
Introduction to the Analysis

of Complexity

Chapter 27
1

Complexity Theory

Are all decidable languages equal?

● (ab)*

● WWR = {wwR : w  {a, b}*}

● WW = {ww : w  {a, b}*}

● SAT = {w : w is a wff in Boolean logic and w is satisfiable}

Computability: classifies problems into: solvable and unsolvable

Complexity: classifies solvable problems into: easy ones and hard ones

• Easy: tractable

• Hard: intractable

• Complexity zoo: hierarchy of classes

2

The Traveling Salesman Problem

Given n cities and the distances between each pair of

them, find the shortest tour that returns to its starting point

and visits each other city exactly once along the way.

15

20

25

8

9

23

40

10

4

7
3

28

3

The Traveling Salesman Problem

15

20

25

8

9

23

40

10

4

7
3

28

Given n cities:

Choose a first city n

Choose a second n-1

Choose a third n-2

 … n! 4

The Growth Rate of n!

2 2 11 479001600

3 6 12 6227020800

4 24 13 87178291200

5 120 14 1307674368000

6 720 15 20922789888000

7 5040 16 355687428096000

8 40320 17 6402373705728000

9 362880 18 121645100408832000

10 3628800 19 2432902008176640000

11 39916800 36 3.61041

5

Tackling Hard Problems

1. Use a technique that is guaranteed to find an optimal

solution.

2. Use a technique that is guaranteed to run quickly and find

a “good” solution.

– The World Tour Problem

Does it make sense to insist on true optimality if the

description of the original problem was approximate?

6

http://www.cs.utexas.edu/~ear/cs341/automatabook/appsofcombinatorialproblems_link.html?http://www.tsp.gatech.edu/world/index.html

Modern TSP

From: http://xkcd.com/399/
7

http://xkcd.com/399/

The Complexity Zoo

The attempt to characterize the decidable languages by their complexity:

https://complexityzoo.net/Complexity_Zoo

Notable ones:

P: solvable (decidable) by deterministic TM in polynomial time
• tractable

• context-free (including regular) languages are in P

NP: solvable (decidable) by nondeterministic TM in polynomial time
• given solution can be verified by DTM in polynomial time

NP-complete: as hard as any one in NP & in NP (hardest ones in NP)
• no efficient algorithm is known

• require non-trivial search, as in TSP

NP-hard: as hard as any one in NP (not necessarily in NP)

• Every problem in NP is reducible to it in polynomial time

• L is NP-complete if it is in NP + it is NP-hard

• Intractable = not in P. But since it’s believed P  NP, loosely intractable

= NP hard

8

• NP is a set of decision problems. Computational complexity primarily

deals with decision problems.

• There is a link between the "decision" and "optimization" problems in

that if there exists a polynomial algorithm that solves the "decision"

problem, then one can find the maximum value for the optimization

problem in polynomial time by applying this algorithm iteratively while

increasing the value of k .

• On the other hand, if an algorithm finds the optimal value of the

optimization problem in polynomial time, then the decision problem

can be solved in polynomial time by comparing the value of the

solution output by this algorithm with the value of k .

• Thus, both versions of the problem are of similar difficulty.

• Note that, NP-hard is not restricted to decision problems, it also

includes optimization problems.

• When the decision problem is NP-complete, the optimization problem

is NP-hard

Note

9

• Characterizing problems as languages to be comparable
– SAT = {w : w is a wff in Boolean logic and w is satisfiable}

– only applies to decidable languages. nothing to say about H

– Including optimization problems (optimization -> verification)
• TSP-DECIDE = {<G, cost> : <G> encodes an undirected graph with a

positive distance attached to each of its edges and G contains a Hamiltonian

circuit whose total cost is less than cost}.

• minimizing -> at most k

• maximizing -> at least k

• All problems are decision problems
– requires at least enough time to write the solution

– By restricting our attention to decision problems, the length of the answer

is not a factor

• Encoding matters as complexity is w.r.t. problem size

– L is regular for one encoding, nonregular for another
– E.g., for integers, we should use any base other than 1

 111111111111 vs 1100

 111111111111111111111111111111 vs 11110

Methodology

10

• Model of computation: TM

• timereq(M) is a function of n:

– If M is deterministic
 timereq(M) = f(n) = the maximum number of steps that M executes

 on any input of length n.

– If M is nondeterministic
 timereq(M) = f(n) = the number of steps on the longest path that M

 executes on any input of length n.

• spacereq(M) is a function of n:

– If M is deterministic
 spacereq(M) = f(n) = the maximum number of tape squares that M

 reads on any input of length n.

– If M is nondeterministic
 spacereq(M) = f(n) = the maximum number of tape squares that M

 reads on any path that it executes on any input of length n.

• Focus on worst-case performance
– Interested in upper bound

– Easy to determine

– Beware: could be quite different from average-case

– for most real problems, worst case is rare

Measuring Time and Space Complexity

11

Growth Rates of Functions

12

f(n)  O(g(n)) iff there exists a positive integer k and a

positive constant c such that:

 n  k (f(n)  c g(n)).

