
Pushdown Automata

Chapter 12
1

Recognizing Context-Free Languages
We need a device similar to an FSM except that it

needs more power.

The insight: Precisely what it needs is a stack, which
gives it an unlimited amount of memory with a
restricted structure.

Example: Bal (the balanced parentheses language)

 (((()))

2

Before Defining PDA

• It’s defined as nondeterministic
• DFSM = NDFSM = Regular language

• NDPDA = Context-free language > DPDA

• In contrast to regular languages, where nondeterminism is a

convenient design tool.

• Some context-free languages do not have equivalent DPDA to

recognize them.

3

Before Defining PDA
Alternative equivalent PDA definitions
• Our version is sometimes referred to as “Generalized extended

PDA” (GPDA), a PDA which writes an entire string to the stack or
removes an entire string from the stack in one step.
• In some definition, M may pop only a single symbol but it may push any

number of them.
• In some definition, M may pop and push only a single symbol.

• In our version, M accepts w only if, when it finishes reading w, it is in
an accepting state and its stack is empty.
• Finite state acceptance: when it finishes reading w, it is in an

accepting state, regardless of the content of the stack.
• Empty stack acceptance: when it finishes reading w, the stack is

empty, regardless of the state M is in.

• We do not use “bottom of stack marker” but some do.

• All of these are provably equivalent as they recognize the same L.

Note: JFLAP uses a stack marker, either finite state or empty stack acceptance.
So, the examples in the book may not run well in JFLAP.

4

Before Defining PDA

• Alternative non-equivalent variants
• Variation 1 (Tag systems or Post machines): FSM + a first-in,

first-out (FIFO) queue (instead of a stack)

• Variation 2: FSM + two stacks

• Both are more powerful, equivalent to Turing machines.

5

Definition of a (Nondeterministic)
Pushdown Automaton

M = (K, S, G, D, s, A), where:
 K is a finite set of states
 S is the input alphabet
 G is the stack alphabet
 s Î K is the initial state
 A Í K is the set of accepting states, and
 D is the transition relation. It is a finite subset of

 (K ´ (S È {e}) ´ G*) ´ (K ´ G*)

 state input or e string of state string of
 symbols symbols
 to pop to push
 from top on top
 of stack of stack 6

Transition
(K ´ (S È {e}) ´ G*) ´ (K ´ G*)

 state input or e string of state string of
 symbols symbols
 to pop to push
 from top on top
 of stack of stack

((q1, c, g1), (q2, g2))
• If c matches the input and g1 matches
the current top of the stack, the transition
From q1 to q2 can be taken.
• Then, c will be removed from the input, g1 will be popped from the

stack, and g2 will be pushed onto it.
• M cannot peek at the top of the stack without popping
• If c = e, the transition can be taken without consuming any input
• If g1 = e, the transition can be taken without checking the stack or

popping anything. Note: it’s not saying “the stack is empty”.
• If g2 = e, nothing is pushed onto the stack when the transition is taken.

q1 q2
c / g1 / g2

7

Configuration
To describe the execution of machine M on input w, we need
a few definitions.

A configuration of M is an element of K ´ S* ´ G*.

• It captures the three things that decide M’s future
behavior:
– Current state
– Input that is still left to read
– Contents of its stack

• It provides a “snapshot” of the system at a particular
execution/processing step.

The initial configuration is (s, w, e)
8

Manipulating the Stack
c will be written as cab

a

b

If c1c2…cn is pushed onto the stack: rightmost first

 c1
 c2

 cn
 c
 a
 b

c1c2…cncab

9

The Yields Relations
During execution, when a state transition occurs, the
system moves from one configuration to another.

Let c be any element of S È {e},
Let g1, g2 and g be any elements of G*, and
Let w be any element of S*.

Then: (q1, cw, g1g) |- (q2, w, g2g) iff ((q1, c, g1), (q2, g2)) Î D.

After the transition, state q1 -> q2 , remaining string cw ->
w, stack content g1g -> g2g

Let |-* be the reflexive, transitive closure of |-
C1 yields configuration C2 iff C1 |-* C2

10

Nondeterminism
If M is in some configuration (q1, s, g) it is possible that:

• D contains exactly one transition that matches.

• D contains more than one transition that matches.

• D contains no transition that matches.

11

Accepting
• M accepts a string w iff there exists some path that accepts it.

– Recall a path is a maximal sequence of execution/processing steps (described by
configurations) from the start

• Predefined accepting conditions: (1) all symbols in w have been
processed/consumed. (2) in an accepting state. (3) stack is empty.

 More formally, accepting configuration for PDA: (q, e, e) where q Î A

• M halts upon acceptance. Recall if one path halts and accepts, M halts
and accepts. Other paths may:

– Read all the input and halt in a nonaccepting state (reject)
– Read all the input and halt in an accepting state with the stack not empty (reject)
– Reach a dead end where no more input can be read (reject)
– Loop forever and never finish reading the input (infinite path)

• The language accepted by M, denoted L(M), is the set of all strings
accepted by M.

