
Introduction to Information Retrieval
(Manning, Raghavan, Schutze)

Chapter 6
Scoring term weighting and the 

vector space model

1



Ranked retrieval
n Thus far, our queries have all been Boolean.

n Documents either match or don’t
n Good for expert users with precise understanding of 

their needs and the collection.
n Also good for applications, which can easily consume 

1000s of results
n Not good for the majority of users.

n Most users incapable of writing Boolean queries (or they 
are, but they think it’s too much work).

n Most users don’t want to wade through 1000s of results.
n This is particularly true of web search.

2



Problem with Boolean search: 
feast or famine

n Boolean queries often result in either too few (=0) or too 
many (1000s) results.

n Query 1: “standard user dlink 650”
n 200,000 hits

n Query 2: “standard user dlink 650 no card found”
n 0 hits

n It takes skill to come up with a query that produces a 
manageable number of hits.
n AND gives too few; OR gives too many

3



Ranked retrieval models
n Rather than a set of documents satisfying a 

query expression, in ranked retrieval, the system 
returns an ordering over the (top) documents in 
the collection for a query

n Free text queries: rather than a query language 
of operators and expressions, the user’s query is 
just one or more words in natural language
n Ranked retrieval has normally been associated 

with free text queries and vice versa
n With a ranked list of documents it does not 

matter how large the retrieved set is. 
n Just show top k results, don’t overwhelm the user 4



Scoring as the basis of ranked 
retrieval

n We wish to return in order the documents most 
likely to be useful to the searcher

n How can we rank-order the documents in the 
collection with respect to a query?

n Assign a score – say in [0, 1] – to each document
n This score measures how well document and 

query “match”.

5



Query-document matching scores

n We need a way of assigning a score to a 
query/document pair

n Let’s start with a one-term query
n If the query term does not occur in the document: 

score should be 0
n The more frequent the query term in the 

document, the higher the score (should be)
n We will look at a number of alternatives for this.

6



Take 1: Jaccard coefficient

n A commonly used measure of overlap of two sets 
A and B

n jaccard(A,B) = |A ∩ B| / |A ∪ B|
n jaccard(A,A) = 1
n jaccard(A,B) = 0 if A ∩ B = 0

n Always assigns a number between 0 and 1.

7



Jaccard coefficient: Scoring example

n What is the query-document match score that the 
Jaccard coefficient computes for each of the two 
documents below?

n Query: ides of march
n Document 1: caesar died in march
n Document 2: the long march

8



Issues with Jaccard for scoring

n It doesn’t consider term frequency (how many 
times a term occurs in a document)
n tf weight

n Rare terms in a collection are more informative 
than frequent terms. Jaccard doesn’t consider 
this information
n idf weight

n We need a more sophisticated way of 
normalizing for length
n cosine

9



Bag of words model

n Vector representation doesn’t consider the 
ordering of words in a document

n John is quicker than Mary and Mary is quicker 
than John have the same vectors

n This is called the bag of words model.

10



Term frequency

n The term frequency tft,d of term t in document d is 
defined as the number of times that t occurs in d.

n We want to use term frequency when computing 
query-document match scores. But how?

n Raw term frequency may not be what we want:
n A document with 10 occurrences of the term is more 

relevant than a document with 1 occurrence of the term.
n But not 10 times more relevant.
n Relevance does not increase proportionally with term 

frequency

11



term frequency (tf) weight
n many variants for tf weight, where log-frequency 

weighting is a common one, dampening the effect 
of raw tf (raw count)

log tft,d =  

n 0 → 0, 1 → 1, 2 → 1.3, 10 → 2, 1000 → 4, etc.
n The score is 0 if none of the query terms is 

present in the document.

1 +  log10 tft,d, if tft,d  >  0
0,  otherwise

!
"
#

$#

12



Document frequency

n Rare terms are more informative than frequent terms
n Recall stop words

n Consider a term in the query that is rare in the 
collection (e.g., arachnocentric)

n A document containing this term is very likely to be 
relevant to the query arachnocentric

n → We want a high weight for rare terms like 
arachnocentric.

13



Document frequency, continued

n Consider a query term that is frequent in the collection 
(e.g., high, increase, line)

n A document containing such a term is more likely to be 
relevant than a document that doesn’t, but it’s not a sure 
indicator of relevance.

n For frequent terms, we want positive weights for words 
like high, increase, and line, but lower weights than for 
rare terms.

n We will use document frequency (df) to capture this in 
the score.

n df (£ N) is the number of documents that contain the term
14



Inverse document frequency (idf) weight

n dft is the document frequency of t: the number of 
documents that contain t
n dft is an inverse measure of the informativeness of t
n Inverse document frequency is a direct measure of the 

informativeness of t
n We define the idf (inverse document frequency) of t by

n use log to dampen the effect of N/dft
n Most common variant of idf weight

tt N/df log  idf 10=

15



idf example, suppose N= 1 million
term dft idft
calpurnia 1 6

animal 100 4

sunday 1,000 3

fly 10,000 2

under 100,000 1

the 1,000,000 0

There is one idf value for each term t in a collection.