In other words, ignoring some number of small cases

(all those of size less than k), and ignoring some

constant factor c, f(n) is bounded from above by g(n).

Alternatively, if the limit exists:

In this case, we’ll say that f is “big-oh” of g

 or g asymptotically dominates f

 or g grows at least as fast as f does

Asymptotic upper bound - O


→)(

)(
lim

ng

nf

n

13

• n3  O(n3)

• n3  O(n4)

• 3n3  O(n3)

• n3  O(3n)

• n3  O(n!)

• log n  O(n)

Asymptotic upper bound - O

14

Summarizing O

O(c)  O(loga n)  O(nb)  O(dn)  O(n!)

15

f(n)  o(g(n)) iff, for every positive c, there exists a

positive integer k such that:

 n  k (f(n) < c g(n))

Alternatively, if the limit exists:

In this case, we’ll say that f is “little-oh” of g or that g

grows strictly faster than f does.

Asymptotic strong upper bound o

0
)(

)(
lim =

→ ng

nf

n

16

f(n)  (g(n)) iff there exists a positive integer k and a

positive constant c such that:

 n  k (f(n)  c g(n))

In other words, ignoring some number of small cases

(all those of size less than k), and ignoring some

constant factor c, f(n) is bounded from below by g(n).

Alternatively, if the limit exists:

In this case, we’ll say that f is “big-Omega” of g or that g

grows no faster than f.

Asymptotic lower bound - 

0
)(

)(
lim 

→ ng

nf

n

17

f(n)  (g(n)) iff, for every positive c, there exists a

positive integer k such that:

 n  k (f(n) > c g(n))

Alternatively, if the required limit exists:

In this case, we’ll say that f is “little-omega” of g or that

g grows strictly slower than f does.

Asymptotic strong lower bound 

()
lim

()n

f n

g n→
= 

18

f(n)  (g(n)) iff there exists a positive integer k and

positive constants c1, and c2 such that:

 n  k (c1 g(n)  f(n)  c2 g(n))

Or: Or:

 f(n)  (g(n)) iff: f(n)  (g(n)) iff:
 f(n)  O(g(n)), and f(n)  O(g(n)), and

 g(n)  O(f(n)). f(n)  (g(n)).

Is n3  (n3)?

Is n3  (n4)?

Is n3  (n5)?

Asymptotic tight bound 

19

Asymptotic Dominance

20

Algorithmic Gaps
We’d like to show:

1. Upper bound: There exists an algorithm that decides L

and that has complexity C1.

2. Lower bound: Any algorithm that decides L must have

complexity at least C2.

3. C1 = C2

If C1 = C2, we are done. Often, we’re not done.

21

Depth-first search: small space, big time
• potential problem: get stuck in one path

Breadth-first search: big space, small time

Iterative-deepening search: compromise
• depth-first on length 1 paths, length 2 paths and so on

• Space same as depth-first, time slightly worse than breath-first

Time-Space Tradeoffs - Search

22

Time Complexity Classes

Chapter 28
23

The Language Class P

L  P iff

• there exists some deterministic Turing machine M
 that decides L, and

• timereq(M)  O(nk) for some k.

We’ll say that L is tractable iff it is in P.

To show a language is in P:

• describe a polynomial time one-tape, deterministic Turing machine

• state a in polynomial time algorithm that runs on a regular random-

access computer
– easier

24

Languages That Are in P

• Every regular language

• Every context-free language since there exist
 context-free parsing algorithms that run in O(n3) time.

• Others:

– AnBnCn

25

Nondeterministic deciding:

L  NP iff:

• there is some NDTM M that decides L, and

• timereq(M)  O(nk) for some k.

NDTM deciders: longest path is polynomial

 s, abab

 q2,#abab q1, abab

 q1, abab q3, bbab

The Language Class NP

26

A Turing machine V is a verifier for a language L iff:

w  L iff c (<w, c>  L(V)).

We’ll call c a certificate.

Deterministic Verifying

An alternative definition for the class NP:

L  NP iff there exists a deterministic TM V such that:

• V is a verifier for L, and
• timereq(V)  O(nk) for some k.

• L is in NP iff it has a polynomial verifier.

• Can think of a nondeterministic algorithm as acting in two phases:

 – guess a solution (certificate) from a finite number of possibilities

 – verify whether it indeed solves the problem

• The verification phase takes polynomial time  problem is in NP
27

• Exhibit an NDTM to decide it in polynomial time.

– Only count the time for the longest path

• Exhibit a DTM to verify a certificate in polynomial time

• Practically, state an algorithm that runs on a regular

random-access computer that verify a certificate in

polynomial time

To Show a Language is in NP

28

SAT = {w : w is a Boolean wff and w is satisfiable} is in NP

 F1 = P  Q  R ?

 F2 = P  Q  R ?

 F3 = P  P ?

 F4 = P  (Q  R)  Q ?

