
Finite State Machines

Chapter 5
1

Languages and Machines

2

Regular Languages

Regular

Language

Regular Grammar

Finite State

Machine

Recognizes

or

Accepts

Generates

3

Finite State Machines

An example FSM: a device to solve a problem (dispense drinks);

or a device to recognize a language (the “enough money” language that

consists of the set of strings, such as NDD, that drive the machine to an

accepting state in which a drink can be dispensed)

N: nickle D: dime Q: quarter S: soda R: return

Accepts up to $.45; $.25 per drink

After a finite sequence of inputs, the controller will be in either:

A dispensing state (enough money);

or a nondispensing state (no enough money) Error!

4

Representations

• State diagrams can be used to graphically represent finite state

machines.

• describe behavior of systems

• introduced by Taylor Booth in his 1967 book "Sequential Machines and

Automata Theory "

• Another representation is the state transition table

5

FSM

• A computational device whose input is a string, and whose output is

one of the two values: Accept and Reject

• Also called FSA (finite state automata)

• Input string w is fed to M (an FSM) one symbol at a time, left to right

• Each time it receives a symbol, M considers its current state and the

new symbol and chooses a next state

• One or more states maybe marked as accepting states

• Other states are rejecting states

• If M runs out of input and is in an accepting state, it accepts

• Begin defining the class of FSMs whose behavior is deterministic.

• move is determined by current state and the next input character

6

Definition of a DFSM

M = (K, , , s, A), where:

 K is a finite set of states

  is an alphabet

 s  K is the initial state

 A  K is the set of accepting states, and

  is the transition function from (K  ) to K

7

Configurations of DFSMs

To describe the execution of machine M on input w, we

need a few definitions.

A configuration of a DFSM M is an element of:

 K  *

• It captures the two things that decide M’s future behavior:
– current state

– the remaining, unprocessed input

• It provides a “snapshot” of the system at a particular

execution/processing step.

The initial configuration is (s, w)

8

The Yields Relations

During execution, when a state transition occurs, the system

moves from one configuration to another.

The yields-in-one-step relation |-

 (q, w) |- (q', w') iff

 • w = a w' for some symbol a  , and

 •  (q, a) = q’

After the transition, state q -> q’, remaining string w -> w’

The relation yields |- * is the reflexive, transitive closure of |-

If Ci |- * Cj, iff M can go from Ci to Cj in zero (due to

“reflexive”) or more (due to “transitive”) steps.

9

Execution Path
The following definitions and concepts simply the ones from the textbook. They are applicable to all

machines we talk about in this course.

An execution path by machine M on input w is a maximal sequence of

configurations C0, C1, C2 … such that:

 • C0 is an initial configuration
 • C0 |- C1 |- C2 |- …

• In other words, a path is just a sequence of execution/processing steps

(described by configurations) from the start going as far as possible (maximal).

As long as a state transition is defined, go for it.

• An execution path accepts w if it ends in an accepting configuration, where a

set of predefined accepting conditions are met.
– Accepting conditions vary from machine to machine. e.g., FSM, PDA, TM are different types of

machines by definition with different predefined accepting conditions.

• An execution path rejects w if it ends in a non-accepting configuration
– When it ends, it either accepts (say yes) or rejects (say no). If not yes, then no.

• When would an execution path end (halt, terminate)?
– When it has no where to go, i.e., no transition is defined
– A path may not end (infinite path), in which case it cannot accept or reject

• Summary (all machines) of halting behavior for an execution path P
– P always ends: DFSM, NDFSM without -transitions, DPDA, NDPDA without -transitions
– P can be infinite: NDFSM with -transitions, NDPDA with -transitions, TM, NDTM

10

Path vs Machine
• For deterministic machines (where a transition function is defined), there’s

only one execution path. The accepting/rejecting/halting behavior of machine

M solely depends on the accepting/rejecting/halting behavior of the path P.
– If P halts and accepts, M halts and accepts.
– If P halts and rejects, M halts and rejects.
– If P does not halt, M does not halt.

• For non-deterministic machines (where a transition relation is defined), there

can be multiple execution paths. The accepting/rejecting/halting behavior of
machine M depends on the collective accepting/rejecting/halting behavior of

all paths.
– If one path halts and accepts, M halts and accepts.
– If all paths halt and reject, M halts and rejects.

