Assignment 6 (100 points, Chapters 17, 20, 21, 28)
Submission: Please type your answers in this WORD file and submit to Tracs. Please also zip all the created *.jff files into a single file and submit to Tracs.

Note: You do not need to answer questions labeled with “self-study”, but you’re required to study them.
1. (10) The following is a high level description for a Turing machine M. List the first four elements of L(M) in lexicographic order (shortest first, then alphabetically if same length).

1. Move right.
2. Loop:
2.1. If the current symbol is x, change it to $ and move right. Otherwise exit loop.
2.2. Scan rightwards, past x’s and #’s to find y.
2.3. If y found, change it to # and move right. Otherwise reject.
2.4. Scan rightwards, past y’s and %’s to find z.
2.5. If z found, change it to % and move left. Otherwise reject.
2.6. Scan leftwards, past x’s, y’s, #’s and %’s to find $.
2.7. When finding the first $, move right, and go back to 2.1.
3. If the current symbol is #, more right. Otherwise reject.
4. Scan rightwards, past #’s and %’s, to find the blank symbol.
5. When finding the first blank symbol, move right and accept.

2. (20) Design a Turing machine M that decides the language L = {0n1n | n 1}.
(1) Give a high level description of M in English.

(2) Define M with transition diagram. (create a6-2.jff and submit to TRACS, cut and paste figure below)

(3) In JFLAP, run your created Turing machine on the following list of testing strings (Click Input then Multiple Run. Input all the testing strings and click Run inputs). Indicate which of the testing strings are accepted. Your answer MUST be based on the actual running results from JFLAP.

Testing strings: ,0,1,01,10,001,011,0011,0101,1010

3. (10) Design a Turing machine M that decides the language L = {0n1n | n 0}.
(1) Give a high level description of M in English.

(2) Define M with transition diagram. (create a6-3.jff and submit to TRACS, cut and paste figure below)

(3) In JFLAP, run your created Turing machine on the following list of testing strings (Click Input then Multiple Run. Input all the testing strings and click Run inputs). Indicate which of the testing strings are accepted. Your answer MUST be based on the actual running results from JFLAP..

Testing strings: ,0,1,01,10,001,011,0011,0101,1010

4. (30) True or False. Briefly explain.

(1). If L1 is not in D and L2 is regular, then it is possible that L1 L2 is regular.

(2). The union of two context-free languages must be in D.

(3). If L1 L2 is in D then both L1 and L2 must be in D.

(4). If L is in SD and its complement is context-free, then L must be in D.

(5). If L is in SD then its complement must not be in D.

(6). If L1 is in D and L2 is in SD then L1 L2 must be in D.	

(7). If L1 is in D and L2 is in SD then L1 L2 must be in SD.	

(8). If L1 and L2 are in D, then L1 - L2 must be in D.

(9). If L1 and L2 are not in D, then L1 - L2 cannot be regular.

(10). If L1 and L2 are not in D, then L1 L2 cannot be in D.

(11). Every infinite language has a subset that is not in D.

(12). If H were in D then every SD language would be in D.

(13). {<M> : L(M) is context free} is in D.

 * Removed coverage of Rice’s Theorem. Now this question is replaced by (21)

(14). {<M> : L(M) is not context free} is in D.

 * Removed coverage of Rice’s Theorem. Now this question is replaced by (23)

(15). If L1 is reducible to L2 and L2 D then L1 D.	

(16). If L1 is reducible to L2 and L2 SD then L1 SD.	

(17). If L1 is reducible to L2 and L1 D, then L2 D. 	

(18). If L1 is reducible to L2 and L1 SD, then L2 SD. 	

(19). If L1 is reducible to L2 and L2 D, then L1 D. 	

(20). If L1 is reducible to L2 and L2 SD, then L1 SD. 	

(21). (self-study) If L1 L2 is in SD then both L1 and L2 must be in SD.

False.

Let L1 be H and let L2 be {a}. Then L1 L2 = , which is semidecidable. But L1 is not.

(22). (self-study) If L1 and L3 are in D and L1 L2 L3, then L2 must be in D.

False
Let L1 be and let L3 be *. Both of them are in D. Suppose L2 is H, which is not in D.

Another example:
Let L1 = . Let L3 = {<M>}. Let L2 = {<M> : M accepts }, which is not decidable.

(23). (self-study) Every infinite language has a subset that is not in SD.

True.
Let L be any infinite language. It has an uncountable number of subsets. There are only countably infinitely many semi-decidable languages (since there are only countably infinitely many Turing machines).

(24). (self-study){<M> : |L(M)| > 5} is in D.

False.
Rice’s theorem. The property in question is a nontrivial property of the SD languages.

(25). (self-study) {<M> : L(M) is in SD} is in D.

True.
The definition of an SD language is that it is accepted by some Turing machine.
Note that Rice’s theorem cannot be applied because this is a trivial property of SD languages (it’s like saying every SD language is in SD).

(26). (self-study) Rice’s Theorem tells us that {<M1, M2> : L(M1) L(M2)} is not in D.	