SAT-decide(F4) =

SAT-verify (<F4, (P = True, Q = False, R = False)>) =

Example

29

3-SAT

• A literal is either a variable or a variable preceded by a
single negation symbol.

• A clause is either a single literal or the disjunction of
two or more literals.

• A wff is in conjunctive normal form (or CNF) iff it is
either a single clause or the conjunction of two or more
clauses.

• A wff is in 3-conjunctive normal form (or 3-CNF) iff it
is in conjunctive normal form and each clause contains
exactly three literals.

30

Every wff can be converted to an equivalent wff in CNF.

 3-SAT = { w : w is a wff in Boolean logic,

 w is in 3-conjunctive normal form, and

 w is satisfiable}.

Is 3-SAT in NP?

3-SAT

3-CNF CNF

(P  Q  R) • •

(P  Q  R)  (P  Q  R) • •

P •

(P  Q  R  S)  (P  R) •

P → Q

(P  Q  R  S)  (P  R)

(P  Q  R)

31

INDEPENDENT-SET

INDEPENDENT-SET = {<G, k> : G is an undirected graph and G

 contains an independent set of at least k vertices}.

An independent set is a set of vertices no two of which are

adjacent (i.e., connected by a single edge).

In a scheduling program the vertices represent tasks and are

connected by an edge if their corresponding tasks conflict. We can

find the largest number of tasks that can be scheduled at the same

time by finding the largest independent set in the task graph.
32

CLIQUE = {<G, k> : G is an undirected graph with vertices

V and edges E, k is an integer, 1  k  |V|, and G

contains a k-clique}.

CLIQUE

A clique in G is a subset of V where every pair of vertices

in the clique is connected by some edge in E.

A k-clique is a clique that contains exactly k vertices.

33

Graph-based languages:

• TSP-DECIDE

• HAMILTONIAN-PATH = {<G> : G is an undirected graph

and G contains a Hamiltonian path}

– a path that visits each vertex exactly once

• HAMILTONIAN-CIRCUIT = {<G> : G is an undirected

graph and G contains a Hamiltonian circuit}

– Or Hamiltonian cycle. a cycle that visits each vertex exactly once,

ending at the starting vertex

Other Languages That Are in NP

34

BIN-PACKING
• BIN-PACKING = {<S, c, k> : S is a set of objects each

of which has an associated size and it is possible to
divide the objects so that they fit into k bins, each of
which has size c}.

In two dimensions:

In three dimensions:

35

KNAPSACK = {<S, v, c> : S is a set of objects each of which

 has an associated cost and an associated value, v and c are

 integers, and there exists some way of choosing elements of

 S (duplicates allowed) such that the total cost of the chosen

 objects is at most c and their total value is at least v}.

Notice that, if the cost of each item equals its value, then the

KNAPSACK problem becomes the SUBSET-SUM problem.

 How to pack a knapsack with limited capacity in

 such as way as to maximize the utility of the contents:
• A thief

• A backpacker

• Choosing ads for a campaign

• What products should a company make?

KNAPSACK

36

P: languages for which membership can be decided quickly
• Solvable by a DTM in poly-time

NP: languages for which membership can be verified quickly
• Solvable by a NDTM in poly-time

Greatest unsolved problem in theoretical computer science:

Is P = NP? The Millenium Prize

Two possibilities:

P and NP

NPP P = NP

If P = NP, any polynomially verifiable problems would be

polynomially decidable
37

https://www.claymath.org/millennium/p-vs-np/

PSPACE: L  PSPACE iff there is some deterministic TM M that
decides L, and spacereq(M)  O(nk) for some k.
• Solvable by a DTM in poly-space

NPSPACE: L  NPSPACE iff there is some nondeterministic TM M
that decides L, and spacereq(M)  O(nk) for some k.
• Solvable by a NDTM in poly-space

EXPTIME: L  EXPTIME iff there is some deterministic TM M that
decides L, and timereq(M)  O(2(nk)) for some k.
• Solvable by a DTM in exponential-time

Here are some things we know:

 P  NP  PSPACE  NPSPACE  EXPTIME

 P  EXPTIME
• So there exist decidable but intractable problems

• So at least one of the inclusions shown above must be proper

• Generally assumed all of them are, but no proofs

Some problems are even harder than EXPTIME-complete problems.

P and NP: What We Know

38

P and NP
If a Turing Machine were to guess,
With less computational stress,
Polynomially check
That its guess was not dreck,
Thus avoiding enumerative mess.

The machine would then certainly be
Witness to a language in NP.
By guessing, we shirk
Exponential-time work.
Nondeterminism can do search for free.

Cook and Levin, I am now recalling
Found a language L that's really galling:
If there is time compaction
To prove satisfaction
Then P=NP--appalling!

It is computational fate
To encounter such barriers we hate.
Yet there are computations
To find estimations
Within factors approximate. 39

• Quantum computing is a non-classical model of computation.

Whereas traditional models such as Turing machine rely on

classical representations of computational memory, quantum

computation could transform the memory into a quantum

superposition of possible classical states. A quantum computer

is a device that could perform such computation.

