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Stephen Cole Kleene
• 1909 – 1994, mathematical logician
• One of many distinguished students (e.g., Alan Turing) of Alonzo 
Church (lambda calculus) at Princeton.
• Best known as a founder of the branch of mathematical logic known as 
recursion theory.
• Also invented regular expressions.
• Kleene pronounced his last name KLAY-nee. `kli:ni and `kli:n are 
common mispronunciations. 

• His son, Ken Kleene, wrote: "As far as I am aware 
this pronunciation is incorrect in all known languages. 
I believe that this novel pronunciation was invented 
by my father. "

• Kleeneness is next to Godelness
• Cleanliness is next to Godliness
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Regular Expressions 

Regular expression S contains two kinds of symbols:
• special symbols, Æ, e, *, +, È, (, ) …
• symbols that regular expressions will match against

The regular expressions over an alphabet S are all and only 
the strings that can be obtained as follows:

1. Æ is a regular expression.
2. e is a regular expression.
3. Every element of S is a regular expression.
4. If a , b are regular expressions, then so is ab.
5. If a , b are regular expressions, then so is aÈb.
6. If a is a regular expression, then so is a*.
7. a is a regular expression, then so is a+.
8. If a is a regular expression, then so is (a). 4



Regular Expression Examples 

If S = {a, b}, the following are regular expressions:

 Æ
 e
 a
 (a È b)*
 abba È e
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Regular Expressions Define Languages
• Regular expressions are useful because each RE has a meaning
• If the meaning of an RE a is the language A, then we say that a 

defines or describes A.

Define L, a semantic interpretation function for regular 
expressions:

1. L(Æ) = Æ. //the language that contains no strings
2. L(e) = {e}. //the language that contains just the empty string
3. L(c) = {c}, where c Î S.
4. L(ab) = L(a) L(b). 
5. L(a È b) = L(a) È L(b). 
6. L(a*) = (L(a))*.  
7. L(a+) = L(aa*) = L(a) (L(a))*.  If L(a) is equal to Æ, then L(a+) is also 

equal to Æ.  Otherwise L(a+) is the language that is formed by 
concatenating together one or more strings drawn from L(a).

 8. L((a)) = L(a). 
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The Role of the Rules

• Rules 1, 3, 4, 5, and 6 give the language its power to 
define sets.  

• Rule 8 has as its only role grouping other operators. 
• Rules 2 and 7 appear to add functionality to the 

regular expression language, but they don’t.

2. e is a regular expression.

7. a is a regular expression, then so is a+.
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Analyzing a Regular Expression
The compositional semantic interpretation function lets us 
map between regular expressions and the languages they 
define.

            L((a È b)*b) =  L((a È b)*)  L(b)

                        = (L((a È b)))* L(b)

                        = (L(a) È L(b))* L(b)

                        = ({a} È {b})* {b}

                        = {a, b}* {b}.
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Examples
L(  a*b*  ) =

L(  (a È b)*  ) =

L(  (a È b)*a*b*  ) =

L(  (a È b)*abba(a È b)*  ) =

L(  (a È b) (a È b)a(a È b)*  ) =
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Going the Other Way
Given a language, find a regular expression

L = {w Î {a, b}*: |w| is even}

  ((a È b) (a È b))*

  (aa È ab È ba È bb)*

L = {w Î {a, b}*: w contains an odd number of a’s}

  b* (ab*ab*)* a b*

  b* a b* (ab*ab*)*
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Common Idioms
(a È e)

• Optional a, matching a or the empty string

(a È b)* 
• Set of all strings composed of the characters a and b

• The regular expression a* is simply a string. It is different 
from the language L(a*) ={w: w is composed of zero or 
more a’s}. 

