
Languages and Strings
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(1) Lexical analysis: Scan the program and break it up into variable 
names, numbers, etc.
(2) Parsing: Create a tree that corresponds to the sequence of 
operations that should be executed, e.g.,

/

+               10

2         5
(3) Optimization: Realize that we can skip the first assignment 
since the value is never used and that we can precompute the 
arithmetic expression, since it contains only constants.
(4) Termination: Decide whether the program is guaranteed to halt.
(5) Interpretation: Figure out what (if anything) useful it does.

Let's Look at Some Problems
int alpha, beta;
alpha = 3;
beta = (2 + 5) / 10;
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A Framework for Analyzing Problems

We need a single framework in which we can 
analyze a very diverse set of problems.

The framework we will use is 

Language Recognition

A language is a (possibly infinite) set of finite 
length strings over a finite alphabet.

3



Strings
A string is a finite sequence, possibly empty, of symbols 
drawn from some alphabet S. 

• e is the empty string.
• S* is the set of all possible strings over an alphabet S. 

Alphabet name Alphabet symbols Example strings
The English 
alphabet

{a, b, c, …, z} e, aabbcg, aaaaa

The binary 
alphabet

{0, 1} e, 0, 001100

A star alphabet {! , " , # , $, %, &} e, "", "$$&!&
A music 
alphabet {w, h, q, e, x, r, l} e, w l h h l hqq l
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Functions on Strings

Counting:  |s| is the number of symbols in s. 

|e| = 0
|1001101| = 7

#c(s) is the number of times that c occurs in s.

#a(abbaaa) = 4.
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More Functions on Strings
Concatenation: st is the concatenation of s and t.  

If x = good and y = bye, then xy = goodbye. 

Note that |xy| = |x| + |y|.

e in string concatenation:

"x (x e = e x = x).

Concatenation is associative:

"s, t, w ((st)w = s(tw)).
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More Functions on Strings
Replication:  For each string w and each natural 
number i, the string wi is:

w0 = e
wi+1 = wi w

Examples:

a3 = aaa
(bye)2 = byebye
a0b3 = bbb
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More Functions on Strings
Reverse: For each string w, wR is defined as:

if |w| = 0 then wR = w = e

if |w| ³ 1 then:
$a Î S ($u Î S* (w = ua)). 
So define wR = a u R.
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Concatenation and Reverse of Strings 
Theorem: If w and x are strings, then (w x)R = xR wR.  

Example:

(nametag)R = (tag)R (name)R = gateman
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Concatenation and Reverse of Strings 
Proof: By induction on |x|:

|x| = 0:  Then x = e, and (wx)R = (w e)R = (w)R = e wR = eR wR = xR wR. 

"n ³ 0 (((|x| = n) ® ((w x)R = xR wR))  ®
((|x| = n + 1) ® ((w x)R = xR wR))):

Consider any string x, where |x| = n + 1. Then x = u a for some 
character a and |u| = n.  So:

(w x)R = (w (u a))R rewrite x as ua
= ((w u) a)R associativity of concatenation
= a (w u)R definition of reversal
= a (uR wR) induction hypothesis
= (a uR) wR associativity of concatenation
= (ua)R wR definition of reversal
= xR wR rewrite ua as x
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Relations on Strings

aaa is a substring of        aaabbbaaa

aaaaaa is not a substring of aaabbbaaa

aaa is a proper substring of aaabbbaaa

Every string is a substring of itself.  

e is a substring of every string.  
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The Prefix Relations
s is a prefix of t iff:     $x Î S* (t = sx).

s is a proper prefix of t iff:    s is a prefix of t and s ¹ t.

Examples:

The prefixes of abba are: e, a, ab, abb, abba.
The proper prefixes of abba are: e, a, ab, abb.

Every string is a prefix of itself.

e is a prefix of every string. 
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The Suffix Relations
s is a suffix of t iff:     $x Î S* (t = xs).

s is a proper suffix of t iff:    s is a suffix of t and s ¹ t.

Examples:

The suffixes of abba are: e, a, ba, bba, abba.
The proper suffixes of abba are: e, a, ba, bba.

Every string is a suffix of itself.  

e is a suffix of every string.
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Defining a Language
A language is a (finite or infinite) set of strings over a finite 
alphabet S.

Examples: Let S = {a, b}

Some languages over S: 
Æ, 
{e}, 
{a, b}, 
{e, a, aa, aaa, aaaa, aaaaa}

The language S* contains an infinite number of strings, 
including: e, a, b, ab, ababaa.
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Example Language Definitions

L = {x Î {a, b}* : all a’s precede all b’s}

e, a, aa, aabbb, and bb are in L.  

aba, ba, and abc are not in L.  
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Example Language Definitions

L = {x : $y Î {a, b}* : x = ya}

Simple English description:
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More Example Language Definitions

L = {} = Æ

L =  {e}
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English not Well-Defined

L = {w: w is a sentence in English}.

Examples:

Kerry hit the ball.

