
Turing Machines

Chapter 17
1

Alan Turing

1912 – 1954
• One of the 100 Most Important People

of the 20th Century
• For his role in the creation of the

modern computer
• "The fact remains that everyone who

taps at a keyboard, opening a

spreadsheet or a word-processing

program, is working on an incarnation of

a Turing machine."

• Turing machine, influential

formalization of the concept of

the algorithm and computation

• Turing test, influential in AI

• 1936 – 1938, PhD, Princeton, under Alonzo Church

• Then, back to Cambridge, attended lectures by Ludwig Wittgenstein

about the foundations of mathematics.
• Ludwig Wittgenstein, student of Bertrand Russell at Cambridge, the two are

widely referred to as the greatest philosophers of last century 2

Alan Turing Memorial

Sackville Gardens in Manchester, England
3

Languages and Machines
SD

D

context-free

languages

regular
languages

reg exps

FSMs

cfgs
PDAs

unrestricted grammars

Turing Machines

recursive

recursively enumerable

4

SD Language

Unrestricted

Grammar

Turing

Machine

Generates

Recognizes

or

Accepts

Grammars, SD Languages, and Turing Machines

5

Turing Machines

Can we come up with a new kind of automaton that has

two properties:

● powerful enough to describe all computable things

 unlike FSMs and PDAs

● simple enough that we can reason formally about it

 like FSMs and PDAs

 unlike real computers

6

Turing Machines

At each step, the machine must:

– choose its next state,

– write on the current square, and

– move left or right

• Replacing stack in PDA with a

 more flexible, writeable tape

• Single read/write head

• Input on the tape, no longer “consumed” as in FSM/PDA

• By convention, start state to the left of the leftmost symbol

7

A Formal Definition

A Turing machine M is a sixtuple (K, , , , s, A):

• K is a finite set of states;

•  is the input alphabet, which does not contain ❑;

•  is the tape alphabet, which must contain ❑ and have  as a
subset.

• s  K is the initial state;

• A  K is the set of accepting states;

•  is the transition function:

 K   to K    {→, }

 state  tape state  tape  action

 char char (R or L)

❑ is the tape symbol (blank symbol):

• the input string does not contain ❑
• initially, all tape squares except those containing the input contain ❑
• helps in recognizing ends of input

• some definitions do not use it 8

Transition Function

K   to K    {→, }

 state  tape state  tape  action

 char char (R or L)

• If  contains ((q0, a), (q1, b, R))
• when M is in state q0, char under read/write head is a

• M will go to q1, write b, and move to right))

q0 q1

a / b / R

9

Notes on the Definition

1. The input tape is infinite in both directions.

2.  is a function, not a relation. So this is a definition for

 deterministic Turing machines.

3. Turing machines do not necessarily halt (unlike DFSMs and

DPDAs). Why?

4. The above is the same to say, the path (since there’s only

one) may or may not end.

5. Turing machines generate output so they can compute

 functions.

10

More on Turing Machines

On sale

http://www.youtube.com/watch?v=cYw2ewoO6c4

Simulator: many online

Artistic

representation:

11

http://www.youtube.com/watch?v=cYw2ewoO6c4

Add b’s to Make them match a’s

M takes as input a string in the language:

 {aibj, 0  j  i},

and adds b’s to make the number of b’s equal the number of a’s.

The input to M will look like this:

The output should be:

12

Describing M in English

1. Move one square to the right. If the character under the read/write head is

❑, halt. Otherwise, continue.

2. Loop:

 2.1. Mark off an a with a $.

 2.2. Scan rightward to the first b or ❑.

• If b, mark it off with a # and get ready to go back and find the next matching

a,b pair.

• If ❑, then there are no more b’s but there are still a’s that need matches. So

it is necessary to write another b on the tape. But that b must be marked so

that it cannot match another a. So write a #. Then get ready to go back and

look for remaining unmarked a’s.