• Quantum superposition is a fundamental principle of quantum

mechanics. Much like waves in classical physics, any two (or

more) quantum states can be added together ("superposed")

and the result will be another valid quantum state.

• Usually, computation on a quantum computer ends with a

measurement. This leads to a collapse of quantum state to one

of the basis states. It can be said that the quantum state is

measured to be in the correct state with high probability.

Quantum Computing

40

• A quantum Turing machine (QTM), is an abstract machine used to

model the effect of a quantum computer. It provides a very simple

model which captures all of the power of quantum computation. Any

quantum algorithm can be expressed formally as a particular quantum

Turing machine.

• A language L is in BQP (bounded-error quantum polynomial time) iff

there exists a polynomial quantum Turing machine that accepts L with

an error probability of at most 1/3 for all instances.

• Quantum computers have gained widespread interest because some

problems of practical interest are known to be in BQP, but suspected

to be outside P.
– Integer factorization (see Shor's algorithm)

– Discrete logarithm

– Simulation of quantum systems

– Approximating the Jones polynomial at certain roots of unity

Quantum Computing

41

• The relation between BQP and NP is not known.
– QTM vs NDTM

– quantum Turing machines are not deterministic, but different from

nondeterministic Turing machines

BQP and NP

The suspected relationship of BQP to other problem spaces 42

A mapping reduction R from Lold to Lnew is a

• Turing machine that implements some computable

function f with the property that:

 x (x  Lold iff f(x)  Lnew)

– if x  Lold then f(x)  Lnew

– if x  Lold then f(x)  Lnew

If Lold  Lnew and M decides Lnew , then: C(x) = M(R(x)) will decide Lold

• A mapping reduction is an algorithm that can transform

any instance of decision problem Lold into an instance of

decision problem Lnew, in such a way that the answer

(yes/no) to any Lold instance must be the same as the

answer to the corresponding Lnew instance.

Mapping Reduction

43

If R is deterministic polynomial then:

 Lold P Lnew

And, whenever such an R exists:

• Lold must be in P if Lnew is: if Lnew is in P then there exists

some deterministic, polynomial-time Turing machine M

that decides it. So M(R(x)) is also a deterministic,

polynomial-time Turing machine and it decides Lold

• Lold must be in NP if Lnew is: if Lnew is in NP then there

exists some nondeterministic, polynomial-time Turing

machine M that decides it. So M(R(x)) is also a

nondeterministic, polynomial-time Turing machine and it

decides Lold

Polynomial Reducibility

44

 3-SAT P INDEPENDENT-SET.

Strings in 3-SAT describe formulas that contain literals and

clauses.

 (P  Q  R)  (R  S  Q)

Strings in INDEPENDENT-SET describe graphs that contain

vertices and edges.

 101/1/11/11/10/10/100/100/101/11/101

3-SAT and INDEPENDENT-SET

45

A gadget is a structure in the target language that mimics

the role of a corresponding structure in the source language.

Example: 3-SAT P INDEPENDENT-SET.

So we need:

• a gadget that looks like a graph but that mimics a literal, and

• a gadget that looks like a graph but that mimics a clause.

Gadgets

46

R(<f: Boolean formula with k clauses>) =

 1. Build a graph G by doing the following:

1.1. Create one vertex for each instance of each literal in f. (literal

gadget)

1.2. Create an edge between each pair of vertices for symbols in

the same clause. (clause gadget)

1.3. Create an edge between each pair of vertices for

 complementary literals.

 2. Return <G, k>.

(P  Q  W)  (P  S  T):

3-SAT P INDEPENDENT-SET

47

Show: f  3-SAT iff R(<f>)  INDEPENDENT-SET

by showing:

• f  3-SAT → R(<f>)  INDEPENDENT-SET

• R(<f>)  INDEPENDENT-SET → f  3-SAT

R is Correct

48

f  3-SAT → R(<f>)  INDEPENDENT-SET:

There is a satisfying assignment A to the symbols in f.

So G contains an independent set S of size k, built by:

 1. From each clause gadget choose one literal that is made

 positive by A.

 2. Add the vertex corresponding to that literal to S.

S will contain exactly k vertices and is an independent set:

• No two vertices come from the same clause so step 1.2

 could not have created an edge between them.

• No two vertices correspond to complimentary literals so step

 1.3 could not have created an edge between them.

One Direction

49

• R(<f>)  INDEPENDENT-SET.

• So the graph G that R builds contains an independent set S of size k.

• We prove that there is some satisfying assignment A for f:

No two vertices in S come from the same clause gadget. Since S

contains at least k vertices, no two are from the same clause, and f

contains k clauses, S must contain one vertex from each clause.

Build A as follows:

 1. Assign True to each literal that corresponds to a vertex in S.

 2. Assign arbitrary values to all other literals.

Since each clause will contain at least one literal whose value is

True, the value of f will be True.

The Other

Direction

50

Would we ever choose to solve 3-SAT by reducing it

to INDEPENDENT-SET?

