
Turing Machines

Chapter 17
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Alan Turing

1912 – 1954
• One of the 100 Most Important People 

of the 20th Century
• For his role in the creation of the 

modern computer
• "The fact remains that everyone who 

taps at a keyboard, opening a 

spreadsheet or a word-processing 

program, is working on an incarnation of 

a Turing machine."

• Turing machine, influential 

formalization of the concept of 

the algorithm and computation

• Turing test, influential in AI

• 1936 – 1938, PhD, Princeton, under Alonzo Church

• Then, back to Cambridge, attended lectures by Ludwig Wittgenstein

about the foundations of mathematics.
• Ludwig Wittgenstein, student of Bertrand Russell at Cambridge, the two are 

widely referred to as the greatest philosophers of last century 2



Alan Turing Memorial

Sackville Gardens in Manchester, England
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Turing Machines

Can we come up with a new kind of automaton that has 

two properties:

● powerful enough to describe all computable things

  unlike FSMs and PDAs

● simple enough that we can reason formally about it

  like FSMs and PDAs

  unlike real computers
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Turing Machines

At each step, the machine must:

– choose its next state, 

– write on the current square, and

– move left or right

• Replacing stack in PDA with a 

 more flexible, writeable tape

• Single read/write head

• Input on the tape, no longer “consumed” as in FSM/PDA

• By convention, start state to the left of the leftmost symbol
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A Formal Definition

A Turing machine M is a sixtuple (K, , , , s, A):

• K is a finite set of states;

•  is the input alphabet, which does not contain ❑;

•  is the tape alphabet, which must contain ❑ and have  as a 
subset.  

• s  K is the initial state;

• A  K is the set of accepting states;

•  is the transition function:

        K                to        K            {→, }

    state       tape state     tape               action 

                     char    char             (R or L)

❑ is the tape symbol (blank symbol):

• the input string does not contain ❑
• initially, all tape squares except those containing the input contain ❑
• helps in recognizing ends of input

• some definitions do not use it 8



Transition Function

K                to      K           {→, }

      state      tape       state    tape                action 

                      char  char             (R or L)

• If  contains ((q0, a), (q1, b, R))
• when M is in state q0, char under read/write head is a

• M will go to q1, write b, and move to right))

q0 q1

a / b / R
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Notes on the Definition

1. The input tape is infinite in both directions.

2.  is a function, not a relation.  So this is a definition for 

    deterministic Turing machines.

3. Turing machines do not necessarily halt (unlike DFSMs and 

DPDAs).  Why?

4. The above is the same to say, the path (since there’s only 

one) may or may not end.

5. Turing machines generate output so they can compute 

    functions.
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More on Turing Machines

On sale 

http://www.youtube.com/watch?v=cYw2ewoO6c4 

Simulator: many online

Artistic 

representation:
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Add b’s to Make them match a’s

M takes as input a string in the language:

  {aibj, 0  j  i}, 

and adds b’s to make the number of b’s equal the number of a’s.  

The input to M will look like this:

    

The output should be:
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Describing M in English

1. Move one square to the right. If the character under the read/write head is 

❑, halt. Otherwise, continue.

2. Loop:

    2.1. Mark off an a with a $.

     2.2. Scan rightward to the first b or ❑.

• If b, mark it off with a # and get ready to go back and find the next matching 

a,b pair.

• If ❑, then there are no more b’s but there are still a’s that need matches. So 

it is necessary to write another b on the tape. But that b must be marked so 

that it cannot match another a. So write a #. Then get ready to go back and 

look for remaining unmarked a’s. 

     2.3. Scan back leftward looking for a or ❑. If a, then go back to the top of the loop 

and repeat. If ❑, then all a’s have been handled. Exit the loop. (Notice that the 

specification for M guarantees that there will not be more b’s than a’s).

3. Make one last pass all the way through the nonblank area of the tape, from 
left to right, changing each $ to an a and each # to a b. 

