’ law

is a line.
32

Heaps’ Law: M = kTb
Vocabulary size M as a
function of collection size T

For RCV1, the dashed line
log10M = 0.49 log10T + 1.64
is the best least squares fit.
Thus, M = 101.64T0.49

so k = 101.64 ≈ 44
and b = 0.49.

Fig 5.1 p81

33

Zipf’s law

n Heaps’ Law gives the vocabulary size in collections.
n We also study the relative frequencies of terms.
n In a natural language, there are very few very frequent

terms and very many very rare terms.
n Zipf’s law: The ith most frequent term has frequency

proportional to 1/i .
n cfi ∝ 1/i = a/i where a is a normalizing constant
n cfi is collection frequency: the number of occurrences

of the term ti in the collection.

34

Zipf consequences

n If the most frequent term (the) occurs cf1 times, then
n the second most frequent term (of) occurs cf1/2 times
n the third most frequent term (and) occurs cf1/3 times …

n Equivalent: cfi = a/i , so
n log cfi = log a - log i
n Linear relationship
between log cfi and log i

Zipf’s law for Reuters
35

Zipf’s law: rank x frequency ~
constant

36

Zipf’s law examples

37

Dictionary compression

n Dictionary is relatively small but we want
to keep it in memory

n Also, competition with other applications,
cell phones, onboard computers, fast
startup time

n So compression of dictionary is important

n …
38

Postings compression

n The postings file is much larger than the
dictionary, factor of at least 10.

n Key desideratum: store each posting compactly.
n A posting for our purposes is a docID.
n For Reuters (800,000 documents), we would use

32 bits per docID when using 4-byte integers.
n Alternatively, we can use log2 800,000 ≈ 20 bits

per docID.
n Our goal: use a lot less than 20 bits per docID.
n …

39

Index compression summary

n We can now create an index for highly efficient
Boolean retrieval that is very space efficient

n Only 4% of the total size of the collection
n Only 10-15% of the total size of the text in the

collection
n However, we’ve ignored positional information
n Hence, space savings are less for indexes used

in practice
n But techniques substantially the same.

40

