The Big Picture

Chapter 3

Examining Computational Problems

- We want to examine a given computational problem and see how difficult it is.
- Then we need to compare problems
- Problems appear different
- We want to cast them into the same kind of problem
 - decision problems
 - in particular, language recognition problem

Decision Problems

A *decision problem* is simply a problem for which the answer is yes or no (True or False). A *decision procedure* answers a decision problem.

Examples:

• Given an integer *n*, does *n* have a pair of consecutive integers as factors?

• The language recognition problem: Given a language *L* and a string *w*, is *w* in *L*?

How is casting done

- For problems already stated as decision problems:
 - define the language to be decided: encode the inputs as strings and then define a language that contains exactly the set of inputs for which the desired answer is yes.
- For other problems: first reformulate the problem as a decision problem, then cast it as a language recognition task as described above

Even Length Testing

Problem: Given $w \in \{a, b\}^*$, is w even-length?

• The language to be decided: $\{w \in \{a, b\}^*: w \text{ is even-length}\}$

- The original problem and its language formulation are Equivalent
 - By equivalent we mean that either problem can be *reduced to* the other.
 - If we have a machine to solve one, we can use it to build a machine to do the other using just the starting machine and other functions that can be built using a machine of equal or lesser power.

Primality Testing

Problem: Given a nonnegative integer *x*, is it prime?

- To encode the problem we need a way to encode each instance: We encode each nonnegative integer as a binary string.
- The language to be decided:
 PRIMES = {w : w is the binary encoding of a prime number}.

Everything is a String

Anything can be encoded as a string.

<*X*> is the string encoding of *X*.<*X*, *Y*> is the string encoding of the pair *X*, *Y*.

Everything is a String

- Problem: Given an undirected graph *G*, is it connected?
- Instance of the problem:

- Encoding of the problem: Let V be a set of binary numbers, one for each vertex in G. Then we construct (G) as follows:
 - Write |V| as a binary number,
 - Write a list of edges,
 - Separate all such binary numbers by "/".

101/1/10/10/11/1/100/10/101

The language to be decided: CONNECTED = {w ∈ {0, 1, /}* : w = n₁/n₂/...n_i, where each n_i is a binary string and w encodes a connected graph, as described above}.

Pattern Matching on the Web

Problem: Given a search string *w* and a web document *d*, do they match? In other words, should a search engine, on input *w*, consider returning *d*?

The language to be decided: {<w, d> : d is a candidate match for the query w}

Does a Program Always Halt?

Problem: Given a program *p*, written in some standard programming language, is *p* guaranteed to halt on all inputs?

• The language to be decided:

 $HP_{ALL} = \{p : p \text{ halts on all inputs}\}$

Turning Problems Into Decision Problems

Transform the original problem into a verification problem that verifies the correctness of candidate solutions.

- a decision problem
- equivalence in terms of solvability/computability

How can we use verification for solving?

Multiplication

Problem: Given two nonnegative integers, compute their product.

- Reformulation: Transform computing into verification.
 Is 2x3=5?
- The language to be decided:

 $\begin{array}{l} L = \{w \text{ of the form:} \\ < integer_1 >_X < integer_2 > = < integer_3 >, \text{ where:} \\ integer_n \text{ is any well formed integer, and} \\ integer_3 = integer_1 * integer_2 \} \end{array}$

12x9=108 12=12 12x8=108

Sorting

Problem: Given a list of integers, sort it.

- Reformulation: Transform sorting into verification
 Given two lists, is the 2nd in sorted order of the 1st?
- The language to be decided:

$$L = \{w_1 \# w_2 : \exists n \ge 1\}$$

(w_1 is of the form $<int_1, int_2, ..., int_n >$, w_2 is of the form $<int_1, int_2, ..., int_n >$, and w_2 contains the same objects as w_1 and w_2 is sorted)}

Examples:

Database Querying

Problem: Given a database and a query, execute the query.

- Reformulation: Transform the query execution problem into evaluating a reply for correctness.
- The language to be decided:

$$L = \{d \# q \# a :$$

d is an encoding of a database,

- q is a string representing a query, and
- *a* is the correct result of applying *q* to *d*}

Example:

```
(name, age, phone), (John, 23, 567-1234)
(Mary, 24, 234-9876)#(select name age=23)#
(John)
```

Another Example Showing Equivalence

Consider the multiplication example:

 $L = \{w \text{ of the form}:$

<integer₁>_X<integer₂>=<integer₃>, where: integer_n is any well formed integer, and integer₃ = integer₁ * integer₂}

Given a multiplication machine, we can build the language recognition machine:

Given the language recognition machine, we can build a multiplication machine:

Languages and Machines

4 語のいちいた

(C C)

Finite State Machines

An FSM to accept a*b*:

- We call the class of languages acceptable by some FSM *regular*
- There are simple useful languages that are not regular:
 - An FSM to accept $A^nB^n = \{a^nb^n : n \ge 0\}$
 - How can we compare numbers of a's and b's?
 - The only memory in an FSM is in the states and we must choose a fixed number of states in building it. But no bound on number of a's

Pushdown Automata

Build a PDA (roughly, FSM + a single stack) to accept $A^nB^n = \{a^nb^n : n \ge 0\}$

Example: aaabb

Stack:

Another Example

- Bal, the language of balanced parentheses
 - contains strings like (()) or ()(), but not ()))(
 - important, almost all programming languages allow parentheses, need checking
 - PDA can do the trick, not FSM

•We call the class of languages acceptable by some PDA *context-free*.