4. Halt.
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Defining M with Transition Table

K = {1, 2, 3, 4, 5, 6},  = {a, b},  = {a, b, ❑, $, #}, 

s = 1, A = {6},  =

( ((1, ❑), (2, ❑, ->)),
 … …

 ((2, ❑), (6, ❑, ->)),

 ((2, a), (3, $, ->)),

 … …
 

 ((3, #), (4, $, <-)),

 … …

 

 ((4, ❑), (5, ❑, ->)),
 … …

 

 ((5, ❑), (6, ❑, <-)),

 ((5, $), (5, a, ->)), 

 ((5, #), (5, b, ->))      )
transition table is hard to read, 

can use graphical representation.

The table can also look like this:

symbol 

state ❑ a b $ # 

1 (2, ❑, ->)

2 

3 

4 

5 

Note: 6 is a halting state, no 

transition out of it
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Defining M with Transition Diagram

K = {1, 2, 3, 4, 5, 6},  = {a, b},  = {a, b, ❑, $, #}, 

s = 1, A = {6},  =

Notations may vary from book to book … 15



Notes on Programming

• The machine has a strong procedural feel, with one phase 

coming after another.

• There are common idioms, like scan left until you find a ❑

• There are two common ways to scan back and forth 

marking things off.
• Scan left to the first a and process the rest of a’s right to left, as in 

last example
• Scan all the way left until we find the first unmarked a, process all 

a’s left to right

• If we care about output (function, not decision problem)
• often there is a final phase that makes one last pass over the tape 

and converts the marked characters back to proper form.

• Even a very simple machine is a nuisance to write.
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Halting

• A DFSM or DPDA, on input w, is guaranteed to halt in at most  

|w| steps.

• A NDFSM or NDPDA without -transitions, on input w, is 

guaranteed to halt in at most |w| steps.

• A NDFSM M, on input w, is not guaranteed to halt. But there 

is a DFSM M’ such that L(M) = L(M’).  (in this case, M and M’ 

are said to be equivalent)

• A NDPDA M, on input w, is not guaranteed to halt. But there is 

an equivalent NDPDA M’ that halts.

 

• A deterministic TM M, on input w, is not guaranteed to halt. 

 And, there may not be an equivalent one that halts.
– What if L(M) is in D?
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Formalizing the Operation 

A configuration of a Turing machine 

 M = (K, , , s, A) is an element of:

K    ((- {❑}) *)  {}               (* (- {❑}))   {}

state Active tape to the left

of read/write head

Active tape to the right

of read/write head

Square under 

read/write head

18

As in FSM and PDA, we use configuration to describe a particular 

execution/processing step of the system.



Example Configurations 

 as a 4-tuple                                  Shorthand

(1) (q, ab, b, b)  = (q, abbb)

     (2) (q, , ❑, aabb)  = (q, ❑aabb)   

   

Initial configuration is (s, ❑w).
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Yields 

(q1, w1) |- (q2, w2) iff (q2, w2) is derivable, via , in one step.

After the transition, state q1  -> q2 , active tape w1 -> w12 

For any TM M, let |-* be the reflexive, transitive closure of |-M.

Configuration C1 yields configuration C2 if: C1  |-M*  C2.

Recall: a path is a maximal sequence of execution / 

processing steps (described by configurations) from the start

Even for a deterministic TM, a path may end, or may not 
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Turing Machines as Language Recognizers

The initial configuration of M: (s, ❑w)

Let M = (K, , , , s, {y}). 

• M accepts a string w iff the path accepts it.
• For TM, (y, w) is an accepting configuration

• We do not care the tape content when it halts

• M rejects a string w iff the path rejects it.

• Possible that on input w, M neither accepts nor rejects. It may loop.

• Again, this definition is a bit different from our text and Sipser, but 

similar to Ullman. This definition is more consistent to FSM and 

DPDA, i.e., all the non-accepting states are rejecting states. 