The way we use reduction is: known 3-SAT (Lold) is NP-

complete, show INDEPENDENT-SET (Lnew) is NP-

complete.

Why Do Reduction?

51

NP-Completeness

Sections 28.5, 28.6
52

NP-Completeness

1. L is in NP.

2. Every language in NP is deterministic,

polynomial-time reducible to L.

• L is NP-complete iff it possesses both property 1 and

property 2.

• L is NP-hard iff it possesses property 2.

A language L might have these properties:

All NP-complete languages can be viewed as being

equivalently hard, the hardest ones in NP.

An NP-hard language is at least as hard as any other

language in NP. It may not be in NP.

53

NP-Completeness

• The class of NP-complete is important, many of its

members, like TSP-decide, have substantial practical

significance.

• Two possibilities:

NP

P
NP-complete

P = NP NP-complete

54

Showing that Lnew is NP-Complete
How about: take a list of known NP languages and

crank out the reductions?

NPL1 P Lnew

NPL2 P Lnew

NPL3 P Lnew

 …

• infinite number of NP languages

55

Showing that Lnew is NP-Complete

NPL1 NPL2 NPL3 NPL4 NPL...

Lold

 Lnew

Theorem:

 If: Lold is NP-complete

 Lold P Lnew

 Lnew is in NP

 Then Lnew is also NP-complete

Suppose we had one NP-complete language Lold :

So we need a first NP-complete language !
56

Proving that Lnew is NP-Complete

Theorem: If Lold is NP-complete, Lold P Lnew, and Lnew
is in NP, then Lnew is also NP-complete.

Proof: If Lold is NP-complete then every other NP
language is deterministic, polynomial-time reducible
to it. So let L be any NP language and let RL be the
Turing machine that reduces L to Lold. If Lold P Lnew,
let R2 be the Turing machine that implements that
reduction. Then L can be deterministic, polynomial-
time reduced to Lnew by first applying RL and then
applying R2. Since Lnew is in NP and every other
language in NP is deterministic, polynomial-time
reducible to it, it is NP-complete.

57

The Cook-Levin Theorem

Define: SAT = {w : w is a wff in Boolean logic and

 w is satisfiable}

Theorem: SAT is NP-complete.

Proof:

• SAT is in NP.

• SAT is NP-hard.

58

SAT is NP-Hard

• Let L be any language in NP.

• Let M be one of the NDTMs that decides L.

Define an algorithm that, given M, constructs a reduction

R with the property that:

 w  L iff R(w)  SAT.

R takes a string w and returns a Boolean wff that is

satisfiable iff w  L.

59

Stephen Cook

1939 -

• Bachelor, U of Michigan

• Ph.D. in math, Harvard, 1966

• Taught at Berkley, now at Toronto

• Formalized notion of NP-completeness

• Turing award in 1982, citation reads:

For his advancement of our understanding of the complexity of
computation in a significant and profound way. His seminal paper,

The Complexity of Theorem Proving Procedures, presented at the
1971 ACM SIGACT Symposium on the Theory of Computing, laid

the foundations for the theory of NP-Completeness. The ensuring
exploration of the boundaries and nature of NP-complete class of
problems has been one of the most active and important research

activities in computer science for the last decade.

From 1966 to 1970, Assistant Professor at Berkley, math department, which

infamously denied him tenure. In a speech celebrating the 30th anniversary of

the Berkeley EECS department, fellow Turing Award winner and Berkeley

professor Richard Karp said that, "It is to our everlasting shame that we were

unable to persuade the math department to give him tenure. Perhaps they would
have done so if he had published his proof of the NP-completeness of

satisfiability a little earlier.” 60

Leonid Levin

1948 -

• 1st Ph.D, Moscow University, 1972

• with Andrey Kolmogorov

• 2nd Ph.D, MIT, 1979

• Now professor at BU

• Levin's journal article on the theorem was
published in 1973; he had lectured on the ideas in

it for some years before that time, though

complete formal writing of the results took place

after Cook's publication.

Andrey Kolmogorov (1903 – 1987): Soviet

Russian mathematician, preeminent in the 20th

century, who advanced various scientific fields:
• probability theory

• topology

• intuitionistic logic

• turbulence

• classical mechanics

• computational complexity
61

NP-Complete Languages

• INDEPENDENT-SET = {<G, k> : G is an undirected
graph and G contains an independent set of at least k
vertices}.

• CLIQUE = {<G, k> : G is an undirected graph with
vertices V and edges E, k is an integer, 1  k  |V|, and
G contains a k-clique}.

62

NP-Complete Languages

• SUBSET-SUM = {<S, k> : S is a set of integers, k is an integer, and
there exists some subset of S whose elements sum to k}.

• SET-PARTITION = {<S> : S is a set of objects each of which has an
associated cost and there exists a way to divide S into two subsets, A
and S - A, such that the sum of the costs of the elements in A equals
the sum of the costs of the elements in S - A}.

• TSP-DECIDE.

• HAMILTONIAN-PATH = {<G> : G is an undirected graph and G
contains a Hamiltonian path}.

