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Content

n Dictionary data structures
n “Tolerant” retrieval

n Wild-card queries
n Spelling correction
n Soundex
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Dictionary

n The dictionary is the data structure for storing the 
term vocabulary

n For each term, we need to store:
n document frequency
n pointers to each postings list
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Dictionary data structures

n Two main choices:
n Hash table
n Tree

n Some IR systems use hashes, some trees
n Criteria in choosing hash or tree

n fixed number of terms or keep growing
n Relative frequencies with which various keys are accessed
n How many terms
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Hashes

n Each vocabulary term is hashed to an integer
n (We assume you’ve seen hashtables before)

n Pros:
n Lookup is faster than for a tree: O(1)

n Cons:
n No easy way to find minor variants:

n judgment /judgement
n No prefix search

n all terms starting with automat
n Need to rehash everything periodically if 

vocabulary keeps growing 5



Trees

n Simplest: binary tree
n More usual: B-trees
n Pros:

n Solves the prefix problem (finding all terms 
starting with automat)

n Cons:
n Slower: O(log M)  [and this requires balanced tree]
n Rebalancing binary trees is expensive

n But B-trees mitigate the rebalancing problem
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B-tree

n Definition: Every internal nodel has a number of 
children in the interval [a,b] where a, b are 
appropriate natural numbers, e.g., [2,4].

a-hu
hy-m

n-z
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Bla…

n Wild-card queries
n mon*: find all docs containing any word beginning 
“mon”.

n Spell correction
n Document correction

n Use different forms of inverted indexes
n Standard inverted index (chapters 1 &2)
n Permuterm index
n k-gram indexes
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Index construction

n How do we construct an index?
n What strategies can we use with limited 

main memory?
n Many design decisions in information 

retrieval are based on the characteristics 
of hardware ...

n Scaling index construction
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RCV1: our corpus

n Shakespeare’s collected works definitely aren’t 
large enough for demonstrating many of the 
points in this course.

n The corpus we’ll use isn’t really large enough 
either, but it’s publicly available and is at least a 
more plausible example.

n As an example for applying scalable index 
construction algorithms, we will use the Reuters 
RCV1 collection.

n This is one year of Reuters newswire (part of 
1995 and 1996)
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A Reuters RCV1 document
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Reuters RCV1 statistics

n symbol statistic value
n N documents 800,000
n L avg. # tokens per doc 200
n M terms (= word types) 400,000
n avg. # bytes per token 6

(incl. spaces/punct.)

n avg. # bytes per token 4.5
(without spaces/punct.)

n avg. # bytes per term 7.5
n non-positional postings 100,000,000
4.5 bytes per word token vs. 7.5 bytes per word type: why?
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Construction algorithms

n BSBI: Blocked sort-based indexing
n SPIMI: Single-pass in-memory indexing
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Distributed indexing

n For web-scale indexing (don’t try this at home!):
must use a distributed computing cluster

n Individual machines are fault-prone
n Can unpredictably slow down or fail

n How do we exploit such a pool of machines?
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Google data centers

n Google data centers mainly use commodity machines
n Data centers are distributed around the world.
n Estimate: a total of 1 million servers, 3 million 

processors/cores (Gartner 2007)
n Estimate: Google installs 100,000 servers each quarter.

n Based on expenditures of $200–250 million per year
n This would be 10% of the computing capacity of the 

world!?!
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Distributed indexing

n Maintain a master machine directing the indexing 
job – considered “safe”.

n Break up indexing into sets of (parallel) tasks.
n Master machine assigns each task to an idle 

machine in a pool.

17



Parallel tasks

n We will use two sets of parallel tasks
n Parsers
n Inverters

n Break the input document corpus into splits
n Each split is a subset of documents 

(corresponding to blocks in BSBI/SPIMI)
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Parsers

n Master assigns a split to an idle parser machine
n Parser reads a document at a time and emits 

(term, doc) pairs
n Parser writes pairs into j partitions
n Each partition is for a range of terms’ first letters

n (e.g., a-f, g-p, q-z) – here j=3.
n Now to complete the index inversion
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Inverters

n An inverter collects all (term,doc) pairs (= 
postings) for one term-partition.

n Sorts and writes to postings lists

n Parsers and inverters are not separate sets of 
machines. 

n The same machine can be a parser (in the map 
phase) and an inverter (in the reduce phase).
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Data flow
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MapReduce

n The index construction algorithm we just 
described is an instance of MapReduce.

n MapReduce (Dean and Ghemawat 2004) is a 
robust and conceptually simple architecture for 
distributed computing …

n … without having to write code for the distribution 
part.
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MapReduce

n MapReduce breaks a large computing problem into 
smaller parts by recasting it in terms of manipulation of 
key-value pairs
n For indexing, (termID, docID)

n Map: mapping splits of the input data to key-value pairs
n Reduce: all values for a given key to be stored close 

together, so that they can be read and processed quickly
n This is achieved by partitioning the keys into j terms 

partitions and having the parsers write key-value pairs for 
each term partition into a separate segment file
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MapReduce

n They describe the Google indexing system (ca. 2002) 
as consisting of a number of phases, each 
implemented in MapReduce.