– Otherwise (i.e., no path accepts, and not all paths reject), M does not halt.

• Recall relation generalizes function, so non-deterministic machines
generalize deterministic machines.

Again, these concepts apply to all machines we talk about in the course. We will

see how they apply in following lectures.

11

Accepting

• A DFSM M accepts a string w iff the path accepts it.
– The path, because there is only one.

• Predefined accepting conditions: (1) all symbols in w have

been processed/consumed. (2) in an accepting state

 More formally, accepting configuration for DFSM:

 (q, ) where q  A

• A DFSM M rejects a string w iff the path rejects it.

• The language accepted by M, denoted L(M), is the set of

all strings accepted by M.

Theorem: Every DFSM M, on input w, halts in at most |w|

steps.
12

Accepting Example

An FSM to accept odd integers:

 even odd

 even

 q0 q1

 odd

On input 235, the configurations are:

(q0, 235) |- (q0, 35)

 |-

 |- (q1, ) which is an accepting configuration

If M is a DFSM and   L(M), what simple property must be true of M?

• The start state of M must be an accepting state

13

Regular Languages

A language is regular iff it is accepted by some

FSM.

14

A Very Simple Example

L = {w  {a, b}* :

 every a is immediately followed by a b}.

15

Parity Checking

L = {w  {0, 1}* : w has odd parity}.

A binary string has odd parity iff the number of 1’s is

odd

16

No More Than One b

L = {w  {a, b}* : w contains no more than one b}.

• Some rejecting states are ignored for clarity

– A full state diagram would allow the path to exhaust all input

symbols, not ending prematurely. But it can be messy.

17

Checking Consecutive Characters

L = {w  {a, b}* :

 no two consecutive characters are the same}.

18

Programming FSMs

L is infinite but M has a finite number of states, strings

must cluster: Cluster strings that share a “future”.

Let L = {w  {a, b}* : w contains an even number of a’s

and an odd number of b’s}

19

Vowels in Alphabetical Order

L = {w  {a - z}* : can find five vowels, a, e, i, o, and u,

 that occur in w in alphabetical order}.

abstemious, facetious, sacrilegious

20

Programming FSMs

L = {w  {a, b}* : w does not contain the substring aab}.

Start with a machine for L:

How to convert it to a machine for L?

Caution: This example shows a full state diagram where all

possible states and transitions are specified. In other

examples, if we want to use the trick, need to build a full

state diagram first.
21

Controlling a Soccer-Playing Robot

22

A Simple Controller

23

FSMs Predate Computers

The Prague Orloj, originally built in 1410.
24

The Jacquard Loom

Invented in 1801.
25

The Abacus

26

The Missing Letter Language

Let  = {a, b, c, d}.

Let LMissing =

 {w : there is a symbol ai   not appearing in w}.

Try to make a DFSM for LMissing

• Doable, but complicated. Consider the number

of accepting states
• all missing (1)

• 3 missing (4)

• 2 missing (6)

• 1 missing (4)
27

Nondeterministic FSM
• In the theory of computation, a nondeterministic finite state machine

(NDFSM) is a finite state machine where for each pair of state and

input symbol there may be several possible next states.
• This distinguishes it from the deterministic finite state machine (DFSM),

where the next possible state is uniquely determined.

• Although DFSM and NDFSM have distinct definitions, it may be shown in

the formal theory that they are equivalent, in that, for any given NDFSM,

one may construct an equivalent DFSM, and vice-versa
• Both types of automata recognize only regular languages.

• Nondeterministic machines are a key concept in computational complexity

theory, particularly with the description of complexity classes P and NP.

• Introduced by Michael O. Rabin and Dana Scott in 1959
• also showed equivalence to deterministic automata

• co-winners of Turing award, citation:
• For their joint paper "Finite Automata and Their Decision Problem," which introduced the

idea of nondeterministic machines, which has proved to be an enormously valuable
concept. Their (Scott & Rabin) classic paper has been a continuous source of inspiration
for subsequent work in this field.

