Pushdown Automata

Chapter 12

- Recognizing Context-Free Languages

We need a device similar to an FSM except that it
needs more power.

The insight: Precisely what it needs is a stack, which
gives it an unlimited amount of memory with a
restricted structure.

Example: Bal (the balanced parentheses language)

((()))

Before Defining PDA

* |t's defined as nondeterministic

« DFSM = NDFSM = Regular language
« NDPDA = Context-free language > DPDA

* In contrast to regular languages, where nondeterminism is a
convenient design tool.
« Some context-free languages do not have equivalent DPDA to

recognize them.

Before Defining PDA

+ Alternative equivalent PDA definitions
-+ Our version is sometimes referred to as “Generalized extended
PDA” (GPDA), a PDA which writes an entire string to the stack or
removes an entire string from the stack in one step.
* In some definition, M may pop only a single symbol but it may push any

number of them.
* In some definition, M may pop and push only a single symbol.

% * Inour version, M accepts w only if, when it finishes reading w, it is in
an accepting state and its stack is empty.
* Finite state acceptance: when it finishes reading w, it is in an
accepting state, regardless of the content of the stack.
 Empty stack acceptance: when it finishes reading w, the stack is
empty, regardless of the state M is in.

« We do not use “bottom of stack marker” but some do.
¥ . All of these are provably equivalent as they recognize the same L.

\ Note: JFLAP uses a stack marker, either finite state or empty stack acceptance.
So, the examples in the book may not run well in JFLAP.

4

Before Defining PDA

« Alternative non-equivalent variants

« Variation 1 (Tag systems or Post machines): FSM + a first-in,
first-out (FIFO) queue (instead of a stack)

 Variation 2: FSM + two stacks

« Both are more powerful, equivalent to Turing machines.

. Definition of a (Nondeterministic)

Pushdown Automaton
M=(K, 2 T,A,s,A) where:
K is a finite set of states
> Is the input alphabet
I" is the stack alphabet
S € K is the initial state
A c K is the set of accepting states, and

A is the transition relation. It is a finite subset of

1 (K < Cufih) x) x (K x)

o state inputore stringof state string of

| symbols symbols
to pop to push
from top on top

of stack of stack &

Transition
(K x Cufe) x T x (K x T%

state input or € string of state string of
symbols symbols
to pop to push
from top on top
of stack of stack

H (G ¢ 1) (G2 12)

% + |If ¢ matches the input and y, matches clly
% & the current top of the stack, the transition Q1
0 # From g, to g, can be taken.
o i« Then, ¢ will be removed from the input, y; will be popped from the
& stack, and vy, will be pushed onto it.
s » M cannot peek at the top of the stack without popping
& * |If c = ¢, the transition can be taken without consuming any input
® * Ify, = ¢, the transition can be taken without checking the stack or
i popping anything. Note: it’ s not saying “the stack is empty”.
® * Ify, = ¢, nothing is pushed onto the stack when the transition is taken.

7

Configuration

To describe the execution of machine M on input w, we need
a few definitions.

' A configuration of M is an element of K x £* x '™,

« |t captures the three things that decide M’s future

behavior:

— Current state

— Input that is still left to read
— Contents of its stack

It provides a “snapshot” of the system at a particular
execution/processing step.

The initial configuration is (s, w, ¢)

Manipulating the Stack

C will be written as cab

C4Cy...Chcab

The Yields Relations

< During execution, when a state transition occurs, the
- system moves from one configuration to another.

{5 Let c be any element of = U {g},
M * Lety,, v, andybe any elements of I'*, and
- ,~ Let w be any element of X*.

% Then: (g, cw, v17) |- (G2, W, v2v) iff (G4, C, v1), (G2, 72)) € A.

After the transition, state q, -> g, , remaining string cw ->
8w, stack content y,y -> v,y

10

Nondeterminism

If M is in some configuration (q,, S, y) it is possible that:

* A contains exactly one transition that matches.
* A contains more than one transition that matches.

* A contains no transition that matches.

11

Accepting

M accepts a string w iff there exists some path that accepts it.

— Recall a path is a maximal sequence of execution/processing steps (described by
configurations) from the start

Predefined accepting conditions: (1) all symbols in w have been
processed/consumed. (2) in an accepting state. (3) stack is empty.

More formally, accepting configuration for PDA: (q, €, €) where g € A

M halts upon acceptance. Recall if one path halts and accepts, M halts

and accepts. Other paths may:
— Read all the input and halt in a nonaccepting state (reject)
Read all the input and halt in an accepting state with the stack not empty (reject)
Reach a dead end where no more input can be read (reject)
— Loop forever and never finish reading the input (infinite path)

The language accepted by M, denoted L(M), is the set of all strings
accepted by M.

M rejects a string w iff all paths reject it.

It is possible that, on input w ¢ L(M), M neither accepts nor rejects. In
that case, no path accepts and some path does not reject. 12

A PDA for Balanced Parentheses

B
)(/e

A , M= (K, =, T,A,s,A), where:

K = {s} the states

=1)} the input alphabet
I'={(} the stack alphabet
A = {s}

A contains:

((e ())
()0)(se))

13

A PDA for A"B" = {a"b™ n > 0}

a/e/a b/a/e
b/a/e '

) ©

14

B PRRI i e e b

e e L
T M .