n Index construction was just one phase.
n Another phase: transforming a term-partitioned index 

into document-partitioned index.
n Term-partitioned: one machine handles a subrange of terms
n Document-partitioned: one machine handles a subrange of 

documents
n (As we discuss in the web part of the course) most 

search engines use a document-partitioned index … 
better load balancing, etc.)
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Dynamic indexing

n Up to now, we have assumed that collections are static
n They rarely are: 

n Documents come in over time and need to be inserted.
n Documents are deleted and modified.

n This means that the dictionary and postings lists have 
to be modified:
n Postings updates for terms already in dictionary
n New terms added to dictionary
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Other sorts of indexes

n Boolean retrieval systems: docID-sorted index
n new documents are inserted at the end of postings

n Ranked retrieval systems: impact-sorted index
n Postings are often ordered by weight or impact
n Postings with highest impact first
n Insertion can occur anywhere, complicating the 

update of inverted index
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Why compression?

n Use less disk space (saves money)
n Keep more stuff in memory (increases speed)
n Increase speed of transferring data from disk to 

memory (increases speed)
n [read compressed data and decompress] is faster 

than [read uncompressed data]
n Premise: Decompression algorithms are fast

n True of the decompression algorithms we use
n In most cases, retrieval system runs faster on 

compressed postings lists than on uncompressed 
postings lists. 28



Compression in inverted indexes

n First, we will consider space for dictionary
n Make it small enough to keep in main memory

n Then the postings
n Reduce disk space needed, decrease time to read 

from disk
n Large search engines keep a significant part of 

postings in memory
n (Each postings entry is a docID)
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Index parameters vs. what we index 
(details Table 5.1 p80)

size of word types (terms) non-positional
postings

positional postings

dictionary non-positional index positional index

Size(K) ∆% T% Size (K) ∆% T % Size (K) ∆ % T%

Unfiltered 484 109,971 197,879
No numbers 474 -2 -2 100,680 -8 -8 179,158 -9 -9
Case folding 392 -17 -19 96,969 -3 -12 179,158 0 -9
30 stopwords 391 -0 -19 83,390 -14 -24 121,858 -31 -38
150 stopwords 391 -0 -19 67,002 -30 -39 94,517 -47 -52
stemming 322 -17 -33 63,812 -4 -42 94,517 0 -52

∆%: reduction in size from the previous line, except that “30 stopwords” and 
“150 stopwords” both use “case folding” as refereence line.
T%: cumulative (total) reduction from unfiltered 30



Lossless vs. lossy compression

n Lossless compression: All information is preserved.
n What we mostly do in IR.

n Lossy compression: Discard some information
n Several of the preprocessing steps can be viewed 

as lossy compression: case folding, stop words, 
stemming, number elimination.

n One recent research topic (Cha 7): Prune postings 
entries that are unlikely to turn up in the top k list 
for any query.
n Almost no loss quality for top k list.

31



Vocabulary vs. collection size

n Can we assume an upper bound on vocabulary?
n Not really

n Vocabulary keeps growing with collection size
n Heaps’ Law: M = kTb

n M is the size of the vocabulary, T is the number 
of tokens in the collection.

n Typical values: 30 ≤ k ≤ 100 and b ≈ 0.5.
n In a log-log plot of vocabulary vs. T, Heaps’ law 

is a line.
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Heaps’ Law: M = kTb
Vocabulary size M as a 
function of collection size T

For RCV1, the dashed line
log10M = 0.49 log10T + 1.64 
is the best least squares fit.
Thus, M = 101.64T0.49

so k = 101.64 ≈ 44 
and b = 0.49.

Fig 5.1 p81

33



Zipf’s law

n Heaps’ Law gives the vocabulary size in collections.
n We also study the relative frequencies of terms.
n In a natural language, there are very few very frequent 

terms and very many very rare terms.
n Zipf’s law: The ith most frequent term has frequency 

proportional to 1/i .
n cfi ∝ 1/i = a/i where a is a normalizing constant
n cfi is collection frequency: the number of occurrences 

of the term ti in the collection.
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Zipf consequences

n If the most frequent term (the) occurs cf1 times, then
n the second most frequent term (of) occurs cf1/2 times
n the third most frequent term (and) occurs cf1/3 times … 

n Equivalent: cfi = a/i , so
n log cfi = log a - log i
n Linear relationship 
between log cfi and log i

Zipf’s law for Reuters
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Zipf’s law: rank x frequency ~ 
constant
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Zipf’s law examples
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Dictionary compression

n Dictionary is relatively small but we want 
to keep it in memory

n Also, competition with other applications, 
cell phones, onboard computers, fast 
startup time

n So compression of dictionary is important

n …
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Postings compression

n The postings file is much larger than the 
dictionary, factor of at least 10.

n Key desideratum: store each posting compactly.
n A posting for our purposes is a docID.
n For Reuters (800,000 documents), we would use 

32 bits per docID when using 4-byte integers.
n Alternatively, we can use log2 800,000 ≈ 20 bits 

per docID.
n Our goal: use a lot less than 20 bits per docID.
n …
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Index compression summary

n We can now create an index for highly efficient 
Boolean retrieval that is very space efficient

n Only 4% of the total size of the collection
n Only 10-15% of the total size of the text in the 

collection
n However, we’ve ignored positional information
n Hence, space savings are less for indexes used 

in practice
n But techniques substantially the same.
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