 2.3. Scan back leftward looking for a or ❑. If a, then go back to the top of the loop

and repeat. If ❑, then all a’s have been handled. Exit the loop. (Notice that the

specification for M guarantees that there will not be more b’s than a’s).

3. Make one last pass all the way through the nonblank area of the tape, from
left to right, changing each $ to an a and each # to a b.

4. Halt.

13

Defining M with Transition Table

K = {1, 2, 3, 4, 5, 6},  = {a, b},  = {a, b, ❑, $, #},

s = 1, A = {6},  =

(((1, ❑), (2, ❑, ->)),
 … …

 ((2, ❑), (6, ❑, ->)),

 ((2, a), (3, $, ->)),

 … …

 ((3, #), (4, $, <-)),

 … …

 ((4, ❑), (5, ❑, ->)),
 … …

 ((5, ❑), (6, ❑, <-)),

 ((5, $), (5, a, ->)),

 ((5, #), (5, b, ->)))
transition table is hard to read,

can use graphical representation.

The table can also look like this:

symbol

state ❑ a b $ #

1 (2, ❑, ->)

2

3

4

5

Note: 6 is a halting state, no

transition out of it

14

Defining M with Transition Diagram

K = {1, 2, 3, 4, 5, 6},  = {a, b},  = {a, b, ❑, $, #},

s = 1, A = {6},  =

Notations may vary from book to book … 15

Notes on Programming

• The machine has a strong procedural feel, with one phase

coming after another.

• There are common idioms, like scan left until you find a ❑

• There are two common ways to scan back and forth

marking things off.
• Scan left to the first a and process the rest of a’s right to left, as in

last example
• Scan all the way left until we find the first unmarked a, process all

a’s left to right

• If we care about output (function, not decision problem)
• often there is a final phase that makes one last pass over the tape

and converts the marked characters back to proper form.

• Even a very simple machine is a nuisance to write.

16

Halting

• A DFSM or DPDA, on input w, is guaranteed to halt in at most

|w| steps.

• A NDFSM or NDPDA without -transitions, on input w, is

guaranteed to halt in at most |w| steps.

• A NDFSM M, on input w, is not guaranteed to halt. But there

is a DFSM M’ such that L(M) = L(M’). (in this case, M and M’

are said to be equivalent)

• A NDPDA M, on input w, is not guaranteed to halt. But there is

an equivalent NDPDA M’ that halts.

• A deterministic TM M, on input w, is not guaranteed to halt.

 And, there may not be an equivalent one that halts.
– What if L(M) is in D?

17

Formalizing the Operation

A configuration of a Turing machine

 M = (K, , , s, A) is an element of:

K  ((- {❑}) *)  {}    (* (- {❑}))  {}

state Active tape to the left

of read/write head

Active tape to the right

of read/write head

Square under

read/write head

18

As in FSM and PDA, we use configuration to describe a particular

execution/processing step of the system.

Example Configurations

 as a 4-tuple Shorthand

(1) (q, ab, b, b) = (q, abbb)

 (2) (q, , ❑, aabb) = (q, ❑aabb)

Initial configuration is (s, ❑w).

19

Yields

(q1, w1) |- (q2, w2) iff (q2, w2) is derivable, via , in one step.

After the transition, state q1 -> q2 , active tape w1 -> w12

For any TM M, let |-* be the reflexive, transitive closure of |-M.

Configuration C1 yields configuration C2 if: C1 |-M* C2.

Recall: a path is a maximal sequence of execution /

processing steps (described by configurations) from the start

Even for a deterministic TM, a path may end, or may not

20

Turing Machines as Language Recognizers

The initial configuration of M: (s, ❑w)

Let M = (K, , , , s, {y}).

• M accepts a string w iff the path accepts it.
• For TM, (y, w) is an accepting configuration

• We do not care the tape content when it halts

• M rejects a string w iff the path rejects it.