False.
This language is indeed not in D. But Rice’s Theorem doesn’t apply because the property in question is of an ordered pair of SD languages, not a single language.

(27). (self-study) Rice’s Theorem tells us that {<M> : M accepts all even length strings} is not in SD.

False.
This language is indeed not in SD. But Rice’s Theorem only tells us that it is not in D.

5. (15) Let R be the reduction from 3-SAT to INDEPENDENT-SET as discussed in class.

(1) Show the 3-CNF formula for which R builds the following graph.

											

	 P					 P				 T
											
											

 	 Q		T			Q		S		Q		S

(2) Show the graph that R builds for 3-CNF formula (A B C) (B C D). (Note: you may cut and paste the above graph and modify it.)

											

6. (15) Let R be the reduction from 3-SAT to VERTEX-COVER as discussed in class.

(1) Show the 3-CNF formula for which R builds the following graph.

	P	P		Q	Q		S	S		T	T
											

	 P					P				 T
											
											

 	 Q		T			Q		S		Q		S

(2) Show the graph that R builds for 3-CNF formula (A B C) (B C D). (Note: you may cut and paste the above graph and modify it.)

7. (self-study) Show CLIQUE is NP-complete by first showing it is in NP and then showing it is NP-hard:

CLIQUE = {<G, k> : G is an undirected graph with vertices V and edges E, k is an integer, 1 k |V|, and G contains a k-clique}.

image1.png
Proof. 1. To show CLIQUE is in NP, our verifier takes a graph G(V,E), k, and a set S and checks if |S| > k
then checks whether (u,v) € E for every u,v € S. Thus the verification is done in O(n?) time.

2. Next we need to show that CLIQUE is NP-hard; that is we need to show that CLIQUE is at least as hard
as any other problem in NP. To do so, we give a reduction from 3-SAT (which we've shown is NP-
complete) to CLIQUE. Our goal is the following:

Given an instance ¢ of 3-SAT, we will produce a graph G(V, E) and an integer k such that G has a clique
of size at least k if and only if ¢ is satisfiable.

Let ¢ be a 3-SAT instance and C;, Cs, .., Cyn be the clauses of ¢ defined over the variables {z1,2y, .., 7,}.
What we need to do is construct an instance of CLIQUE (a graph) that would somehow capture the satisfi-
ability of the clauses of .

We will represent every clause C; as C;
is a 3-SAT instance, we know that ¢ < 3.

(201,22, s 22t} Where each 2,; represents a literal in C;. Since ¢

We construct a graph G(V, E) by adding t vertices for every clause C; = {z1, %2, .., z¢}. In total this takes

O(t-m) = O(m) time since ¢ < 3. Then for every pair of vertices vas, ved in G, we will add the edge (vas, ved)
if and only if we satisfy two conditions:

ate (1)

Zab # ~2ed 2)

image2.png
‘What do these two conditions mean? Well (1) implies that the literals 2q, 2.4 corresponding to the vertices
Vab Vg Tespectively belong to different clauses C, # C. in ¢. The second condition implies that both
literals can be satisfied simultaneously. This step of the construction takes O(m?) time. The final step is to
determine the value of k; we wil set & to be m, the number of clauses in ¢.

Now I claim that ¢ is satisfiable if and only G as constructed above has a clique of size at least k = m.

First suppose ¢ is satisfiable. Then there exists a satisfying assignment (2,3, ..., z5) such that every clause
C; in ¢ is satisfied. Notice that to satisfy a clause C;, we just need one of its literals in {zi1, 22, .. 2t} to be
satisfied. We iterate through the clauses and choose one satisfied literal from every clause which we denote

by (27,23, s 75). Let v1, vz, .., U, be the corresponding vertices in G to the satisfied literals we selected.

The set S = {v1,vz,...v,,} must form an m-clique in G. Why? Well notice that {23, ..., all have
the same truth assignment, since otherwise z} = 2} for some i, j € [1,m] thus implying that one of 2} and
2} is not the satisfying literal of C;, C;, a contradicfion to our choice of the 2* literals. Notice also that the
2 belong to different clauses, that’s how we chose them. Therefore, by the construction of G, every pair
of vy, .., v, must have a connecting edge and thus § = {vy, vy, ...v,y} forms an m-clique in G.

Conversely, suppose G has a clique of size at least m = k. Let vy, v, ., v be a clique in G of size ¢ > m, then
the first m vertices 1, .., v must also form a clique in G. Since there are no edges connecting vertices from
the same clause, every v; corresponds to a literal ; from exactly one clause C;. Moreover, since vy, ., v
is a clique, the corresponding literals 2, 2; of any pair vi,v; € {v1,...,vm} can be satisfied simultancously
(by construction). Now, to construct a satisfying assignment z,..., 7, for ¢, we just need to satisfy all of
21,0z and assign the remaining variables arbitrarily. Every C; contains one z, and every is satisfied
thus every C; is satisfied and so ¢ is satisfied.

To conclude, we've shown that CLIQUE is in NP and that it is NP-hard by giving a reduction from 3-SAT.
Therefore CLIQUE is NP-complete.