28

Nondeterministic Machines

Michael O. Rabin (1931 -)
• son of a rabbi, PhD Princeton

• currently Harvard

• contributed in Cryptograph

Dana Stewart Scott (1932 -)
• PhD Princeton (Alonzo Church)

• retired from Berkley

29

Definition of an NDFSM

M = (K, , , s, A), where:

 K is a finite set of states

  is an alphabet

 s  K is the initial state

 A  K is the set of accepting states, and

  is the transition relation. It is a finite subset of

 (K  (  {}))  K

30

NDFSM and DFSM
 is the transition relation. It is a finite subset of

 (K  (  {}))  K

Recall the definition of DFSM:

M = (K, , , s, A), where:

 K is a finite set of states

  is an alphabet

 s  K is the initial state

 A  K is the set of accepting states, and

  is the transition function from (K  ) to K

Key difference:

• In every configuration, a DFSM can make exactly one

move; this is not true for NDFSM
• M may enter a config. from which two or more competing moves

are possible. This is due to (1) -transition (2) relation, not function

31

Sources of Nondeterminism

• Nondeterminism is a generalization of determinism
• Every DFSM is automatically an NDFSM

• Can be viewed as a type of parallel computation
• Multiple independent threads run concurrently

• Recall Theorem: Every DFSM M, on input w, halts in

at most |w| steps. Can we say the same for NDFSM?

32

• Explore a search tree (depth-first):
• Each node corresponds to a configuration of M

• Each path from the root corresponds to the path we have defined

Envisioning the operation of M

• Alternatively, imagine following all paths through M in

parallel (breath-first)

33

Given an NDFSM M, how can we analyze it to

determine if it accepts a given string?

• Depth-first explore a search tree:

• Follow all paths in parallel (breath-first)

Analyzing Nondeterministic FSMs

34

Accepting
Recall: a path is a maximal sequence of steps from the start configuration.

• M accepts a string w iff there exists some path that accepts it.

– Same as DFSM, (q, ) where q  A is an accepting configuration

M halts upon acceptance.

• Other paths may:
– Read all the input and halt in a nonaccepting state
– Reach a dead end where no more input can be read

– Loop forever and never finish reading the input

The language accepted by M, denoted L(M), is the set of all strings

accepted by M.

• M rejects a string w iff all paths reject it.

• It is possible that, on input w  L(M), M neither accepts nor rejects. In

that case, no path accepts and some path does not reject.

35

Optional Initial a

L = {w  {a, b}* : w is made up of an optional a

followed by aa followed by zero or more b’s}.

36

Two Different Sublanguages

L = {w  {a, b}* : w = aba or |w| is even}.

If M is a NDFSM and   L(M), can we say the start state of M must be an

accepting state?

37

Why NDFSM?

• High level tool for describing complex systems

• Can be used as the basis for constructing efficient

practical DFSMs

• Build a simple NDFSM

• Convert it to an equivalent DFSM

• Minimize the result

38

The Missing Letter Language

Let  = {a, b, c, d}. Let LMissing = {w : there is a

symbol ai   not appearing in w}

39

Pattern Matching

L = {w  {a, b, c}* : x, y  {a, b, c}* (w = x abcabb y)}.

A DFSM:

Works, but complex to design, error prone

40

Pattern Matching

L = {w  {a, b, c}* : x, y  {a, b, c}* (w = x abcabb y)}.

An NDFSM:

Why ND but not D?

Why is it hard to create a DFSM?

Nondeterminism: “lucky guesses”
41

Multiple Keywords

L = {w  {a, b}* : x, y  {a, b}*

 ((w = x abbaa y)  (w = x baba y))}.

42

Checking from the End

L = {w  {a, b}* :

 the fourth to the last character is a}

43

Nondeterministic and

Deterministic FSMs

Clearly: {Languages accepted by a DFSM} 

 {Languages accepted by an NDFSM}

Theorem:

For each DFSM M, there is an equivalent NDFSM M’.

• L(M’) = L(M)

More interestingly:

Theorem:

For each NDFSM, there is an equivalent DFSM.

44

Nondeterministic and

Deterministic FSMs

Theorem: For each NDFSM, there is an

 equivalent DFSM.

