Introduction to Information Retrieval
(Manning, Raghavan, Schutze)

Chapter 7
Computing scores in a complete
search system

Content

= Speeding up vector space
ranking

s Putting together a complete search
system

Efficiency bottleneck

= [op-k retrieval: we want to find the K docs In
the collection “nearest” to the query = K
largest query-doc cosines.

= Primary computational bottleneck in scoring:
cosine computation

= Can we avoid all this computation?
= Yes, but may sometimes get it wrong

= a doc not in the top K may creep into the
list of K output docs

= Is this such a bad thing? ;

Cosine similarity is only a proxy
- —
= User has a task and a query formulation
= Cosine matches docs to query

= [hus cosine is anyway a proxy for user
nappiness

= If we get a list of K docs “close” to the top K
Dy cosine measure, should be ok

= Thus, it s acceptable to do inexact top k
document retrieval

Inexact top K: generic approach

= Find a set A of contenders, with K < [A| << N

= A does not necessarily contain the top K, but
has many docs from among the top K

= Return the top Kdocs in A

= [he same approach is also used for other
(non-cosine) scoring functions

s Will look at several schemes following this
approach

Index elimination

= Only consider high-idf query terms

= Only consider docs containing many query terms

High-idf query terms only
|
= For a query such as catcher in the rye
= Only accumulate scores from catcher and rye

s Intuition: in and the contribute little to the scores
and don’ t alter rank-ordering much

s Benefit:

s Postings of low-idf terms have many docs — these
(many) docs get eliminated from A

Docs containing many query terms

= Any doc with at least one query term is a
candidate for the top K output list

s For multi-term queries, only compute scores for
docs containing several of the query terms

= Say, at least 3 out of 4

= Imposes a “soft conjunction” on queries seen on
web search engines (early Google)

s Easy to implement in postings traversal

3 of 4 query terms

Antony| "——=[314 [8] 16] 32] 64128

Brutus] '——=>[214 7] 8] 16] 32] 64[128

Caesar| "——>[1] 2] 31 518] 13] 21 34
——>[13]16]32

||

Calpurnia’

Scores only computed for 8, 16 and 32.

Champion lists

= Precompute for each dictionary term ¢, the r docs of
highest weight in t ’s postings
= Call this the champion list for ¢
= (aka fancy list or top docs for t)

= Note: postings are sorted by doclD, a common order
s Note that r has to be chosen at index time
= I not necessarily the same for different terms

= At query time, only compute scores for docs in the
champion list of some query term

» Pick the K top-scoring docs from amongst these

10

Static quality scores

= \We want top-ranking documents to be both
relevant and authoritative

s Relevance is being modeled by cosine scores

= Authority is typically a query-independent
property of a document

s Examples of authority signals
= Wikipedia among websites
= Articles in certain newspapers

= A paper with many citations Quantitative
= Many diggs, Y!buzz el.icio.us marks
= (Pagerank) 1

Modeling authority

= Assign to each document a query-independent
quality score in [0,1] to each document d

= Denote this by g(d)

= Thus, a quantity like the number of citations is
scaled into [0,1]

12

Net score

= Consider a simple total score combining cosine
relevance and authority

= net-score(q,d) = g(d) + cosine(q,d)

s Can use some other linear combination than an
equal weighting

s Now we seek the top K docs by net score

13

Top K by net score — idea 1

= Order all postings by g(d)

= Key: this is a common ordering for all postings

= Thus, can concurrently traverse query terms’
postings for

= Postings intersection
= Cosine score computation

= Under g(d)-ordering, top-scoring docs likely to

appear early in postings traversal

= In time-bound applications (say, we have to return whatever
search results we can in 50 ms), this allows us to stop
postings traversal early

14

Top K by net score — idea 2

= Can combine champion lists with g(d)-ordering

s Maintain for each term a champion list of the r
docs with highest g(d) + tf-idf;,

s Seek top-K results from only the docs in these
champion lists

= Note: postings are sorted by g(d), a
common order

15

Top K by net score — idea 3

= For each term, we maintain two postings lists
called high and low

= Think of high as the champion list
s \When traversing postings on a query, only traverse
high lists first
= If we get more than K docs, select the top K and stop
= Else proceed to get docs from the low lists

s Can be used even for simple cosine scores,
without global quality g(d)

= A means for segmenting index into two tiers
= Tiered indexes (later) 16

Impact-ordered postings

= We only want to compute scores for docs for which
wrf; 4 IS high enough

= \We sort each postings list by tf; ; or wf, 4

= Now: not all postings in a common order!