• M rejects a string w iff all paths reject it.
• It is possible that, on input w Ï L(M), M neither accepts nor rejects. In

that case, no path accepts and some path does not reject. 12

A PDA for Balanced Parentheses

M = (K, S, G, D, s, A), where:
 K = {s} the states
 S = {(,)} the input alphabet
 G = {(} the stack alphabet
 A = {s}
 D contains:

 ((s, (, e), (s, ())
 ((s,), (), (s, e))

13

A PDA for AnBn = {anbn: n ³ 0}

14

M = (K, S, G, D, s, A), where:
 K = {s, f} the states
 S = {a, b, c} the input alphabet
 G = {a, b} the stack alphabet
 A = {f} the accepting states
 D contains: ((s, a, e), (s, a))
 ((s, b, e), (s, b))
 ((s, c, e), (f, e))
 ((f, a, a), (f, e))
 ((f, b, b), (f, e))

A PDA for {wcwR: w Î {a, b}*}

15

A PDA for {anb2n: n ³ 0}

16

Exploiting Nondeterminism
• A PDA M is deterministic iff:

• DM contains no pairs of transitions that compete with each other, and
• whenever M is in an accepting configuration it has no available moves.

• Unfortunately, unlike FSMs, there exist NDPDA s for which no equivalent
DPDA exists.

• Previous examples are DPDA, where each machine followed only a
single computational path.

• But many useful PDAs are not deterministic, where from a single
configuration there exist multiple competing moves.

• Easiest way to envision the operation of a NDPDA is as a tree

17

A PDA for PalEven ={wwR: w Î {a, b}*}
 S ® e

 S ® aSa
 S ® bSb

A PDA:

Even length palindromes

18

A PDA for {w Î {a, b}* : #a(w) = #b(w)}
Equal numbers of a’s and b’s

evidence of nondeterminism?

19

PDA for AnBnCn ?
Consider AnBnCn = {anbncn: n ³ 0}.

 PDA for it?

Now consider L = ¬ AnBnCn. L is the union of two
languages:

1. {w Î {a, b, c}* : the letters are out of order}, and

2. {aibjck: i, j, k ³ 0 and (i ¹ j or j ¹ k)} (in other words,
 unequal numbers of a’s, b’s, and c’s).

20

PDA for ¬AnBnCn

Example 12.7 is in the following slides (grayed out)

Chapter 11 slide 35: unequal a’s and b’s

21

Are the Context-Free Languages
Closed Under Complement?

¬AnBnCn is context free.

If the CF languages were closed under complement,
then

 ¬¬AnBnCn = AnBnCn

would also be context-free.

But we will prove that it is not.

22

More on Nondeterminism
Accepting Mismatches

L = {ambn : m ¹ n; m, n > 0}

Start with the case where n = m:

Note: m, n > 0. thus e is not in ¬ L, and
state 1 is not double circled.

a/e/a

b/a/e

b/a/e

1 2

Hard to build a machine that looks for something negative, like ¹
Idea: break L into two sublanguages:

{ambn : 0 < n < m} and {ambn : 0 < m < n}

• If stack and input are empty, halt and reject.
• If input is empty but stack is not (m > n) (accept)
• If stack is empty but input is not (m < n) (accept)

23

More on Nondeterminism
Accepting Mismatches

• If input is empty but stack is not (m > n) (accept):

a/e/a

b/a/e

b/a/e

e/a/e

e/a/e

21 3

a/e/a

b/a/e

b/a/e

21 4
b/e/e

b/e/e

• If stack is empty but input is not (m < n) (accept):

24

Putting It Together
L = {ambn : m ¹ n; m, n > 0}

Node 2 is nondeterministic.
25

Reducing Nondeterminism

• Use a bottom-of-stack marker: #

26

Continue Reducing Nondeterminism

• Use an end-of-string marker: $

27

PDAs and Context-Free Grammars
Theorem: The class of languages accepted by PDAs is

exactly the class of context-free languages.

 Recall: context-free languages are languages that
 can be defined with context-free grammars.

Restate theorem:

Can describe with context-free grammar

Can accept by PDA

28

Proof
Lemma: Each context-free language is accepted by

some PDA.

Lemma: If a language is accepted by a PDA M, it is
context-free (i.e., it can be described by a context-
free grammar).

Proof by construction

29

Nondeterminism and Halting

1. There are context-free languages for which no
deterministic PDA exists.

2. It is possible that a PDA may

• not halt,
• not ever finish reading its input.

However, for an arbitrary PDA M, there exists M’ that
halts and L(M’) = L(M)

30

Nondeterminism and Halting
It is possible that a PDA may not halt.

– Note: the same situation for NDFSM.
– But we can find an equivalent PDA that halts

Let S = {a} and consider M =

The path (1, a, e) -> (2, a, a) -> (3, e, e) causes M to accept a.

L(M) = {a}. On any other input except a:
• M will never halt because of one path never ends and none of the

paths accepts.

Question: for aa, how many rejecting paths?
31

Comparing Regular and
Context-Free Languages

Regular Languages Context-Free Languages
 regular expressions
 or
 regular grammars context-free grammars

 = DFSMs = NDPDAs

32

