
Pushdown Automata

Chapter 12
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Recognizing Context-Free Languages
We need a device similar to an FSM except that it 

needs more power.

The insight:  Precisely what it needs is a stack, which 
gives it an unlimited amount of memory with a 
restricted structure.

Example: Bal (the balanced parentheses language)

   (((()))    

2



Before Defining PDA

• It’s defined as nondeterministic
• DFSM = NDFSM = Regular language

• NDPDA = Context-free language > DPDA

• In contrast to regular languages, where nondeterminism is a 

convenient design tool.

• Some context-free languages do not have equivalent DPDA to 

recognize them.
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Before Defining PDA
Alternative equivalent PDA definitions
• Our version is sometimes referred to as “Generalized extended 

PDA” (GPDA), a PDA which writes an entire string to the stack or 
removes an entire string from the stack in one step.
• In some definition, M may pop only a single symbol but it may push any 

number of them.
• In some definition, M may pop and push only a single symbol.

• In our version, M accepts w only if, when it finishes reading w, it is in 
an accepting state and its stack is empty.
• Finite state acceptance: when it finishes reading w, it is in an 

accepting state, regardless of the content of the stack.
• Empty stack acceptance: when it finishes reading w, the stack is 

empty, regardless of the state M is in.

• We do not use “bottom of stack marker” but some do.

• All of these are provably equivalent as they recognize the same L.

Note: JFLAP uses a stack marker, either finite state or empty stack acceptance.
So, the examples in the book may not run well in JFLAP. 
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Before Defining PDA

• Alternative non-equivalent variants
• Variation 1 (Tag systems or Post machines): FSM + a first-in, 

first-out (FIFO) queue (instead of a stack)

• Variation 2: FSM + two stacks

• Both are more powerful, equivalent to Turing machines.
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Definition of a (Nondeterministic) 
Pushdown Automaton

M = (K, S, G, D, s, A), where:
      K is a finite set of states
      S  is the input alphabet
      G is the stack alphabet
      s Î K is the initial state
      A Í K is the set of accepting states, and
      D is the transition relation.  It is a finite subset of 

      (K     ´   (S È {e})  ´     G*)    ´    (K    ´      G*)  

      state      input or e string of     state string of
     symbols                symbols
     to pop                   to push
     from top                on top 
                of stack  of stack 6



Transition
(K     ´   (S È {e})      ´     G*)          ´        (K    ´      G*)  

      state      input or e  string of            state string of
     symbols                 symbols
     to pop                    to push
     from top                 on top 
                 of stack   of stack

((q1, c, g1), (q2, g2))
• If c matches the input and g1 matches 
the current top of the stack, the transition 
From q1 to q2 can be taken.
• Then, c will be removed from the input, g1 will be popped from the 

stack, and g2 will be pushed onto it.
• M cannot peek at the top of the stack without popping
• If c = e, the transition can be taken without consuming any input
• If g1 = e, the transition can be taken without checking the stack or 

popping anything. Note: it’s not saying “the stack is empty”.
• If g2 = e, nothing is pushed onto the stack when the transition is taken.

q1 q2
c  /  g1 / g2
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Configuration
To describe the execution of machine M on input w, we need 
a few definitions.

A configuration of M is an element of K ´ S* ´ G*. 

• It captures the three things that decide M’s future 
behavior:
– Current state
– Input that is still left to read
– Contents of its stack

• It provides a “snapshot” of the system at a particular 
execution/processing step.

The initial configuration is (s, w, e)
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Manipulating the Stack
c      will be written as cab 

a

b

If c1c2…cn is pushed onto the stack:  rightmost first

    c1
    c2

    cn
    c
    a
    b
     
c1c2…cncab
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The Yields Relations
During execution, when a state transition occurs, the 
system moves from one configuration to another.

Let c be any element of S È {e}, 
Let g1, g2 and g be any elements of G*, and 
Let w be any element of S*.  

Then: (q1, cw, g1g) |- (q2, w, g2g) iff ((q1, c, g1), (q2, g2)) Î D.

After the transition, state q1 -> q2 , remaining string cw -> 
w, stack content g1g -> g2g

Let |-* be the reflexive, transitive closure of |-
C1 yields configuration C2 iff C1 |-* C2
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Nondeterminism 
If M is in some configuration (q1, s, g) it is possible that:

• D contains exactly one transition that matches.  

• D contains more than one transition that matches.  

• D contains no transition that matches. 
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Accepting
• M accepts a string w iff there exists some path that accepts it.

– Recall a path is a maximal sequence of execution/processing steps (described by 
configurations) from the start

• Predefined accepting conditions: (1) all symbols in w have been 
processed/consumed. (2) in an accepting state. (3) stack is empty.

 More formally, accepting configuration for PDA: (q, e, e) where q Î A

• M halts upon acceptance. Recall if one path halts and accepts, M halts 
and accepts. Other paths may:

– Read all the input and halt in a nonaccepting state (reject) 
– Read all the input and halt in an accepting state with the stack not empty (reject) 
– Reach a dead end where no more input can be read (reject)
– Loop forever and never finish reading the input (infinite path)

• The language accepted by M, denoted L(M), is the set of all strings 
accepted by M. 