Proof: By construction:

Given an NDFSM M = (K, , , s, A),

 we construct M' = (K', , ', s', A'), where

 K' = P(K)

 s' = eps(s)

 A' = {Q  K : Q  A  }

 '(Q, a) = {eps(p): p  K and

 (q, a, p)   for some q  Q}

45

An Algorithm for Constructing the

Deterministic FSM

1. Compute the eps(q)’s.

2. Compute s' = eps(s).

3. Compute ‘.

4. Compute K' = a subset of P(K).

5. Compute A' = {Q  K' : Q  A  }.

46

The Algorithm ndfsmtodfsm

ndfsmtodfsm(M: NDFSM) =

 1. For each state q in KM do:

 1.1 Compute eps(q).

 2. s' = eps(s)

 3. Compute ':

 3.1 active-states = {s'}.

 3.2 ' = .

 3.3 While there exists some element Q of active-states for

 which ' has not yet been computed do:

 For each character c in M do:

 new-state = .

 For each state q in Q do:

 For each state p such that (q, c, p)   do:

 new-state = new-state  eps(p).

 Add the transition (Q, c, new-state) to '.

 If new-state  active-states then insert it.

 4. K' = active-states.

 5. A' = {Q  K' : Q  A   }. 47

An Example

48

The Number of States May Grow

Exponentially

No. of states after 0 chars: = 1

No. of new states after 1 char: = n

No. of new states after 2 chars: = n(n-1)/2

No. of new states after 3 chars: = n(n-1)(n-2)/6

Total number of states after n chars: 2n

n

n −











1

n

n −











2

n

n −











3

|| = n

49

Nondeterministic FSMs as

Algorithms

Real computers are deterministic, so we have three choices

if we want to execute an NDFSM:

1. Convert the NDFSM to a deterministic one:

 • Conversion can take time and space 2|K|.
 • Time to analyze string w: O(|w|)

2. Simulate the behavior of the nondeterministic one by

 constructing sets of states "on the fly" during execution

 • No conversion cost
 • Time to analyze string w: O(|w|  |K|2)

3. Do a depth-first search of all paths through the

 nondeterministic machine. 50

Note on Nondeterminism

Used in computability/decidability:
• NDFSM: does not add power

• NDPDA: a bit messy, adds some power
• NDTM: does not add power

• Summary: TM is the most powerful machine, w.r.t. computability / decidability.

So in general, ND does not add power.

Used in complexity where efficiency matters:
• Use NP as an example

• The class NP is the set of languages that are polynomially decidable by a

nondeterministic Turing machine.

• Here, we can think of a nondeterministic algorithm as acting in two phases:
• Guess a solution (called a certificate) from a finite number of possibilities

• Test whether it indeed solves the problem (verification algorithm)

• Verification must take polynomial time for NP

• Summary: it adds power (efficiency), as we can take “lucky guesses” instead

of exploring all paths

51

7. JFLAP
• What’s JFLAP? http://www.jflap.org/whatis.html

• Download, tutorial: http://www.jflap.org/

• Can also use applet:

http://www.cs.duke.edu/csed/jflap/jflaptmp/applet/demo.html

• Preferences: set empty string to epsilon

• FSM, TM, Mealy, all fine. Just PDA has different definition from ours:

– with Z, a stack marker (we don’t have it)

– Either finite state or empty stack acceptance (we use both)

– To make our PDAs run in JFLAP: choose acceptance option properly. Sometimes

may need to remove Z.

• To run a machine: step (step with closure for ND), fast run, multiple run

• Grammar:

– Test for grammar type

– Brute force parse, multiple brute force parse

– Convert

52

http://www.jflap.org/whatis.html
http://www.jflap.org/
http://www.cs.duke.edu/csed/jflap/jflaptmp/applet/demo.html

Finite State Machines

Transducers

Markov Models

Hidden Markov Models

53

Finite State Transducers

• A finite state transducer (FST) is a finite state machine, that

transduces (translates) an input string into an output string.

