
Introduction to Information Retrieval
(Manning, Raghavan, Schutze)

Chapter 7
Computing scores in a complete

search system

1

Content

n Speeding up vector space
ranking

n Putting together a complete search
system

2

Efficiency bottleneck

n Top-k retrieval: we want to find the K docs in
the collection “nearest” to the query Þ K
largest query-doc cosines.

n Primary computational bottleneck in scoring:
cosine computation

n Can we avoid all this computation?
n Yes, but may sometimes get it wrong

n a doc not in the top K may creep into the
list of K output docs

n Is this such a bad thing? 3

Cosine similarity is only a proxy

n User has a task and a query formulation
n Cosine matches docs to query
n Thus cosine is anyway a proxy for user

happiness
n If we get a list of K docs “close” to the top K

by cosine measure, should be ok
n Thus, it’s acceptable to do inexact top k

document retrieval

4

Inexact top K: generic approach

n Find a set A of contenders, with K < |A| << N
n A does not necessarily contain the top K, but

has many docs from among the top K
n Return the top K docs in A

n The same approach is also used for other
(non-cosine) scoring functions

n Will look at several schemes following this
approach

5

Index elimination

n Only consider high-idf query terms

n Only consider docs containing many query terms

6

High-idf query terms only

n For a query such as catcher in the rye
n Only accumulate scores from catcher and rye
n Intuition: in and the contribute little to the scores

and don’t alter rank-ordering much
n Benefit:

n Postings of low-idf terms have many docs ® these
(many) docs get eliminated from A

7

Docs containing many query terms

n Any doc with at least one query term is a
candidate for the top K output list

n For multi-term queries, only compute scores for
docs containing several of the query terms
n Say, at least 3 out of 4
n Imposes a “soft conjunction” on queries seen on

web search engines (early Google)
n Easy to implement in postings traversal

8

3 of 4 query terms

Brutus

Caesar

Calpurnia

1 2 3 5 8 13 21 34

2 4 8 16 32 64128

13 16

Antony 3 4 8 16 32 64128

32

Scores only computed for 8, 16 and 32.

9

Champion lists

n Precompute for each dictionary term t, the r docs of
highest weight in t’s postings
n Call this the champion list for t
n (aka fancy list or top docs for t)

n Note: postings are sorted by docID, a common order
n Note that r has to be chosen at index time

n r not necessarily the same for different terms
n At query time, only compute scores for docs in the

champion list of some query term
n Pick the K top-scoring docs from amongst these

10

Quantitative

Static quality scores

n We want top-ranking documents to be both
relevant and authoritative

n Relevance is being modeled by cosine scores
n Authority is typically a query-independent

property of a document
n Examples of authority signals

n Wikipedia among websites
n Articles in certain newspapers
n A paper with many citations
n Many diggs, Y!buzzes or del.icio.us marks
n (Pagerank) 11

Modeling authority

n Assign to each document a query-independent
quality score in [0,1] to each document d
n Denote this by g(d)

n Thus, a quantity like the number of citations is
scaled into [0,1]

12

Net score

n Consider a simple total score combining cosine
relevance and authority

n net-score(q,d) = g(d) + cosine(q,d)
n Can use some other linear combination than an

equal weighting
n Now we seek the top K docs by net score

13

Top K by net score – idea 1

n Order all postings by g(d)
n Key: this is a common ordering for all postings

n Thus, can concurrently traverse query terms’
postings for
n Postings intersection
n Cosine score computation

n Under g(d)-ordering, top-scoring docs likely to
appear early in postings traversal
n In time-bound applications (say, we have to return whatever

search results we can in 50 ms), this allows us to stop
postings traversal early

14

Top K by net score – idea 2

n Can combine champion lists with g(d)-ordering
n Maintain for each term a champion list of the r

docs with highest g(d) + tf-idftd
n Seek top-K results from only the docs in these

champion lists
n Note: postings are sorted by g(d), a

common order

15

Top K by net score – idea 3

n For each term, we maintain two postings lists
called high and low
n Think of high as the champion list

n When traversing postings on a query, only traverse
high lists first
n If we get more than K docs, select the top K and stop
n Else proceed to get docs from the low lists

n Can be used even for simple cosine scores,
without global quality g(d)

n A means for segmenting index into two tiers
n Tiered indexes (later) 16

Impact-ordered postings

n We only want to compute scores for docs for which
wft,d is high enough

n We sort each postings list by tft,d or wft,d
n Now: not all postings in a common order!