• M rejects a string w iff all paths reject it. 
• It is possible that, on input w Ï L(M), M neither accepts nor rejects. In 

that case, no path accepts and some path does not reject. 12



A PDA for Balanced Parentheses 

M = (K, S, G, D, s, A), where:
 K = {s}  the states
 S = {(, )}  the input alphabet
 G = {(}  the stack alphabet
 A = {s}
 D contains:

  (       (s, (, e), (s, ( )      )    
   (       (s, ), ( ), (s, e)      )   
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A PDA for AnBn = {anbn: n ³ 0}
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M = (K, S, G, D, s, A), where:
       K = {s, f}  the states
       S = {a, b, c} the input alphabet
       G = {a, b}  the stack alphabet
       A = {f}  the accepting states
       D contains: ((s, a, e), (s, a))
   ((s, b, e), (s, b))
   ((s, c, e), (f, e))
   ((f, a, a), (f, e))
   ((f, b, b), (f, e)) 

A PDA for {wcwR: w Î {a, b}*}
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A PDA for {anb2n: n ³ 0} 
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Exploiting Nondeterminism
• A PDA M is deterministic iff:

• DM contains no pairs of transitions that compete with each other, and
• whenever M is in an accepting configuration it has no available moves.  

• Unfortunately, unlike FSMs, there exist NDPDA s for which no equivalent 
DPDA exists.

• Previous examples are DPDA, where each machine followed only a 
single computational path.

• But many useful PDAs are not deterministic, where from a single 
configuration there exist multiple competing moves.

• Easiest way to envision the operation of a NDPDA is as a tree
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A PDA for PalEven ={wwR: w Î {a, b}*} 
 S ® e

  S ® aSa
  S ® bSb

A PDA:

Even length palindromes
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A PDA for {w Î {a, b}* : #a(w) = #b(w)} 
Equal numbers of a’s and b’s

evidence of nondeterminism?
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PDA for AnBnCn ? 
Consider AnBnCn = {anbncn: n ³ 0}.

 PDA for it?
 

Now consider L = ¬ AnBnCn.  L is the union of two 
languages:

1. {w Î {a, b, c}* : the letters are out of order}, and

2. {aibjck: i, j, k ³ 0 and (i ¹ j or j ¹ k)}  (in other words, 
    unequal numbers of a’s, b’s, and c’s).
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PDA for ¬AnBnCn 

Example 12.7 is in the following slides (grayed out)

Chapter 11 slide 35: unequal a’s and b’s
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Are the Context-Free Languages 
Closed Under Complement?

¬AnBnCn is context free. 

If the CF languages were closed under complement, 
then

   ¬¬AnBnCn =  AnBnCn

would also be context-free.

But we will prove that it is not.
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More on Nondeterminism
Accepting Mismatches

L = {ambn : m ¹ n; m, n > 0}

Start with the case where n = m:

Note: m, n > 0. thus e is not in ¬ L, and 
state 1 is not double circled.

a/e/a 

b/a/e

b/a/e 

1 2

Hard to build a machine that looks for something negative, like  ¹ 
Idea: break L into two sublanguages:

{ambn : 0 < n < m}    and    {ambn : 0 < m < n} 

• If stack and input are empty, halt and reject.
• If input is empty but stack is not (m > n) (accept)
• If stack is empty but input is not (m < n) (accept)
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More on Nondeterminism
Accepting Mismatches

• If input is empty but stack is not (m > n) (accept):

a/e/a 

b/a/e

b/a/e 

e/a/e 

e/a/e

21 3

a/e/a 

b/a/e

b/a/e 

21 4
b/e/e 

b/e/e 

• If stack is empty but input is not (m < n) (accept):
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Putting It Together
L = {ambn : m ¹ n; m, n > 0}

Node 2 is nondeterministic. 
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Reducing Nondeterminism 

• Use a bottom-of-stack marker: #      
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Continue Reducing Nondeterminism 

• Use an end-of-string marker: $     

27



PDAs and Context-Free Grammars
Theorem:  The class of languages accepted by PDAs is 

exactly the class of context-free languages.

 Recall: context-free languages are languages that 
 can be defined with context-free grammars.

Restate theorem: 

Can describe with context-free grammar

Can accept by PDA
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Proof
Lemma: Each context-free language is accepted by 

some PDA.

Lemma: If a language is accepted by a PDA M, it is 
context-free (i.e., it can be described by a context-
free grammar).

Proof by construction
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Nondeterminism and Halting 

1. There are context-free languages for which no 
deterministic PDA exists. 

 
2. It is possible that a PDA may

• not halt, 
• not ever finish reading its input.   

However, for an arbitrary PDA M, there exists M’ that 
halts and L(M’) = L(M) 
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Nondeterminism and Halting 
It is possible that a PDA may not halt. 

– Note: the same situation for NDFSM.
– But we can find an equivalent PDA that halts

Let S = {a} and consider M = 

The path (1, a, e) -> (2, a, a) -> (3, e, e) causes M to accept a. 

L(M) = {a}. On any other input except a: 
• M will never halt because of one path never ends and none of the 

paths accepts.

Question: for aa, how many rejecting paths?
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Comparing Regular and 
Context-Free Languages

Regular Languages  Context-Free Languages
 regular expressions   
      or    
 regular grammars      context-free grammars  

       

 = DFSMs        = NDPDAs
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