A PDA for {wcwR: w € {a, b}*}

a/e/a a/a/e '
c/e/e >
b/e/b b/b/e '

M= (K, % T,A,s,A), where:

K={s, f} the states

X ={a, b, c} the input alphabet
I' ={a, b} the stack alphabet
A ={f} the accepting states
A contains: ((s, a, €), (S, a))

((

((s, b, €), (S, b))
((s, c, ¢), (1, &)

((f, a, a), (f, €))

((f, b, b), (f, €))

15

A PDA for {a"b?": n > 0}

b/a/e
a/e/aa
b/a/e '

o ©

16

Exploiting Nondeterminism

A PDA M is deterministic iff:

« Ay contains no pairs of transitions that compete with each other, and
« whenever M is in an accepting configuration it has no available moves.

« Unfortunately, unlike FSMs, there exist NDPDA s for which no equivalent
DPDA exists.

Previous examples are DPDA, where each machine followed only a
single computational path.
But many useful PDAs are not deterministic, where from a single

configuration there exist multiple competing moves.
- Easiest way to envision the operation of a NDPDA is as a tree

d1s abab, ¢
q», abab, # q,, bab, a#
([l, ab, ab# 613. ab‘ a#

17

A PDA for PalEven ={wwR: w € {a, b}*}

S—>e¢ Even length palindromes
S > aSa
S —> bSb
A PDA:
a/e/a a/a/e '
e/e/e

b/e/b b/b/e '

18

- APDAfor {w € {a, b}* : #,(w) = #,(w)}

Equal numbers ofa’sand b’ s

25
L
S
g
:
3
» e
»
o
Py
o
- B
~r
D
L
5

é

a/a/a

.‘ a/b/e
O

b/a/e b/s/b

evidence of nondeterminism?

19

PDA for A"B"Cn ?
Consider AB"C" = {a"b"c":. n > 0}.
PDA for it?
Now consider L = — A"B"C". L is the union of two
languages:
1.{w € {a, b, c}* : the letters are out of order}, and
2. {a'/ck i j, k=0and (i#jorj=k)} (in other words,

unequal numbers of a’s, b’ s, and ¢’ s).

20

PDA for —A"B"C"

A PDA that doesn’t use its stack. It accepts L; by checking for letters out
of order.

A PDA like the one in Example 12.7 that checks for unequal numbers
of a’s and b’s, followed by any number of C’s

A PDA like the one in Example 12.7 except that it accepts any number
of a’s and then checks for unequal numbers b’s and C’s

Example 12.7 is in the following slides (grayed out)

Chapter 11 slide 35: unequal a’s and b’s

21

..//—f

=N

Are the Context-Free Languages
Closed Under Complement?

—A"B"Cn is context free.

If the CF languages were closed under complement,
then

——A"B"C" = ABnCr

would also be context-free.

But we will prove that it is not.

22

L={a"": m=#n;m,n>0}
alela
Start with the case where n = m:
blale
Note: m, n > 0. thus € is notin — L, and 1

state 1 is not double circled.

Hard to build a machine that looks for something negative, like =
|dea: break L into two sublanguages:

{a™o":0<n<m} and {a™0":0<m<n}

 If stack and input are empty, halt and reject.
 If input is empty but stack is not (m > n) (accept)
 If stack is empty but input is not (m < n) (accept)

23

 If input is empty but stack is not (m > n) (accept):

alela blalg elale

6 blale /Q elale
1 >, &)

 |If stack is empty but input is not (m < n) (accept):

a/S/a b/alg b/8/8

Putting It Together

L={am™":m=n;m, n>0}

a/e/a

Node 2 is nondeterministic.

25

Reducing Nondeterminism

a/e/a b/a/e eg/a/e
b/a/e e/a/e
D EEROmEn©

b/e/e
O
« Use a bottom-of-stack marker: #
a/s/a b/a/s g/a/e
e/e/# >: b/a/e >: e/a/e
\@ cl#t/e
b/#/¢

b/s/s

Continue Reducing Nondeterminism

a/e/a b/a/e e/a/e
e/e/# ¥Q b/a/e ¥Q e/a/e .
IO O 2 Ol

b/#/¢

. b/e/e

« Use an end-of-string marker: $

a/e/a b/a/e e/a/e
e/e/# b/a/e '
@ 1 . el#le

PDAs and Context-Free Grammars

Theorem: The class of languages accepted by PDAs is
exactly the class of context-free languages.

Recall: context-free languages are languages that
can be defined with context-free grammars.

Restate theorem:

Can describe with context-free grammar

Can accept by PDA

28

Proof

Lemma: Each context-free language is accepted by
some PDA.

Lemma: If a language is accepted by a PDA M, it is
context-free (i.e., it can be described by a context-
free grammar).

Proof by construction

29

Nondeterminism and Halting

1. There are context-free languages for which no
deterministic PDA exists.

2. It is possible that a PDA may
* not halt,
* not ever finish reading its input.

However, for an arbitrary PDA M, there exists M’ that
halts and L(M’) = L(M)

30

Nondeterminism and Halting

It is possible that a PDA may not halt.

— Note: the same situation for NDFSM.
— But we can find an equivalent PDA that halts

Let £ = {a} and consider M =

e/e/a a/a/e _
e/e/a

The path (1, a, €) -> (2, a, a) -> (3, ¢, €) causes M to accept a.

L(M) = {a}. On any other input except a:
« M will never halt because of one path never ends and none of the
paths accepts.

Question: for aa, how many rejecting paths? a1

Comparing Regular and
Context-Free Languages

Regular Languages Context-Free Languages
regular expressions

or
regular grammars context-free grammars

= DFSMs = NDPDAs

32