• HAMILTONIAN-CIRCUIT = {<G> : G is an undirected graph and G
contains a Hamiltonian circuit}.

• KNAPSACK = {<S, v, c> : S is a set of objects each of which has an
associated cost and an associated value, v and c are integers, and
there exists some way of choosing elements of S (duplicates allowed)
such that the total cost of the chosen objects is at most c and their
total value is at least v}.

• BIN-PACKING = {<S, c, k> : S is a set of objects each of which has
an associated size and it is possible to divide the objects so that they
fit into k bins, each of which has size c}.

63

Richard Karp

1935 -

• Bachelor, U of Michigan

• Ph.D. in applied math, Harvard, 1959

• Now at Berkley

• 1972, published a landmark paper,

"Reducibility Among Combinatorial Problems",
proved 21 problems to be NP-complete

• Standardized proving methodology

• National medal of science

• Turing award in 1985, citation reads:

For his continuing contributions to the theory of algorithms including the

development of efficient algorithms for network flow and other combinatorial

optimization problems, the identification of polynomial-time computability with

the intuitive notion of algorithmic efficiency, and, most notably, contributions to

the theory of NP-completeness. Karp introduced the now standard
methodology for proving problems to be NP-complete which has led to the

identification of many theoretical and practical problems as being

computationally difficult.
64

Strategy for Proving NP-completeness of Lnew

• Show that Lnew belongs to NP

– Exhibit an NDTM to decide it in polynomial time.

 Or, equivalently,

– Exhibit a DTM to verify it in polynomial time

– This establishes an upper bound on the complexity of Lnew

• Show that Lnew is NP-hard by finding another NP-hard

language Lold such that

 Lold P Lnew

– This establishes a lower bound on the complexity of Lnew

65

Proving 3-SAT is NP-Complete

Theorem: 3-SAT is NP-complete.

Proof: We have shown that 3-SAT is in NP.

What about NP-hard?

Define: 3-SAT = {<w> : w is a wff in Boolean logic, w is in

3-conjunctive normal form and w is satisfiable}.

(P  R  T)  (S  R  W)

66

3-SAT

1. Use conjunctiveBoolean to construct w,

where w is in conjunctive normal form and w
is equivalent to w.

2. Use 3-conjunctiveBoolean to construct w,
where w is in 3-conjunctive normal form and

w is satisfiable iff w is.

3. Return w.

First we try a reduction from SAT:

 R(w: wff of Boolean logic) =

Does R run in polynomial time?

67

Converting to CNF

((p  q)  (r  s))  (t  v)  (w  x))

((p  r)  (q  r)  (p  s)  (q  s)) 

68

3-SAT is NP-Hard

Idea 1: Retain the idea of reducing SAT to 3-SAT.

For R to be a reduction from SAT to 3-SAT, it is sufficient to

assure that w is satisifiable iff w is.

There exists a polynomial-time algorithm that constructs,

from any wff w, a w that meets that requirement.

If we replace step one of R with that algorithm, R is a

polynomial-time reduction from SAT to 3-SAT.

So 3-SAT is NP-hard. 69

3-SAT is NP-Hard

Idea 2: Prove that 3-SAT is NP-hard directly.

It is possible to modify the reduction R that proves the

Cook-Levin Theorem so that it constructs a formula in

conjunctive normal form.

R will still run in polynomial time.

Once R has constructed a conjunctive normal form formula

w, we can use 3-conjunctiveBoolean to construct w,
where w is in 3-conjunctive normal form and w is

satisfiable iff w is.

This composition of 3-conjunctiveBoolean with R shows

that any NP language can be reduced to 3-SAT.

So 3-SAT is NP-hard.
70

Theorem: INDEPENDENT-SET is NP-complete.

• INDEPENDENT-SET is in NP:

Ver(<G, k, c>) =

1. Check that the number of vertices in c is at least k and no

more than |V|. If it is not, reject.

2. For each vertex v in c:

 For each edge e in E that has v as one endpoint:

 Check that the other endpoint of e is not in c.

Timereq(Ver)  O(|c||E||c|).

|c| and |E| are polynomial in |<G, k>|.

So Ver runs in polynomial time.

• INDEPENDENT-SET is NP-hard:

 3-SAT P INDEPENDENT-SET.

SAT

 3-SAT

INDEPENDENT-SET

Proving INDEPENDENT-SET is NP-Complete

71

Example Reductions

SAT

3-SAT

INDEPENDENT-SET

SAT

3-SAT

HAMILTONIAN-CIRCUIT

TSP

Hitler and P = NP

72

https://userweb.cs.txstate.edu/~jg66/teaching/theory/notes/hitlerpnp.mp4

VERTEX-COVER

• VERTEX-COVER = {<G, k>: G is an undirected graph

and there exists a vertex cover of G that contains at

most k vertices}.

To be able to test every link in a network, it suffices to place

monitors at a set of vertices that form a vertex cover of the

network.

A vertex cover C of a graph G =

(V, E) is a subset of V such that

every edge in E touches at least

one of the vertices in C.