• instead of {0,1} as in FSMs (acceptors / recognizers)

• input tape, output tape

• Moore machine and Mealy machine

• Moore machine: outputs are determined by the current

state alone (and do not depend directly on the input)

• Advantage of the Moore model is a simplification of the behavior

• Mealy machine: output depends on current state and input

54

Moore and Mealy

Edward F. Moore (1925 – 2003)
• Professor of Math and CS in UW-Madison

• Memorial resolution by Jin-Yi Cai, Larry Landweber, Olvi Mangasarian

https://kb.wisc.edu/images/group222/shared/2003-09-

29FacultySenate/1727(mem_res).pdf

George H. Mealy (1927 – 2010)

worked at the Bell Laboratories in 1950's and was a Harvard University

professor in 1970's

55

https://kb.wisc.edu/images/group222/shared/2003-09-29FacultySenate/1727(mem_res).pdf
https://kb.wisc.edu/images/group222/shared/2003-09-29FacultySenate/1727(mem_res).pdf

Moore Machine

A Moore machine M = (K, , O, , D, s, A), where:

• K is a finite set of states

•  is an input alphabet

• O is an output alphabet

• s  K is the initial state

• A  K is the set of accepting states, (not important for some app.)

•  is the transition function from (K  ) to K,

• D is the output function from K to O*.

M outputs each time it lands in a state.

A Moore machine M computes a function f(w) iff, when it

reads the input string w, its output sequence is f(w).

56

A Simple US Traffic Light Controller

57

Mealy Machine

A Mealy machine M = (K, , O, , s, A), where:

• K is a finite set of states

•  is an input alphabet

• O is an output alphabet

• s  K is the initial state

• A  K is the set of accepting states (not important for some app.)

•  is the transition function from (K  ) to (K  O*)

M outputs each time it takes a transition.

A Mealy machine M computes a function f(w) iff, when it

reads the input string w, its output sequence is f(w).

58

An Odd Parity Generator

After every four bits, output a fifth bit such that

each group of five bits has odd parity.

0 0 0 0 1 0 0 0 1 1 1 1

59

0 51 2 3 4 5 6 7 8 9 0

A Bar Code Scanner

60

A Bar Code Scanner

61

Stochastic FSMs

Markov Models

Hidden Markov Models (HMM)

• Stochastic (from the Greek "Στόχος" for "aim" or "guess")

• means random

• based on theory of probability

• A stochastic process is one whose behavior is non-

deterministic in that a system's subsequent state is

determined both by the process's predictable actions and by

a random element.

62

Andrey Markov

• 1856 – 1922

• Russian mathematician

• Stochastic process, Markov chain

• With younger brother, proved

 Markov brothers’ inequality

• Son, another Andrey Andreevich

Markov (1903-1979), was also a

notable mathematician (Markov

algorithm).

63

Markov Models

• A random process where all information about the future is contained

in the present state

• i.e. one does not need to examine the past to determine the future

• can be represented by FSM

• A Markov model is an NDFSM in which the state at each step can be

predicted by a probability distribution associated with the current state.

• Markov property: behavior at time t depends only on its state at time t-1

• sequence of outputs produced by a Markov model is called a Markov

chain

Formally, a Markov model is a triple M = (K, , A):

• K is a finite set of states

•  is a vector of initial probabilities of each of the states

• A[p, q] = Pr(state q at time t | state p at t - 1)

• the probability that, if M is in p, it will go to q next
64

Markov Models

 = (0.4, 0.6)

A =

 Sunny Rainy

Sunny 0.75 0.25

Rainy 0.3 0.7

To use a Markov model, we first need to use data to

create the matrix A (discuss later)

What can we do with a Markov model?

• Generate almost natural behavior

• Estimate the probability of some outcome
65

Estimating Probabilities

Given a Markov model that describes some random

process, what is the probability that we will observe a

particular sequence S1 S2 … Sn of states?

1 2 1 1

2

Pr(...) [] [,]
n

n i i

i

s s s s A s s −

=

= 

66

Markov Models

• What’s the probability that it will be sunny 5 days in a

row?

• Given it’s sunny today, what’s the probability that it will be

sunny 4 more days?

Assumes that

the weather

on day t is

influenced

only by the

weather on

day t - 1

67

Modeling System Performance

If up now, what is probability of staying up for an hour

(3600 time steps)?