• Possible that on input w, M neither accepts nor rejects. It may loop.

• Again, this definition is a bit different from our text and Sipser, but

similar to Ullman. This definition is more consistent to FSM and

DPDA, i.e., all the non-accepting states are rejecting states.

• This way, we do not need to draw the rejecting states and the

many transitions to them.

• It works just fine with JFLAP.
21

Turing Machines as Language Recognizers

M decides a language L  * iff:

 For any string w  * it is true that:

 if w  L then M accepts w, and

 if w  L then M rejects w.

A language L is decidable iff there is a Turing machine M

that decides it. In this case, we will say that L is in D.

In some books, D is called the set of recursive languages.

• Computability theory was recursion theory, originated

with work of Kurt Gödel, Alonzo Church, Alan

Turing, Stephen Kleene …

22

A Deciding Example: AnBnCn
AnBnCn = {anbncn : n  0}

Example : ❑aaabbbccc ❑❑❑❑❑❑❑❑❑

Example : ❑aaccb ❑❑❑❑❑❑❑❑❑

• Not context-free, not recognizable by a PDA

1. Move right.

2. If the current symbol is the blank symbol, halt and accept.

3. Loop:

 3.1. If the current symbol is a, change it to X and move right. Otherwise exit loop.

 3.2. Scan rightwards, pass a’s and Y’s to find b.
 3.3. If b found, change it to Y and move right. Otherwise reject.

 3.4. Scan rightwards, pass b’s and Z’s to find c.

 3.5. If c found, change it to Z and move left. Otherwise reject.

 3.6. Scan leftwards, pass a’s, b’s, Y’s and Z’s to find X.

 3.7. When finding the first X, move right, and go back to 3.1.
4. If the current symbol is Y, move right. Otherwise reject.

5. Scan rightwards, pass Y’s and Z’s, to find the blank symbol.

6. When finding the first blank symbol, move right and accept.
23

Another Deciding Example: wcw

WcW = {wcw : w  {a, b}*}

Example: ❑abbcabb❑❑❑

Example: ❑acabb❑❑❑

Describing M in English:

1. Loop:
 1.1. Move right to the first character. If it is c, exit the loop. Otherwise, overwrite it with #

and remember what it is.
 1.2. Move right to find c. Then continue right to the first unmarked character. If it is ❑,

halt and reject. (This will happen if the string to the right of c is shorter than the string to

the left.) If it is anything else, check to see whether it matches the remembered character

from the previous step. If it does not, halt and reject. If it does, mark it off with #.

 1.3. Move leftward to find the next unprocessed character (pass c to find first # then

right).

3. There are no characters remaining before the c. Make one last sweep left to

right checking that there are no unmarked characters after the c and before the

first ❑. If there are, halt and reject. Otherwise, halt and accept.

24

wcw: define M with transition diagram
K = {q0, q1, q2, q3, q4, q5, q6, q7, y},
 = {a, b, c},

 = {a, b, c, # , ❑},

s = q0 ,

A = {y},
 =

Exercise:

define M with transition table

wcw.jff

25

Semideciding a Language

Let  be the input alphabet to a TM M. Let L  *.

M semidecides L iff, for any string w  M*:

• w  L → M accepts w

• w  L → M does not accept w. M may either:

 reject or

 fail to halt.

A language L is semidecidable iff there is a Turing

machine that semidecides it. We define the set SD to

be the set of all semidecidable languages.

In some books, SD is called the set of recursively

enumerable languages. 26

Example of Semideciding

Let L = b*a(a  b)*

We can build M to semidecide L:

1. Loop

 1.1 Move one square to the right. If the character under
 the read head is an a, halt and accept.

Can we build M to decide L?

27

Example of Semideciding

L = b*a(a  b)*. We can also decide L:

Loop:

 1.1 Move one square to the right.

 1.2 If the character under the read/write head is

 an a, halt and accept.

 1.3 If it is ❑, halt and reject.

However, as we will prove later, there are L in SD but not D.