Colorless green ideas sleep furiously.

The window needs fixed.

Ball the Stacy hit blue.
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A Halting Problem Language
L = {w: w is a C program that halts on all inputs}. 

• Well specified

• Useful
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Enumeration

• More useful: lexicographic order
• Shortest first
• Within a length, dictionary order
• This way, can enumerate a language

The lexicographic enumeration of:

• {w Î {a, b}* : |w| is even} :
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How Large is a Language?

The smallest language over any S is Æ, with cardinality 0.

The largest is S*.  How big is it?

21



How Large is a Language?

Theorem: If S ¹ Æ then S* is countably infinite.

Proof: The elements of S* can be lexicographically 
enumerated by the following procedure:

•  Enumerate all strings of length 0, then length 1, 
then length 2, and so forth.

•  Within the strings of a given length, enumerate 
them in dictionary order.

This enumeration is infinite since there is no longest 
string in S*.  Since there exists an infinite enumeration of 
S*, it is countably infinite.  

n
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How Large is a Language?

So the smallest language has cardinality 0. 

The largest is countably infinite.

So every language is either finite or countably infinite.
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How Many Languages Are There?

Theorem: If S ¹ Æ then the set of languages over S is 
uncountably infinite.

Proof: The set of languages defined on S is P(S*).  S* 
is countably infinite.  If S is a countably infinite set, P(S) 
is uncountably infinite.  So P(S*) is uncountably infinite.  

n
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Functions on Languages

• Set operations
• Union
• Intersection
• Complement

• Language operations
• Concatenation
• Kleene star

25



Concatenation of Languages
If L1 and L2 are languages over S:

L1L2 = {w Î S* : $s Î L1 ($t Î L2 (w = st))}

Examples:

L1 = {cat, dog}           
L2 = {apple, pear}
L1 L2 ={catapple, catpear, dogapple, 

dogpear}

L{e} = {e}L = L

L Æ = Æ L = Æ
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Kleene Star
• Kleene operator

L* = {e} È {w Î S* : $k ³ 1 
($w1, w2,  … wk Î L (w = w1 w2 … wk))}

• In other words, L* is the set of strings that can be formed 
by concatenating together zero or more strings in L
• Is closed under concatenation
Example: L = {dog, cat, fish}

L* = {e, dog, cat, fish, dogdog, dogcat, 
fishcatfish, fishdogdogfishcat, …}

If L = Æ, L* = ?
If L = {e}, L* = ?
Is L* the concatenation closure of L? 
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Stephen Cole Kleene
• 1909 – 1994, mathematical logician
• One of many distinguished students 
(e.g., Alan Turing) of Alonzo Church at Princeton.
• Best known as a founder of the branch of 
mathematical logic known as recursion theory.

• Also invented regular expressions.

• Kleeneness is next to Godelness
• Cleanliness is next to Godliness

• Obituaries from New York Times
• Modern computer science, in large part, grew out of recursion theory, and 
his work has been tremendously influential for years. One of the reasons for 
the importance of recursion theory is that it gives us a way of showing that 
some mathematical problems can never be solved, no matter how much 
computing power is available
• https://www.nytimes.com/1994/01/27/obituaries/stephen-c-kleene-is-dead-
at-85-was-leader-in-computer-science.html
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A photo by me
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The + Operator

Sometimes useful to require at least one element of L
be selected

L+ = L L*

if  e Ï L  then L+ = L* - {e}
Otherwise L+ = L*

L+ is the closure of L under concatenation.
• recall closure of L needs to contain L
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Concatenation and Reverse of 
Languages

Theorem: (L1 L2)R = L2R L1R.

Proof:
"x ("y ((xy)R = yRxR))  Theorem 2.1

(L1 L2)R = {(xy)R : x Î L1 and y Î L2} Definition of 
concatenation of languages

= {yRxR : x Î L1 and y Î L2} Lines 1 and 2
= L2R L1R Definition of 

concatenation of languages
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What About Meaning?

AnBn = {anbn : n ³ 0}. 

Do these strings mean anything?

But some languages are useful because their strings 
have meanings.

• English, Chinese, Java, C++, Perl

Need a precise way to map each string to its meaning 
(semantics).
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Semantic Interpretation Functions
A semantic interpretation function assigns meanings to the strings of a 
language.

• Language is mostly infinite, no way to map each string
• Must define a function that knows the meanings of basic units and can 
compose those meanings according to some fixed set of rules, to build 
meanings for larger expressions

Compositional semantic interpretation function

How about English? Compositional?  
• I gave him a mug
• I’m going to give him a piece of my mind
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Semantic Interpretation Functions
• When we define a formal language for a specific purpose, we design it 
so that there exists a compositional semantic interpretation function

• For example, C++ and Java

• One significant property of semantic interpretation functions for useful 
languages is that they are generally not one-to-one

• “Chocolate, please”, “I’d like chocolate”, “I’ll  have chocolate”
…

• “x++”,  “x = x + 1”
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