n If common order (docID, g(d)), supports concurrent traversal of all
query terms’ posting lists. Computing scores in this manner is
referred to as “document-at-a-time scoring”

n Otherwise, “term-at-a-time”

n How do we compute scores in order to pick off top K?
n Two ideas follow

17

1. Early termination

n When traversing t’s postings, stop early after
either
n a fixed number of r docs
n wft,d drops below some threshold

n Take the union of the resulting sets of docs
n One from the postings of each query term

n Compute only the scores for docs in this union

18

2. idf-ordered terms

n When considering the postings of query terms
n Look at them in order of decreasing idf

n High idf terms likely to contribute most to score
n As we update score contribution from each query

term
n Stop if doc scores relatively unchanged

n Can apply to cosine or some other net scores

19

Cluster pruning: preprocessing

n Pick ÖN docs at random: call these leaders
n Why random?
n Fast; leaders reflect data distribution

n For every other doc, pre-compute nearest
leader
n Docs attached to a leader: its followers;
n Likely: each leader has ~ ÖN followers.

20

Cluster pruning: query processing

n Process a query as follows:
n Given query Q, find its nearest leader L.
n Seek K nearest docs from among L’s

followers.

21

Visualization

Query

Leader Follower 22

Content

n Speeding up vector space ranking
n Putting together a complete search

system
n Components of an IR system

23

Parametric indexes (p102)

n Thus far, a doc has been a sequence of terms
n In fact documents have multiple parts, some with

special semantics:
n Author, Date of publication, Language, Format, Title

n These constitute the metadata about a document
n This metadata would generally include fields such as

the date of creation and the format of the document, as
well the author and possibly the title of the document.

n The possible values of a field should be thought of as
finite - for instance, the set of all dates of authorship.

24

Parametric indexes

n We sometimes wish to search by these metadata
n E.g., find docs authored by William Shakespeare in the year

1601, containing alas poor Yorick

n Parametric (or field) index: there is one parametric index
for each field (say, date of creation)

n Parametric search typically treated as conjunction
n doc must be authored by shakespeare

25

Zone indexes

n Zones are similar to fields, except the contents of a zone
can be arbitrary free text, whereas a field may take on a
relatively small set of values. For instance, document
titles and abstracts are generally treated as zones.
n Title, Abstract, References …

n Build inverted indexes on zones as well to permit
querying, e.g.,
n find documents with merchant in the title and the phrase

gentle rain in the body

26

Example zone indexes

Encode zones in dictionary vs. postings.

27

Tiered indexes

n Break postings up into a hierarchy of lists
n Most important
n …
n Least important

n Can be done by g(d) or another measure
n Inverted index thus broken up into tiers of

decreasing importance
n At query time use top tier unless it fails to yield K

docs
n If so drop to lower tiers

28

Example tiered index

29

Query term proximity

n Free text queries: just a set of terms typed into
the query box – common on the web

n Users prefer docs in which query terms occur
within close proximity of each other

n Let w be the smallest window in a doc containing
all query terms, e.g.,

n For the query strained mercy the smallest
window in the doc The quality of mercy is not
strained is 4 (words)

n Would like scoring function to take this into
account – how? 30

Query parsers

n Free text query from user may in fact spawn one
or more queries to the indexes, e.g. query rising
interest rates
n Run the query as a phrase query
n If <K docs contain the phrase rising interest rates,

run the two phrase queries rising interest and
interest rates

n If we still have <K docs, run the vector space
query rising interest rates

n Rank matching docs by vector space scoring
n This sequence is issued by a query parser

31

Aggregate scores

n We’ve seen that score functions can combine
cosine, static quality, proximity, etc.

n How do we know the best combination?
n Some applications – expert-tuned
n Increasingly common: machine-learned

32

Putting it all together

33