• There are useful languages not context free.

- $A^n B^n C^n = \{a^n b^n c^n : n \ge 0\}$
- a stack wouldn't work. All popped out and get empty after counting b

Turing Machines

A Turing Machine to accept AⁿBⁿCⁿ:

Turing Machines

• FSM and PDA (exists some equivalent PDA) are guaranteed to halt.

• But not TM. Now use TM to define new classes of languages, D and SD

- A language *L* is in *D* iff there exists a TM *M* that halts on all inputs, accepts all strings in *L*, and rejects all strings not in *L*.
 - in other words, *M* can always say yes or no properly
- A language *L* is in *SD* iff there exists a TM *M* that accepts all strings in *L* and fails to accept every string not in *L*. Given a string not in *L*, *M* may reject or it may loop forever (no answer).
 - in other words, *M* can always say yes properly, but not no.
 - give up looking? say no?
 - $D \subset SD$
- Bal, A^nB^n , $A^nB^nC^n$... are all in D
 - how about regular and context-free languages?
- In SD but D: H = {<M, w> : TM M halts on input string w}
- Not even in SD: $H_{all} = \{ <M > : TM M \text{ halts on all inputs} \}$

Languages and Machines

Hierarchy of language classes

Rule of Least Power: "Use the least powerful language suitable for expressing information, constraints or programs on the World Wide Web."

- Applies far more broadly.
- Expressiveness generally comes at a price
 - computational efficiency, decidability, clarity

Languages, Machines, and Grammars

一へ

TMs
Unrestricted grammar
 D (recursive)
Context-sensitive languages LBAs Context-sensitive grammar
Context-free languages NDPDAs Context-free grammar
DCF DPDAs
Regular languages FSMs Regular grammar / regular expression

A Tractability Hierarchy

- P : contains languages that can be decided by a TM in polynomial time
- **NP** : contains languages that can be decided by a nondeterministic TM (one can conduct a search by guessing which move to make) in polynomial time
- **PSPACE**: contains languages that can be decided by a machine with polynomial space

 $\mathsf{P} \subseteq \mathsf{NP} \subseteq \mathsf{PSPACE}$

• P = NP ? Biggest open question for theorists

Decision Procedures

Chapter 4

Decidability Issues

Goal of the book: be able to make useful claims about problems and the programs that solve them.

- cast problems as language recognition tasks
- define programs as state machines whose input is a string and output is *Accept* or *Reject*

Decision Procedures

An *algorithm* is a detailed procedure that accomplishes some clearly specified task.

A *decision procedure* is an algorithm to solve a decision problem.

Decision procedures are programs and must possess two correctness properties:

- must halt on all inputs
- when it halts and returns an answer, it must be the correct answer for the given input

Decidability

- A decision problem is *decidable* iff there exists a decision procedure for it.
- A decision problem is *undecidable* iff there exists no a decision procedure for it.
- A decision problem is *semiecidable* iff there exists a semidecision procedure for it.
 - a semidecision procedure is one that halts and returns *True* whenever *True* is the correct answer. When *False* is the answer, it may either halt and return *False* or it may loop (no answer).
- Three kinds of problems:
 - decidable (recursive)
 - not decidable but semidecidable (recursively enumerable)
 - not decidable and not even semidecidable

Decidable

Checking for even numbers: Is the integer *x* even?

Let / perform truncating integer division, then consider the following program:

even(x:integer)= If(x/2)*2 = x then return *True* else return *False*

Is the program a decision procedure?

Undecidable but Semidecidable

Halting Problem: For any Turing machine *M* and input *w*, decide whether *M* halts on *w*.

- w is finite
- H = {<*M*, *w*> : TM *M* halts on input string *w*}
- asks whether *M* enters an infinite loop for a particular input *w*

Java version: Given an arbitrary Java program p that takes a string w as an input parameter. Does p halt on some particular value of w?

haltsOnw(*p*:program, *w*:string) =

- 1. simulate the execution of *p* on *w*.
- 2. if the simulation halts return *True* else return *False*.

Is the program a decision procedure?

Not even Semidecidable

Halting-on-all (totality) Problem: For any Turing machine *M*, decide whether *M* halts on all inputs.

- H_{ALL} = {<*M*> : TM *M* halts on all inputs}
- If it does, it computes a total function
- equivalent to the problem of whether a program can ever enter an infinite loop, for any input
- differs from the halting problem, which asks whether *M* enters an infinite loop for a particular input

Java version: Given an arbitrary Java program *p* that takes a single string as input parameter. Does *p* halt on all possible input values?

haltsOnAll(p:program) =

1. for i = 1 to infinity do:

simulate the execution of *p* on all possible input strings of length *i*. 2. if all the simulations halt return *True* else return *False*.

Is the program a decision procedure? A semidecision procedure?

Grammars, Languages, and Machines

Clarification

A machine M recognizes a language L iff M accepts all and only strings in L.

A machine M *decides* a language L iff *M* accepts all strings in L and rejects all strings not in L.

M recognizes L = M accepts L = M semi-decides L ≠ M decides L

When a machine halts, it must either accepts or rejects. So for machines that always halt, accept implies decide.

A language L is called semi-decidable iff some TM accepts L. A language L is called decidable iff some TM decides L.

SD: set of semi-decidable languages D: set of decidable languages (a subset of SD by definition. actually a proper subset of SD by proof)