» If common order (doclD, g(d)), supports concurrent traversal of all
query terms’ posting lists. Computing scores in this manner is
referred to as “document-at-a-time scoring”

s Otherwise, “term-at-a-time”

= How do we compute scores in order to pick off top K?
= Two ideas follow

17

1. Early termination

= When traversing t s postings, stop early after
either

» a fixed number of r docs
= Wf,, drops below some threshold

= Take the union of the resulting sets of docs
= One from the postings of each query term

= Compute only the scores for docs in this union

18

2. Idf-ordered terms

= When considering the postings of query terms
s Look at them in order of decreasing idf
» High idf terms likely to contribute most to score

= As we update score contribution from each query
term

» Stop if doc scores relatively unchanged
= Can apply to cosine or some other net scores

19

Cluster pruning: preprocessing

= Pick YN docs at random: call these leaders
= Why random?
s Fast: leaders reflect data distribution

s For every other doc, pre-compute nearest
leader

= Docs attached to a leader: its followers;
= Likely: each leader has ~ VN followers.

20

Cluster pruning: query processing

= Process a query as follows:
= Given query Q, find its nearest leader L.

m Seek K nearest docs from among L's
followers.

21

Visualization

@1 cader @ ollower 22

Content

= Speeding up vector space ranking

= Putting together a complete search
system

» Components of an IR system

23

Parametric indexes (p102)

Thus far, a doc has been a sequence of terms

In fact documents have multiple parts, some with
special semantics:

= Author, Date of publication, Language, Format, Title
These constitute the metadata about a document

This metadata would generally include fields such as
the date of creation and the format of the document, as
well the author and possibly the title of the document.

The possible values of a field should be thought of as
finite - for instance, the set of all dates of authorship.

24

Parametric indexes

= \We sometimes wish to search by these metadata

» E.g., find docs authored by William Shakespeare in the year
1601, containing alas poor Yorick

= Parametric (or field) index: there is one parametric index
for each field (say, date of creation)

= Parametric search typically treated as conjunction
» doc must be authored by shakespeare

25

Zone Indexes

s Zones are similar to fields, except the contents of a zone
can be arbitrary free text, whereas a field may take on a
relatively small set of values. For instance, document
titles and abstracts are generally treated as zones.

= [itle, Abstract, References ...

s Build inverted indexes on zones as well to permit
qguerying, e.g.,
» find documents with merchant in the title and the phrase
gentle rain in the body

26

Example zone indexes

william.abstract |— 11 > 121 > 1441 > 1729
william.title > 2 > 4 > 8 > 16
william.author > 2 > 3 > 5 > 8

i)

Encode zones in dictionary vs. postings.

william » 2.author,2.title ~ 3.author » 4 .title ~ 5.author

Tiered indexes

= Break postings up into a hierarchy of lists
= Most important

= Least important
= Can be done by g(d) or another measure

= Inverted index thus broken up into tiers of
decreasing importance

= At query time use top tier unless it fails to yield K
docs
= If so drop to lower tiers

28

Example tiered index

auto » Doc2
Tier 1 best
car » Doc1 » Doc3
insurance » Doc2 » Doc3
auto
best » Doc1 » Doc3
Tier 2
car
insurance
auto » Doc1
Tier 3 best
car » Doc2
29
insurance

Query term proximity

= Free text queries: just a set of terms typed into
the query box — common on the web

s Users prefer docs in which query terms occur
within close proximity of each other

= Let wbe the smallest window in a doc containing
all query terms, e.qg.,

m For the query strained mercy the smallest
window in the doc The quality of mercy is not
strained is 4 (words)

= Would like scoring function to take this into
account — how? 20

Query parsers

= Free text query from user may in fact spawn one
or more queries to the indexes, e.g. query rising

interest rates
= Run the query as a phrase query

= If <K docs contain the phrase rising interest rates,
run the two phrase queries rising interest and
interest rates

= If we still have <K docs, run the vector space
query rising interest rates

= Rank matching docs by vector space scoring
= [his sequence is issued by a query parser

31

Aggregate scores

s \We've seen that score functions can combine
cosine, static quality, proximity, etc.

= How do we know the best combination?
= Some applications — expert-tuned
m Increasingly common: machine-learned

32

Putting it all together

Parsing

Luserquery |

Linguistics ﬂ

/L

Free text query parser

U

Indexers

i

[Results
page

Spell correction| | Scoring and rankingJ

I

Metadata in | Inexact : : z
zone and top K Tlergd mvgrted k-gram Scoring
i irdees | ranisval positional index parameters raining
Indexes MLR g

33

