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• We want to examine a given computational problem 
and see how difficult it is.
• Then we need to compare problems
• Problems appear different

• We want to cast them into the same kind of problem
• decision problems
• in particular, language recognition problem

Examining Computational Problems

2



A decision problem is simply a problem for which the 
answer is yes or no (True or False).  A decision 
procedure answers a decision problem.

Examples:
•  Given an integer n, does n have a pair of consecutive       
    integers as factors?

•  The language recognition problem:  Given a 
    language L and a string w, is w in L?

         Our focus

Decision Problems
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How is casting done

• For problems already stated as decision problems:
• define the language to be decided: encode the 
inputs as strings and then define a language that 
contains exactly the set of inputs for which the 
desired answer is yes. 

• For other problems: first reformulate the problem 
as a decision problem, then cast it as a language 
recognition task as described above
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Even Length Testing
Problem: Given w Î {a, b}*, is w even-length?

• The language to be decided: {w Î {a, b}*: w is 
even-length}

• The original problem and its language 
formulation are Equivalent

– By equivalent we mean that either problem can 
be reduced to the other.

– If we have a machine to solve one, we can use it 
to build a machine to do the other using just the 
starting machine and other functions that can be 
built using a machine of equal or lesser power.
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Primality Testing 

  Problem: Given a nonnegative integer x, is it prime?

    • To encode the problem we need a way to encode 
       each instance: We encode each nonnegative 
       integer as a binary string.
    • The language to be decided: 

 PRIMES = {w : w is the binary encoding of 
 a prime number}.
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Everything is a String

Anything can be encoded as a string.  

<X> is the string encoding of X.
<X, Y> is the string encoding of the pair X, Y.
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• Problem:  Given an undirected graph G, is it connected?  

• Instance of the problem: 

  1           2            3

       4           5  

• Encoding of the problem: Let V be a set of binary numbers, one for 
   each vertex in G.  Then we construct áGñ as follows:
   • Write |V| as a binary number,
   • Write a list of edges,
   • Separate all such binary numbers by “/”.

 101/1/10/10/11/1/100/10/101

• The language to be decided: CONNECTED = {w Î {0, 1, /}* : w = 
   n1/n2/…ni, where each ni  is a binary string and w encodes a    
   connected graph, as described above}.

Everything is a String
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Pattern Matching on the Web

Problem: Given a search string w and a web 
  document d, do they match?  In other words, 
  should a search engine, on input w, consider 
  returning d?

• The language to be decided: {<w, d> : d is a 
  candidate match for the query w}
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Does a Program Always Halt?

Problem: Given a program p, written in some 
  standard programming language, is p 
  guaranteed to halt on all inputs?

• The language to be decided: 

 HPALL = {p : p halts on all inputs}
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Transform the original problem into a verification 
problem that verifies the correctness of candidate 
solutions.

– a decision problem
– equivalence in terms of solvability/computability

How can we use verification for solving?

Turning Problems Into Decision 
Problems 
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Problem: Given two nonnegative integers, compute their 
product.

• Reformulation: Transform computing into verification. 
– Is 2x3=5?

• The language to be decided:

     L = {w of the form:
          <integer1>x<integer2>=<integer3>, where: 
 integern is any well formed integer, and
 integer3 = integer1 * integer2}
 12x9=108
 12=12
 12x8=108

Multiplication 
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Problem: Given a list of integers, sort it.

• Reformulation: Transform sorting into verification
– Given two lists, is the 2nd in sorted order of the 1st? 

      

• The language to be decided:
    L = {w1 # w2: $n ³1
 (w1 is of the form <int1, int2, … intn>, 
 w2 is of the form <int1, int2, … intn>, and
 w2 contains the same objects as w1 and 
           w2 is sorted)}

Examples:
 1,5,3,9,6#1,3,5,6,9
 1,5,3,9,6#1,2,3,4,5,6,7

Sorting 
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Problem: Given a database and a query, execute the query.

   • Reformulation: Transform the query execution problem 
      into evaluating a reply for correctness.

   • The language to be decided:

   L = {d # q # a:
 d is an encoding of a database,
 q is a string representing a query, and
 a is the correct result of applying q to d}

   Example:
  (name, age, phone), (John, 23, 567-1234)
  (Mary, 24, 234-9876)#(select name age=23)#
  (John)

Database Querying 
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Consider the multiplication example:
    L = {w of the form:
                <integer1>x<integer2>=<integer3>, where: 
    integern is any well formed integer, and
    integer3 = integer1 * integer2}

Given a multiplication machine, we can build the 
language recognition machine:

Given the language recognition machine, we can build a 
multiplication machine:

Another Example Showing Equivalence
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Languages and Machines
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Finite State Machines
An FSM to accept a*b*:

• We call the class of languages acceptable by some FSM regular
• There are simple useful languages that are not regular:

• An FSM to accept  AnBn = {anbn : n ³ 0}
• How can we compare numbers of a’s and b’s?
• The only memory in an FSM is in the states and we must choose a 
fixed number of states in building it. But no bound on number of a’s
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Pushdown Automata
Build a PDA (roughly, FSM + a single stack) 
 to accept AnBn = {anbn : n ³ 0}

Example:  aaabb

Stack:
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Another Example
• Bal, the language of balanced parentheses

• contains strings like (()) or ()(), but not ()))(
• important, almost all programming languages allow parentheses, 
need checking
• PDA can do the trick, not FSM

 

•We call the class of languages acceptable by some PDA 
context-free.