1 2 1 1

2

Pr(...) [] [,]
n

n i i

i

s s s s A s s −

=

=  = .953600 = 6.382310-81

68

Where do the Probabilities in a

Markov Model Come From

• Examining real datasets and discover the probabilities

that best describe those data

– A log of system behavior over some recent period of time

• Suppose we have observed the output sequences:

TPTQPQT and SSPTPQQPSTQPTTP

– A[P,Q] = the number of times the pair PQ appears / total number

of times P appears in any position except the last

–  [P] is the number of times P is the first symbol / total number of
sequences

• Models are huge and evolve over time
69

Nth Order Markov Models

• 0th order models depend on no prior state.

• 1st order models depend on one previous state.

– If k states, need to specify k2 transition probabilities

– k x k

• …

• nth order models depend on n previous states.
– If k states, need to specify k(n+1) transition probabilities

– k x k x k … x k

 n

70

Markov Text Generators
• Markov processes can be used to generate superficially

"real-looking" text given a sample document

• They are used in a variety of recreational "parody

generator" software

• These processes are also used by spammers to inject real-

looking hidden paragraphs into unsolicited email in an

attempt to get these messages past spam filters.

• Markov-chain text generator

http://projects.haykranen.nl/markov/demo/

71

http://projects.haykranen.nl/markov/demo/

A Letter-Level Model of English

• (n = 1): a a idjume Thicha lanbede f nghecom isonys rar t r ores aty

Ela ancuny, ithi, witheis weche

• (n = 2): Ther to for an th she con simach a so a impty dough par we

forate for len postrit cal nowillopecide allexis inteme

numbectionsityFSM Cons onste on codere elexpre ther

• (n = 3): Ouput that the collowing with to that we’ll in which of that is

returesult is alway ther is id, the cal on the Prove be and N.

• (n = 4): Notice out at least to steps if new Turing derived for

explored. What this to check solved each equal string it matrix (i, k,

y must be put part can may generated grammar in D.

• (n = 5): So states, and Marting rules of strings. We may have been

regions to see, a list. If ? ? unrestricted grammars exist a devices

are constructive-state i back to computation

• (n = 6): We’ll have letter substituted languages that L(G) since we

drop the address to the rule1 were counterexample, that is that we

are true when we switched in how we

• (n = 7): If it does a context-free language 3. If the model of which

corresponding b’s. M must have chosen strings as a tree such

characters of some p. 72

A Word-Level Model of English
• (n = 1): there exists at the idea was presented for some finite state 3

 together. So U begins in this approach, it is labeled with wj as some

 model to position-list, solve-15 can reduce every derivation becomes M1

 and the number of A building efficient algorithms.

• (n = 2): The language to be if the various grammar formalisms in which

 they were deposited make no moves are possible. The competition can

 come from somewhere. Fortunately, there are edges from level nodes to

 level nodes. Now suppose that we do with a successful value.

• (n = 4): Again, let st be the working string at any point in its computation it

 will have executed only a finite number of squares can be nonblank. And,

 even if M never halts, at any point in its computation it will have executed

 only a finite number of choices at each derivation step and since each

 path that is generated must eventually end, the Turing machine M that

 computes it.

• (n = 5): Is there any computational solution to the problem? • If there is,

 can it be implemented using some fixed amount of memory? • If there is

 no such element, then choose will: • Halt and return False if all the

 actions halt and return False. • Fail to halt if there is no mechanism for

 determining that no elements of S that satisfy P exist. This may happen

 either because v and y are both nonempty and they both occur in region n
73

Internet Applications: Google

• The PageRank of a webpage as used by Google is

defined by a Markov chain.

• Pagerank values are basically converged long term

visit rates by a Markov chain random surfer on the

internet graph.

• Markov models have also been used to analyze web

navigation behavior of users.

• A user's web link transition on a particular website can

be modeled using first- or second-order Markov models

• make predictions regarding future navigation and to

personalize the web page for an individual user.

74

Generating Music

• Other applications? Poetry?