• This way, we do not need to draw the rejecting states and the 

many transitions to them. 

• It works just fine with JFLAP.
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Turing Machines as Language Recognizers

M decides a language L  * iff:

    For any string w  * it is true that:

        if w  L then M accepts w, and

        if w  L then M rejects w.

A language L is decidable iff there is a Turing machine M 

that decides it.  In this case, we will say that L is in D.

In some books, D is called the set of recursive languages.

• Computability theory was recursion theory, originated 

with work of Kurt Gödel, Alonzo Church, Alan 

Turing, Stephen Kleene …
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A Deciding Example: AnBnCn 
AnBnCn = {anbncn : n  0} 

Example : ❑aaabbbccc ❑❑❑❑❑❑❑❑❑

Example : ❑aaccb ❑❑❑❑❑❑❑❑❑

• Not context-free, not recognizable by a PDA

1. Move right.

2. If the current symbol is the blank symbol, halt and accept.

3. Loop:

  3.1. If the current symbol is a, change it to X and move right. Otherwise exit loop.

  3.2. Scan rightwards, pass a’s and Y’s to find b.
  3.3. If b found, change it to Y and move right. Otherwise reject.

  3.4. Scan rightwards, pass b’s and Z’s to find c.

  3.5. If c found, change it to Z and move left. Otherwise reject.

  3.6. Scan leftwards, pass a’s, b’s, Y’s and Z’s to find X. 

  3.7. When finding the first X, move right, and go back to 3.1.
4. If the current symbol is Y, move right. Otherwise reject.

5. Scan rightwards, pass Y’s and Z’s, to find the blank symbol.

6. When finding the first blank symbol, move right and accept.
23



Another Deciding Example: wcw 

WcW = {wcw : w  {a, b}*}

Example: ❑abbcabb❑❑❑ 

Example: ❑acabb❑❑❑ 

Describing M in English:

1. Loop:
    1.1. Move right to the first character. If it is c, exit the loop. Otherwise, overwrite it with # 

and remember what it is.
     1.2. Move right to find c. Then continue right to the first unmarked character. If it is ❑, 

halt and reject. (This will happen if the string to the right of c is shorter than the string to 

the left.) If it is anything else, check to see whether it matches the remembered character 

from the previous step. If it does not, halt and reject. If it does, mark it off with #.

     1.3. Move leftward to find the next unprocessed character (pass c to find first # then 

right).

3. There are no characters remaining before the c. Make one last sweep left to 

right checking that there are no unmarked characters after the c and before the 

first ❑. If there are, halt and reject. Otherwise, halt and accept.
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wcw: define M with transition diagram
K = {q0, q1, q2, q3, q4, q5, q6, q7, y}, 
 = {a, b, c}, 

 = {a, b, c, # , ❑}, 

s = q0 , 

A = {y}, 
 =

Exercise: 

define M with transition table

wcw.jff
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Semideciding a Language 

Let  be the input alphabet to a TM M.  Let L  *.  

M semidecides L iff, for any string w  M*:

• w  L → M accepts w

• w  L → M does not accept w.  M may either: 

         reject or 

       fail to halt.

A language L is semidecidable iff there is a Turing 

machine that semidecides it.  We define the set SD to 

be the set of all semidecidable languages.

In some books, SD is called the set of recursively 

enumerable languages. 26



Example of Semideciding

Let L = b*a(a  b)*

We can build M to semidecide L:

1. Loop

    1.1 Move one square to the right.  If the character under  
          the read head is an a, halt and accept.

Can we build M to decide L?

27



Example of Semideciding

L = b*a(a  b)*.   We can also decide L:

Loop:

 1.1 Move one square to the right.  

 1.2 If the character under the read/write head is 

       an a, halt and accept.  

 1.3 If it is ❑, halt and reject.

However, as we will prove later, there are L in SD but not D.
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Computing Functions 

When a Turing machine halts, there is a value on its tape.