• There are useful languages not context free.
• AnBnCn = {anbncn : n ³ 0}
• a stack wouldn’t work. All popped out and get empty after counting b
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Turing Machines
A Turing Machine to accept AnBnCn:
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Turing Machines
• FSM and PDA (exists some equivalent PDA) are guaranteed to halt.
• But not TM. Now use TM to define new classes of languages, D and SD 
• A language L is in D iff there exists a TM M that halts on all inputs, 
accepts all strings in L, and rejects all strings not in L.

• in other words, M can always say yes or no properly
• A language L is in SD iff there exists a TM M that accepts all strings in L 
and fails to accept every string not in L. Given a string not in L, M may 
reject or it may loop forever (no answer).

• in other words, M can always say yes properly, but not no.
• give up looking? say no?

• D Ì SD

• Bal, AnBn, AnBnCn … are all in D
• how about regular and context-free languages?

• In SD but D: H = {<M, w> : TM M halts on input string w}
• Not even in SD: Hall = {<M> : TM M halts on all inputs}
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Rule of Least Power: 
“Use the least powerful 
language suitable for 
expressing information, 
constraints or programs 
on the World Wide Web.”

Languages and Machines

• Applies far more broadly.
• Expressiveness generally comes at a price

• computational efficiency, decidability, clarity

Hierarchy of language 
classes
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Languages, Machines, and Grammars 
SD (recursively enumerable) 

TMs
Unrestricted grammar

DCF
DPDAs

Regular languages
FSMs

Regular grammar / regular expression

Context-free languages
NDPDAs

Context-free grammar

Context-sensitive languages
LBAs

Context-sensitive grammar

D (recursive) 
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A Tractability Hierarchy

• P : contains languages that can be decided by a TM in 
polynomial time

• NP : contains languages that can be decided by a 
nondeterministic TM (one can conduct a search by 
guessing which move to make) in polynomial time

• PSPACE: contains languages that can be decided by a 
machine with polynomial space

• P = NP ? Biggest open question for theorists 

P Í NP Í PSPACE 
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Decision Procedures

Chapter 4
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Decidability Issues
Goal of the book: be able to make useful claims about problems 
and the programs that solve them.
• cast problems as language recognition tasks
• define programs as state machines whose input is a string and 
output is Accept or Reject
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Decision Procedures
An algorithm is a detailed procedure that accomplishes 
some clearly specified task.

A decision procedure is an algorithm to solve a decision 
problem.

Decision procedures are programs and must possess two 
correctness properties:

• must halt on all inputs
• when it halts and returns an answer, it must be the 
correct answer for the given input
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Decidability
• A decision problem is decidable iff there exists a decision procedure 
for it.
• A decision problem is undecidable iff there exists no a decision 
procedure for it.
• A decision problem is semiecidable iff there exists a semidecision 
procedure for it.

• a semidecision procedure is one that halts and returns True whenever 
True is the correct answer. When False is the answer, it may either halt 
and return False or it may loop (no answer).

• Three kinds of problems:
• decidable (recursive)
• not decidable but semidecidable (recursively enumerable)
• not decidable and not even semidecidable
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Checking for even numbers: Is the integer x even?

Let / perform truncating integer division, then consider 
the following program:
 
even(x:integer)=
 If(x/2)*2 = x then return True else return False

Is the program a decision procedure?

Decidable
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Halting Problem: For any Turing machine M and input w, 
decide whether M halts on w.

• w is finite
• H = {<M, w> : TM M halts on input string w}
• asks whether M enters an infinite loop for a particular input w

Java version: Given an arbitrary Java program p that takes 
a string w as an input parameter. Does p halt on some 
particular value of w?

haltsOnw(p:program, w:string) = 
 1. simulate the execution of p on w.
 2. if the simulation halts return True else return False.

Is the program a decision procedure?

Undecidable but Semidecidable
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Halting-on-all (totality) Problem: For any Turing machine M, decide 
whether M halts on all inputs.

• HALL = {<M> : TM M halts on all inputs}
• If it does, it computes a total function
• equivalent to the problem of whether a program can ever enter an infinite 
loop, for any input
• differs from the halting problem, which asks whether M enters an infinite 
loop for a particular input

Java version: Given an arbitrary Java program p that takes a single 
string as input parameter. Does p halt on all possible input values?

haltsOnAll(p:program) = 
   1. for i = 1 to infinity do:
          simulate the execution of p on all possible input strings of length i.
   2. if all the simulations halt return True else return False.

Is the program a decision procedure? A semidecision procedure?

Not even Semidecidable
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Grammars, Languages, and Machines

Language

Grammar

Machine

Generates

Recognizes
or
Accepts
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Clarification
A machine M recognizes a language L iff M accepts all and only strings in L.

A machine M decides a language L iff M accepts all strings in L and rejects all 
strings not in L.

M recognizes L = M accepts L = M semi-decides L ≠ M decides L

When a machine halts, it must either accepts or rejects. So for machines that 
always halt, accept implies decide.
 

A language L is called semi-decidable iff some TM accepts L.
A language L is called decidable iff some TM decides L.

SD: set of semi-decidable languages
D: set of decidable languages (a subset of SD by definition. actually a proper 
subset of SD by proof)  
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