• (V – C) is an independent set

 why?

73

VERTEX-COVER

Theorem: VERTEX-COVER is NP-complete.

Proof: We must prove:

• VERTEX-COVER is in NP, and

• VERTEX-COVER is NP-hard.

74

VERTEX-COVER is in NP

Proof: Ver(<G, k, c>) =

1. Check that the number of vertices in c is at most

 min(k, |V|). If not, reject.

2. For each vertex v in c do:

 Find all edges in E that have v as one endpoint

 and mark each such edge.

3. Make one final pass through E and check whether

 every edge is marked. If all of them are, accept;

 otherwise reject.

Timereq(Ver)  O(|c||E|).

Both |c| and |E| are polynomial in |<G, k>|. So Ver runs in
polynomial time.

75

VERTEX-COVER is NP-Hard

Proof: By reduction from 3-SAT:

Given a wff f, R will exploit two kinds of gadgets:

• A variable gadget: For each variable x in f, R will build a
simple graph with two vertices and one edge between
them. Label one of the vertices x and the other one x.

• A clause gadget: For each clause c in f, R will build a
graph with three vertices, one for each literal in c. There
will be an edge between each pair of vertices in this graph.

Then R will build an edge from every vertex in a clause
gadget to the vertex of the variable gadget with the same
label.

76

VERTEX-COVER

(P  Q  T)  (P  Q  S)

77

VERTEX-COVER

R(<f>) =

1.Build a graph G as described above.

2.Let k = v + 2c. (# variables + 2 * # clauses)

3.Return <G, k>.

R runs in polynomial time. To show that it is correct, we

must show that:

 <f>  3-SAT iff R(<f>)  VERTEX-COVER.

78

VERTEX-COVER

<f>  3-SAT → R(<f>)  VERTEX-COVER: There exists a satisfying

assignment A for f. G contains a vertex cover C of size k:

1. From each variable gadget, add to C the vertex that

corresponds to the literal that is true in A.

2. Since A is a satisfying assignment, there must exist at least

one true literal in each clause. Pick one and put the

vertices corresponding to the other two into C.

C contains exactly k vertices. And it is a cover of G:

79

VERTEX-COVER

C is a cover of G because:

• One vertex from every variable gadget is in C so all the edges that are internal to

the variable gadgets are covered.

• Two vertices from every clause gadget are in C so all the edges that are internal

to the clause gadgets are covered.
• All the vertices that connect variable gadgets to clause gadgets are covered:

• Two categories: true (connecting to true literal in variable gadget) and false ones

• A true edge must be covered by the true literal (added to C) in variable gadget

• A false edge must be covered by one of the chosen literals in clause gadget because

any false literal must have been added to C.

• (P  Q  T)  (P  Q  S) P =1, Q=1, T = 0, S = 0 80

VERTEX-COVER

R(<f>)  VERTEX-COVER → <f>  3-SAT: The graph G that R

builds contains a vertex cover C of size k. C must:

• Contain at least one vertex from each variable gadget in order

to cover the internal edge in the variable gadget.

• Contain at least two vertices from each clause gadget in order

to cover all three internal edges in the clause gadget.

Satisfying those two requirements uses up all k = v + 2c vertices, so

the vertices we have just described are the only vertices in C.

81

VERTEX-COVER
We can use C to show that there exists some satisfying assignment A for f

• To build A, assign True to the vertex (literal) in each variable gadget

that is in C

• in each variable gadget, only one vertex can be in C, otherwise, there won’t
be enough vertices for C to cover all the edges

• But the three edges that connect to the variable gadgets must also be covered.

Only two can be covered by a vertex in the clause gadget. The other one must

be covered by its other endpoint, which is in some variable gadget, and in C.

• Since only one vertex in each variable gadget can be in C, no two of these edges

(true edges) would connect to the same variable gadget, thus their covering
vertices in the variable gadgets can all be assigned True without conflicts.

• Since C is a cover for G, all six of the

edges that connect to vertices in this

clause gadget must be covered.

• But we know that only two of the

vertices in the gadget are in C. They
can cover the three internal edges.

82

Small Differences Matter

• Circuit problems

• SAT problems

• Path problems

• Covering problems

• Map coloring problems

• Linear programming problems

• Diophantine equation problems

83

Two Similar Circuit Problems

• EULERIAN-CIRCUIT, in which we check that there is

a circuit that visits every edge exactly once, is in P.

• HAMILTONIAN-CIRCUIT, in which we check that

there is a circuit that visits every vertex exactly once,

is NP-complete.

84

Two Similar SAT Problems

• 2-SAT = {<w> : w is a wff in Boolean logic, w is in 2-
conjunctive normal form and w is satisfiable} is in P.

 (P  R)  (S  T)

• 3-SAT = {<w> : w is a wff in Boolean logic, w is in 3-
conjunctive normal form and w is satisfiable} is NP-
complete.