Markov chains are employed in algorithmic music composition, to

generate random music

Musikalisches Würfelspiel (A musical dice game): https://dice.humdrum.org/

Many on Youtube:

https://www.youtube.com/watch?v=lIOiAK0x4vA

https://www.youtube.com/watch?v=Z0lmk3FjLwA

https://www.youtube.com/watch?v=H3xgdDTvvlc

WolframTones: a commercial application of Cellular Automaton (a discrete model

of computation studied in automata theory) to music composition.

http://tones.wolfram.com/

Generative AI: Suno

75

https://dice.humdrum.org/
https://www.youtube.com/watch?v=lIOiAK0x4vA
https://www.youtube.com/watch?v=Z0lmk3FjLwA
https://www.youtube.com/watch?v=H3xgdDTvvlc
http://tones.wolfram.com/

Hidden Markov Models

Suppose that the states themselves are not visible. But

states emit outputs with certain probabilities and the

outputs are visible:

If we could observe

the states:

Sunny and Rainy

e.g., mood

76

When We Cannot Observe the States

• Also two states: Sunny and Rainy, but not visible

• Output symbols: L (passport loss) and # (no loss)

• Cannot observe the weather (states), but want to infer them from passport loss

• Probability of a passport loss is a function of weather

• B(Sunny, L) = .7: the probability M will emit (or output) L if it is in Sunny

• One HMM for London, one HMM for Athens 77

Hidden Markov Models
An HMM M is a quintuple (K, O, , A, B), where:

• K is a finite set of states,

• O is the output alphabet,

•  is a vector of initial probabilities of the states,

• A is a matrix of transition probabilities:

 A[p, q] = Pr(state q at time t | state p at time t – 1),

• B, the confusion matrix of output probabilities.

 B[q, o] = Pr(output o | state q).

Recall, a Markov model is a triple M = (K, , A):

• K is a finite set of states

•  is a vector of initial probabilities of each of the states

• A[p, q] = Pr(state q at time t | state p at t - 1)

• the probability that, if M is in p, it will go to q next 78

HMM Associated Problems

To use an HMM, we typically have to solve some or all of the

following problems:

• The decoding problem: Given an observation sequence O and an

HMM M, discover the path through M that is most likely to have

produced O

• we observe the report ###L from London, what is the most likely

sequence of weather states

• can be solved efficiently with the Viterbi algorithm (DP)

• The evaluation problem: Given an observation O and a set of HMMs

that describe a collection of possible underlying models, choose the

HMM that is most likely to have generated O

• we observe the report ###L from somewhere.

• can be solved efficiently with the forward algorithm, similar to Viterbi

except that it considers all paths through a candidate HMM, rather than
just the most likely one

• The training problem: learning , A, and B
• Baum-Welch algorithm that employs expectation maximization (EM) 79

An Example from Biology

K.3.3 HMMs for sequence matching (p973):

 A G H T Y W D N R

 A G H D T Y E N N R Y

 Y P A G Q D T Y W N N

 A G H D T T Y W N N

80

The Google Thing

Larry Page and Sergey Brin

Sergey was with Jeff Ullman

http://infolab.stanford.edu/~sergey/

Jon Kleinberg
Rebel King (anagram for “Kleinberg”)

HITS
Father of Google?

81

Cocitation similarity

on Google:

similar pages
82

83

Query-independent ordering

• First generation link-based ranking for web search

– using link counts as simple measures of popularity.

– simple link popularity: number of in-links

– First, retrieve all pages meeting the text query (say venture

capital).

– Then, Order these by the simple link popularity

• Easy to spam. Why?

84

Basic for Pagerank: random walk

• Imagine a web surfer doing a random walk on the

web page:

– Start at a random page

– At each step, go out of the current page along one of

the links on that page, equiprobably

• “In the steady state” each page has a long-term

visit rate - use this as the page’s score.

• So, pagerank = steady state probability

 = long-term visit rate

1/3

1/3

1/3

85

Not quite enough

• The web is full of dead-ends.

– Random walk can get stuck in dead-ends.

– Makes no sense to talk about long-term visit rates.

??

86

Teleporting

• Teleport operation: surfer jumps from a node to any other

node in the web graph, chosen uniformly at random from

all web pages

• Used in two ways:

– At a dead end, jump to a random web page.

– At any non-dead end, with probability 0 <  < 1 (say,  = 0.1),

jump to a random web page; with remaining probability 1 - 

(0.9), go out on a random link

• Now cannot get stuck locally

• There is a long-term rate at which any page is visited

– Not obvious, explain later

– How do we compute this visit rate?