So, it can be used to compute functions.

Deciding (semideciding) a language L is computing the 

characteristic function (partial characteristic function) of L

Part of Chapter 25, use ch25.ppt
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Why Are We Working with Our Hands 

Tied Behind Our Backs? 

Turing machines Are more powerful than any of

    the other formalisms we have

    studied so far.    

      ☺
Turing machines Are a lot harder to work with than

    all the real computers we have

    available.

       
Why bother?

The very simplicity that makes it hard to program Turing machines 

makes it possible to reason formally about what they can do.  If we 

can, once, show that anything a real computer can do can be done 

(albeit clumsily) on a Turing machine, then we have a way to 

reason about what real computers can do.
30



Turing Machines

Sections 17.3 – 17.5
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Turing Machine Extensions

There are many extensions we might like to make to our 

basic Turing machine model.  But:

 We can show that every extended machine 

 has an equivalent basic machine.

Some possible extensions:

• Multiple tape TMs

• Nondeterministic TMs
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Multiple Tapes

Adding Tapes Adds No Power

33



Impact of Nondeterminism 

Computability (decidability, solvability)

• FSMs    NO

• PDAs    YES

• Turing machines   NO

Complexity

  Yes, adds power to TM. 

 Allows “lucky guesses”. In this sense, Nondeterminism adds 

“superpower”.  
 It may take exponentially more steps to solve a problem using a 

deterministic TM.

New player: Quantum Turing machine 34



A nondeterministic TM is a sixtuple (K, , , , s, A).  

 is a subset of:

 (K  )  (K    {, →})

Nondeterministic Turing Machines 
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What does it mean for a nondeterministic Turing machine to:
– Decide a language

– Semidecide a language

Similarly,

M accepts w iff there exists some path that accepts it. 

M rejects w iff all paths reject it.

• It is possible that, on input wL(M), M neither accepts nor rejects. In 

that case, no path accepts and some path does not reject.

Nondeterministic Turing Machines 
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Equivalence of Deterministic and 

Nondeterministic Turing Machines 

Theorem: If a nondeterministic TM M decides or 

semidecides a language, or computes a function, then 

there is a standard TM M' semideciding or deciding the 

same language or computing the same function.

Proof: (by construction).  We must do separate 

constructions for deciding/semideciding and for function 

computation. 
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Simulating a Real Computer 

Theorem:  A random-access, stored program computer 

can be simulated by a Turing Machine.  If the computer 

requires n steps to perform some operation, the Turing 
Machine simulation will require O(n6) steps.

On the other hand, there are also lots of simulation of TMs 

by real computers, check it out on the web.
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Turing Machines

Sections 17.6 – 17.7
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The Universal Turing Machine

All our machines so far are hardwired.

ENIAC – 1945 (first electronic general-purpose computer)
40



The Universal Turing Machine

All our machines so far are hardwired.

Question: Can we build a programmable TM that accepts

as input a (M: Turing machine, w: input string) pair and 

outputs whatever M would output when started up on w?

Answer: Yes, it’s called the Universal Turing Machine.

To define the Universal Turing Machine U we need to:

1. Define an encoding scheme that can be used to 

describe to U a (M, w) pair

• <M, w>, many ways of encoding …

2. Describe the operation of U given input <M, w>

41



On input <M, w>, U must:

    ● Halt iff M halts on w.

    ● If M is a deciding or semideciding machine, then:

        ● If M accepts, accept.

        ● If M rejects, reject.

    ● If M computes a function, then U(<M, w>) must equal 

M(w).

Specification of U

42



Another Benefit of Encoding 

Another benefit of defining a way to encode any Turing machine M:  

• We can talk about operations on TMs, as they are just input 

strings.

In the following, T (a Turing machine)  takes one TM as input and 

creates another as its output. 

This idea of transforming one TM to another has extensive use in 

reduction, to show that various problems are undecidable. 

43
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