 (P  R  T)  (S  T  W)

85

Two Similar Path Problems

• SHORTEST-PATH = {<G, u, v, k>: G is an undirected
graph, u and v are vertices in G, k  0, and there exists
a path from u to v whose length is at most k} is in P.

• LONGEST-PATH = {<G, u, v, k>: G is an undirected
graph, u and v are vertices in G, k  0, and there exists
a path with no repeated edges from u to v whose
length is at least k} is NP-complete.

86

Edsger W. Dijkstra

Edsger Wybe Dijkstra (1930 – 2002)
• Dutch computer scientist and an early

pioneer in many research areas of
computing science

• Held Schlumberger Centennial Chair in
Computer Sciences at the University of
Texas at Austin from 1984 until his
retirement in 1999.

• 1972 Turing Award

• Background in math and physics, one of the driving forces behind
the acceptance of computer programming as a scientific discipline

• Software engineering

• Concurrent programming: semaphores, mutex

• Shortest paths

• E. Allen Emerson 2007 Turing Award

• Bob Metcalfe 2022 Turing Award
87

https://en.wikipedia.org/wiki/E._Allen_Emerson
https://en.wikipedia.org/wiki/Robert_Metcalfe

Two Similar Covering Problems

• An edge cover C of a graph G is a subset of the
edges of G with the property that every vertex of G
is an endpoint of one of the edges in C.

• A vertex cover C of a graph G is a subset of the
vertices of G with the property that every edge of G
touches one of the vertices in C.

88

Two Similar Covering Problems

• EDGE-COVER = {<G, k>: G is an undirected graph
and there exists an edge cover of G that contains at
most k edges} is in P.

• VERTEX-COVER = {<G, k>: G is an undirected
graph and there exists a vertex cover of G that
contains at most k vertices} is NP-complete.

89

Three Similar Coloring Problems

Color a planar map so that no two adjacent regions

(countries, states, or whatever) have the same color.

How many colors are required?

90

Three Similar Coloring Problems

• 2-COLORABLE = {<m> : m can be colored with 2 colors}.

• 3-COLORABLE = {<m> : m can be colored with 3 colors}.

• 4-COLORABLE = {<m> : m can be colored with 4 colors}.

91

Three Similar Coloring Problems

• 2-COLORABLE = {<m> : m can be colored with 2 colors}

• A map is 2-colorable iff it does not contain any point that is the junction of

an odd number of regions. In P

• 3-COLORABLE = {<m> : m can be colored with 3 colors}.

• 3-COLORABLE is NP-complete.

• 4-COLORABLE = {<m> : m can be colored with 4 colors}.
• in P

92

Chromatic Number

The chromatic number of a graph is the smallest

number of colors required to color its vertices, subject to

the constraint that no two adjacent vertices may be

assigned the same color.

CHROMATIC-NUMBER = {<G, k> : G is an undirected

graph whose chromatic number is no more than k}.

CHROMATIC-NUMBER is NP-complete.

93

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7: Modern TSP
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15: Summarizing O
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30: 3-SAT
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35: BIN-PACKING
	Slide 36
	Slide 37
	Slide 38
	Slide 39: P and NP
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52: NP-Completeness
	Slide 53: NP-Completeness
	Slide 54: NP-Completeness
	Slide 55: Showing that Lnew is NP-Complete
	Slide 56: Showing that Lnew is NP-Complete
	Slide 57: Proving that Lnew is NP-Complete
	Slide 58: The Cook-Levin Theorem
	Slide 59: SAT is NP-Hard
	Slide 60: Stephen Cook
	Slide 61: Leonid Levin
	Slide 62: NP-Complete Languages
	Slide 63: NP-Complete Languages
	Slide 64: Richard Karp
	Slide 65: Strategy for Proving NP-completeness of Lnew
	Slide 66: Proving 3-SAT is NP-Complete
	Slide 67: 3-SAT
	Slide 68: Converting to CNF
	Slide 69: 3-SAT is NP-Hard
	Slide 70: 3-SAT is NP-Hard
	Slide 71: Proving INDEPENDENT-SET is NP-Complete
	Slide 72: Example Reductions
	Slide 73: VERTEX-COVER
	Slide 74: VERTEX-COVER
	Slide 75: VERTEX-COVER is in NP
	Slide 76: VERTEX-COVER is NP-Hard
	Slide 77: VERTEX-COVER
	Slide 78: VERTEX-COVER
	Slide 79: VERTEX-COVER
	Slide 80: VERTEX-COVER
	Slide 81: VERTEX-COVER
	Slide 82: VERTEX-COVER
	Slide 83: Small Differences Matter
	Slide 84: Two Similar Circuit Problems
	Slide 85: Two Similar SAT Problems
	Slide 86: Two Similar Path Problems
	Slide 87: Edsger W. Dijkstra
	Slide 88: Two Similar Covering Problems
	Slide 89: Two Similar Covering Problems
	Slide 90: Three Similar Coloring Problems
	Slide 91: Three Similar Coloring Problems
	Slide 92: Three Similar Coloring Problems
	Slide 93: Chromatic Number