)/df( log  idf 10 tt N=

16



Effect of idf on ranking
n Does idf have an effect on ranking for one-term 

queries, like
n iPhone

n idf has no effect on ranking one term queries
n idf affects the ranking of documents for queries with at 

least two terms
n For the query capricious person, idf weighting makes 

occurrences of capricious count for much more in the 
final document ranking than occurrences of person.

17



Collection vs. Document frequency
n The collection frequency of t is the number of 

occurrences of t in the collection, counting 
multiple occurrences.

n Example: which word is a better search term 
(and should get a higher weight)?

n The example suggests that df is better for 
weighting than cf

Word Collection frequency Document frequency

insurance 10440 3997

try 10422 8760

18



tf-idf weighting
n The tf-idf weight of a term is the product of its tf weight 

and its idf weight.

tf weight (t,d) x idf weight (t)    

n Increases with the number of occurrences within a 
document

n Increases with the rarity of the term in the collection
n Best known instantiation of TF-IDF weighting

tf -idft,d =

(1+ log10 tft,d )× log10 (N / dft ) 19



Note on terminology

n terminology is not standardized in the 
textbook/literature. tft,d sometimes refers to the 
raw count, sometimes the weight derived from 
the raw count. 

n We use tft,d to mean the raw count only. So tf 
(raw count) and tf weight (weight derived from the 
raw count) are different. tf can be used as tf 
weight, but log tf is a more common variant.

20



Recall: Binary term-document 
incidence matrix

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 1 1 0 0 0 0
Brutus 1 1 0 1 0 0
Caesar 1 1 0 1 1 1

Calpurnia 0 1 0 0 0 0
Cleopatra 1 0 0 0 0 0

mercy 1 0 1 1 1 1
worser 1 0 1 1 1 0

Each document is represented by a binary vector ∈ {0,1}|V|

21



Term-document count matrices

n Consider the number of occurrences of a term in a 
document: 
n Each document is a count vector in ℕv: a column below 

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 157 73 0 0 0 0
Brutus 4 157 0 1 0 0
Caesar 232 227 0 2 1 1

Calpurnia 0 10 0 0 0 0
Cleopatra 57 0 0 0 0 0

mercy 2 0 3 5 5 1
worser 2 0 1 1 1 0

22



Binary → count → weight matrix

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 5.25 2.44 0 0 0 0
Brutus 0.16 6.10 0 0.04 0 0
Caesar 8.59 8.40 0 0.07 0.04 0.04

Calpurnia 0 1.54 0 0 0 0
Cleopatra 2.85 0 0 0 0 0

mercy 1.51 0 2.27 3.78 3.78 0.76
worser 1.37 0 0.69 0.69 0.69 0

Each document is now represented by a real-valued 
vector of TF-IDF weights ∈ R|V|

23



Documents as vectors

n So we have a |V|-dimensional vector space
n Terms are axes of the space
n Documents are points or vectors in this space
n Very high-dimensional

n hundreds of millions of dimensions when you apply this 
to a web search engine

n This is a very sparse vector
n most entries are zero

24



Example: raw counts as weights

25



Queries as vectors

n Key idea 1: Do the same for queries: represent 
them as vectors in the space

n Key idea 2: Rank documents according to their 
proximity to the query in this space

n proximity = similarity of vectors
n proximity ≈ inverse of distance
n Recall: We do this because we want to get away 

from the either-in-or-out Boolean model.
n Instead: rank more relevant documents higher 

than less relevant documents
26



Formalizing vector space proximity

n Distance between two vectors
n between two end points of the two vectors
n Euclidean distance? 
n a bad idea. It’s large for vectors of different lengths.

27



Why Euclidean distance is bad
The Euclidean 
distance between q
and d2 is large even 
though the
distribution of terms 
in the query q and 
the distribution of
terms in the 
document d2 are
very similar.

28



Use angle instead of distance

n Thought experiment: take a document d and 
append it to itself. Call this document d′.

n “Semantically” d and d′ have the same content
n The Euclidean distance between the two 

documents can be quite large
n The angle between the two documents is 0, 

corresponding to maximal similarity.