87

Markov chains

• A Markov chain consists of n states, plus an nn

transition probability matrix P.

• At each step, we are in exactly one of the states.

• For 1  i, j  n, the matrix entry Pij tells us the

probability of j being the next state, given we are

currently in state i.

• Clearly, for each i,

• Markov chains are abstractions of random walk

– State = page

i j
Pij

.1
1

=
=

ij

n

j

P

88

Exercise

Represent the teleporting random walk as a Markov chain,

for the following case, using transition probability matrix

= 0.3:

0.1 0.45 0.45

1/3 1/3 1/3

0.45 0.45 0.1

C A B

C A B

0.1

0.45
0.45

0.45

1/3

State diagram

Link structure

0.1

1/3

0.45

1/3

Transition matrix

89

Formalization of visit: probability vector

• A probability (row) vector x = (x1, … xn) tells us

where the walk is at any point.

• E.g., (000…1…000) means we’re in state i.

i n1

More generally, the vector x = (x1, … xn) means the

walk is in state i with probability xi.

.1
1

=
=

n

i

ix
90

Change in probability vector

• If the probability vector is x = (x1, … xn) at this

step, what is it at the next step?

• Recall that row i of the transition prob. matrix P

tells us where we go next from state i.

• So from x, our next state is distributed as xP.

91

Steady state example

• The steady state is simply a vector of probabilities

 a = (a1, … an):

– ai is the probability that we are in state i.

– ai is the long-term visit rate (or pagerank) of state (page) i.

– So we can think of pagerank as a long vector, one entry for each

page

92

How do we compute this vector?

• Let a = (a1, … an) denote the row vector of steady-state

probabilities.

• If our current position is described by a, then the next

step is distributed as aP.

• But a is the steady state, so a=aP.

• Solving this matrix equation gives us a.

– So a is the (left) eigenvector for P.

– (Corresponds to the “principal” eigenvector of P with the largest

eigenvalue.)

– Transition probability matrices always have largest eigenvalue 1.

93

One way of computing

• Recall, regardless of where we start, we eventually

reach the steady state a.

• Start with any distribution (say x=(10…0)).

• After one step, we’re at xP;

• after two steps at xP2 , then xP3 and so on.

• “Eventually” means for “large” k, xPk = a.

• Algorithm: multiply x by increasing powers of P until the

product looks stable.

• This is called the power method

94

95

Pagerank summary

• Preprocessing:

– Given graph of links, build matrix P.

– From it compute a.

– The entry ai is a number between 0 and 1: the pagerank of page i.

• Query processing:

– Retrieve pages meeting query.

– Rank them by their pagerank.

– Order is query-independent.

• In practice, pagerank alone wouldn’t work

• Google paper:

http://infolab.stanford.edu/~backrub/google.html

96

	Slide 1: Finite State Machines
	Slide 2: Languages and Machines
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15: A Very Simple Example
	Slide 16: Parity Checking
	Slide 17: No More Than One b
	Slide 18: Checking Consecutive Characters
	Slide 19
	Slide 20: Vowels in Alphabetical Order
	Slide 21
	Slide 22: Controlling a Soccer-Playing Robot
	Slide 23: A Simple Controller
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32: Sources of Nondeterminism
	Slide 33
	Slide 34
	Slide 35
	Slide 36: Optional Initial a
	Slide 37: Two Different Sublanguages
	Slide 38: Why NDFSM?
	Slide 39
	Slide 40: Pattern Matching
	Slide 41: Pattern Matching
	Slide 42: Multiple Keywords
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52: 7. JFLAP
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69: Where do the Probabilities in a Markov Model Come From
	Slide 70: Nth Order Markov Models
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75: Generating Music
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84: Query-independent ordering
	Slide 85: Basic for Pagerank: random walk
	Slide 86: Not quite enough
	Slide 87: Teleporting
	Slide 88: Markov chains
	Slide 89: Exercise
	Slide 90: Formalization of visit: probability vector
	Slide 91: Change in probability vector
	Slide 92: Steady state example
	Slide 93: How do we compute this vector?
	Slide 94: One way of computing
	Slide 95
	Slide 96: Pagerank summary