28

Computing Functions

When a Turing machine halts, there is a value on its tape.

So, it can be used to compute functions.

Deciding (semideciding) a language L is computing the

characteristic function (partial characteristic function) of L

Part of Chapter 25, use ch25.ppt

29

Why Are We Working with Our Hands

Tied Behind Our Backs?

Turing machines Are more powerful than any of

 the other formalisms we have

 studied so far.

 ☺
Turing machines Are a lot harder to work with than

 all the real computers we have

 available.

 
Why bother?

The very simplicity that makes it hard to program Turing machines

makes it possible to reason formally about what they can do. If we

can, once, show that anything a real computer can do can be done

(albeit clumsily) on a Turing machine, then we have a way to

reason about what real computers can do.
30

Turing Machines

Sections 17.3 – 17.5
31

Turing Machine Extensions

There are many extensions we might like to make to our

basic Turing machine model. But:

 We can show that every extended machine

 has an equivalent basic machine.

Some possible extensions:

• Multiple tape TMs

• Nondeterministic TMs

32

Multiple Tapes

Adding Tapes Adds No Power

33

Impact of Nondeterminism

Computability (decidability, solvability)

• FSMs NO

• PDAs YES

• Turing machines NO

Complexity

 Yes, adds power to TM.

 Allows “lucky guesses”. In this sense, Nondeterminism adds

“superpower”.
 It may take exponentially more steps to solve a problem using a

deterministic TM.

New player: Quantum Turing machine 34

A nondeterministic TM is a sixtuple (K, , , , s, A).

 is a subset of:

 (K  )  (K    {, →})

Nondeterministic Turing Machines

35

What does it mean for a nondeterministic Turing machine to:
– Decide a language

– Semidecide a language

Similarly,

M accepts w iff there exists some path that accepts it.

M rejects w iff all paths reject it.

• It is possible that, on input wL(M), M neither accepts nor rejects. In

that case, no path accepts and some path does not reject.

Nondeterministic Turing Machines

36

Equivalence of Deterministic and

Nondeterministic Turing Machines

Theorem: If a nondeterministic TM M decides or

semidecides a language, or computes a function, then

there is a standard TM M' semideciding or deciding the

same language or computing the same function.

Proof: (by construction). We must do separate

constructions for deciding/semideciding and for function

computation.

37

Simulating a Real Computer

Theorem: A random-access, stored program computer

can be simulated by a Turing Machine. If the computer

requires n steps to perform some operation, the Turing
Machine simulation will require O(n6) steps.

On the other hand, there are also lots of simulation of TMs

by real computers, check it out on the web.

38

Turing Machines

Sections 17.6 – 17.7
39

The Universal Turing Machine

All our machines so far are hardwired.

ENIAC – 1945 (first electronic general-purpose computer)
40

The Universal Turing Machine

All our machines so far are hardwired.

Question: Can we build a programmable TM that accepts

as input a (M: Turing machine, w: input string) pair and

outputs whatever M would output when started up on w?

Answer: Yes, it’s called the Universal Turing Machine.

To define the Universal Turing Machine U we need to:

1. Define an encoding scheme that can be used to

describe to U a (M, w) pair

• <M, w>, many ways of encoding …

2. Describe the operation of U given input <M, w>

41

On input <M, w>, U must:

 ● Halt iff M halts on w.

 ● If M is a deciding or semideciding machine, then:

 ● If M accepts, accept.

 ● If M rejects, reject.

 ● If M computes a function, then U(<M, w>) must equal

M(w).

Specification of U

42

Another Benefit of Encoding

Another benefit of defining a way to encode any Turing machine M:

• We can talk about operations on TMs, as they are just input

strings.

In the following, T (a Turing machine) takes one TM as input and

creates another as its output.

This idea of transforming one TM to another has extensive use in

reduction, to show that various problems are undecidable.

43

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43