29



From angles to cosines

n The following two notions are equivalent.
n Rank documents in decreasing order of the angle between query 

and document
n Rank documents in increasing order  

of cosine(query, document)
n Cosine is a monotonically decreasing 

function for the interval [0o, 180o]
n In general, cosine similarity ranges [-1, 1]
n In the case of information retrieval, the cosine similarity of two 

documents will range from 0 to 1
n term frequencies (tf-idf weights) cannot be negative
n The angle between two term frequency vectors cannot be greater than 90°
n cosine (90) = 0, (completely unrelated) 
n cosine (0) = 1, (completely related) 30



Length normalization

n A vector can be (length-) normalized by dividing 
each of its components by its length – for this we 
use the L2 norm:

n Dividing a vector by its L2 norm makes it a unit 
(length) vector

n Effect on the two documents d and d′ (d 
appended to itself) from earlier slide: they have 
identical vectors after length-normalization.

n The cosine of the angle between two normalized 
vectors is the dot product of the two

å=
i i
xx 2

2



31



cosine(query,document)

cos(!q,
!
d ) =

!q •
!
d
!q
!
d
=
!q
!q
•

!
d
!
d
=

qtdtt=1

V
∑
qt
2

t=1

V
∑ dt

2

t=1

V
∑

Dot product Unit vectors

qt is the tf-idf weight of term t in the query
dt is the tf-idf weight of term t in the document

cos(q,d) is the cosine similarity of q and d … or,
equivalently, the cosine of the angle between q and d.

• The cosine similarity can be seen as a method of normalizing 
document length during comparison

32



Cosine similarity example
d           q                 normalized d  normalized q

t1     1.4       0.7                       0.84              0.83
t2     0.8       0.47                     0.48              0.56
t3     0.4        0                         0.24              0 
sim(d, q) = 1.4x0.7 + 0.8x0.47 + 0.4x0                     _  

sqrt(1.42+0.82+0.42) x sqrt(0.72+0.472+02)
= 1.36      _

1.66 x 0.84 
= 0.97

sim(d,q) = 0.84x0.83 + 0.48x0.56 + 0.24x0 = 0.97
33



More on the cosine formula

cos(!q,
!
d ) =

!q •
!
d
!q
!
d
=
!q
!q
•

!
d
!
d
=

qtdtt=1

V
∑
qt
2

t=1

V
∑ dt

2

t=1

V
∑

=
qtdtt∈T∑

|| q || * || d ||

• T is the set of terms q and d share in common. If T is empty, then 
cosine similarity = 0

• qt is the tf-idf weight of term t in the query q, i.e, 
tf weight(t,q) x idf weight(t)

• dt is the tf-idf weight of term t in the document d, i.e,
tf weight(t,d) x idf weight(t)

• In actual implementation, do we need to represent q and d as 
vectors of size |V| ? 34



More variants of TF-IDF weighting

SMART notation: columns headed ‘n’ are acronyms
for weight schemes.

35



Weighting may differ in queries vs 
documents

n Many search engines allow for different weightings for 
queries vs documents

n SMART notation: denotes the combination in use in an 
engine, with the notation ddd.qqq, using acronyms 
from the previous table

n A very standard weighting scheme: lnc.ltc
n Document: logarithmic tf, no idf, cosine normalization

n no idf: for both effectiveness and efficiency reasons
n Query: logarithmic tf, idf, cosine normalization

36



lnc.ltc example
n document 1 =  “good good news”   document 2 = “awful awful news”
n query = “good awful”
n In the table, log tf is the tf weight based on log-frequency weighting. 

d is the document vector. d’ is the length-normalized d. q is the query 
vector. q’ is the length-normalized q. Assume N=10,000,000

n The cosine similarity between d and q is the dot product of d’ and q’.
n Cosine(d1,q) = 0x0.894 + 0.793x0.447 + 0.61x0 = 0.354
n Cosine(d2,q) = 0.793x0.894 + 0x0.447 + 0.61x0 = 0.709
n If idf is not used for the weighting of q?

n In implementation: representing vectors and computing cosine

d1="good good news" d2="awful awful news" query="good awful"

terms df idf tf logtf d d' tf logtf d d' tf logtf q q'

awful 1000 4 0 0 0 0 2 1.3 1.3 0.793 1 1 4 0.894

good 100000 2 2 1.3 1.3 0.793 0 0 0 0 1 1 2 0.447

news 10000 3 1 1 1 0.61 1 1 1 0.61 0 0 0 0

37



Summary – vector space ranking

n Represent the query as a weighted TF-IDF vector
n Represent each document as a weighted TF-IDF 

vector
n Compute the cosine similarity score for the query 

vector and each document vector
n Rank documents with respect to the query by score
n Return the top k (e.g., k = 10) to the user

38



Gerard Salton

n 1927-1995. Born in Germany, 
Professor at Cornell (co-founded 
the CS department), Ph.D from 
Harvard in Applied Mathematics

n Father of information retrieval
n Vector space model
n SMART information retrieval 

system
n First recipient of SIGIR outstanding 

contribution award, now called the 
Gerard Salton Award

39