• However, when no confusion, we do not write the 
semantic interpretation function explicitly. We will say 
things like, “The language a* is infinite”
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Operator Precedence in Regular Expressions 

   Regular  Arithmetic
   Expressions  Expressions

Highest Kleene star  exponentiation

   concatenation multiplication  

Lowest union   addition

   

   a b* È c d*  x y2 + i j2
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Details Matter
a* È b* ¹ (a È b)*

(ab)* ¹ a*b*
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Kleene’s Theorem 

Finite state machines and regular expressions define 
the same class of languages.  To prove this, we must 
show:

Theorem: Any language that can be defined with a 
regular expression can be accepted by some FSM 
and so is regular.

Theorem: Every regular language (i.e., every language 
that can be accepted by some DFSM) can be 
defined with a regular expression. 

• Sometimes FSM is easy, sometimes RE is easy.
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For Every Regular Expression a, There is a 
Corresponding FSM M s.t. L(a) = L(M)

We’ll show this by construction.  
First, primitive regular expressions, then regular expressions 

that exploit the operations of union, concatenation, and 
Kleene star.

   Æ:

   A single element of S:

   e (Æ*): 15



Union 

If a is the regular expression b È g and if both L(b) and 
L(g) are regular:
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Concatenation 

If a is the regular expression bg and if both L(b) and L(g) 
are regular:
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Kleene Star

If a is the regular expression b* and if L(b) is regular:
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From RE to FSM: An Example
(b È ab)*

An FSM for b          An FSM for a  An FSM for b

An FSM for ab:
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An Example
(b È ab)*

An FSM for (b È ab):
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An Example
(b È ab)*

An FSM for (b È ab)*:

Error
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The Algorithm regextofsm 

regextofsm(a: regular expression) =

   Beginning with the primitive subexpressions of a and 
   working outwards until an FSM for all of a has been 
   built do:

        Construct an FSM as described above.
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For Every FSM There is a 
Corresponding Regular Expression 

We’ll show this by construction.  

The key idea is that we’ll allow arbitrary regular 
expressions to label the transitions of an FSM.

Read if interested …
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A Simple Example 

Let M be: 

Suppose we rip out state 2:

24



The Algorithm fsmtoregexheuristic 
fsmtoregexheuristic(M: FSM) = 
    1. Remove unreachable states from M.
    2. If M has no accepting states then return Æ.
    3. If the start state of M is part of a loop, create a new start state s 
        and connect s to M’s start state via an e-transition.  
    4. If there is more than one accepting state of M or there are any 
        transitions out of any of them, create a new accepting state and 
        connect each of M’s accepting states to it via an e-transition.  

The 
        old accepting states no longer accept.
    5. If M has only one state then return e.
    6. Until only the start state and the accepting state remain do:

        6.1 Select rip (not s or an accepting state).  
        6.2 Remove rip from M.
        6.3 *Modify the transitions among the remaining states so M 
              accepts the same strings. 

    7. Return the regular expression that labels the one remaining 
        transition from the start state to the accepting state. 25



Regular Expressions in Perl 
Syntax Name Description

abc Concatenation Matches a, then b, then c, where a, b, and c are any regexs

a | b | c Union (Or) Matches a or b or c, where a, b, and c are any regexs

a* Kleene star Matches 0 or more a’s, where a is any regex

a+ At least one Matches 1 or more a’s, where a is any regex

a? Matches 0 or 1 a’s, where a is any regex

a{n, m} Replication Matches at least n but no more than m a’s, where a is any regex

a*? Parsimonious Turns off greedy matching so the shortest match is selected

a+? ² ²

. Wild card Matches any character except newline

^ Left anchor Anchors the match to the beginning of a line or string

$ Right anchor Anchors the match to the end of a line or string 

[a-z] Assuming a collating sequence, matches any single character in range 

[^a-z] Assuming a collating sequence, matches any single character not in range 

\d Digit Matches any single digit, i.e., string in [0-9]

\D Nondigit Matches any single nondigit character, i.e., [^0-9]

\w Alphanumeric Matches any single “word” character, i.e., [a-zA-Z0-9]

\W Nonalphanumeric Matches any character in [^a-zA-Z0-9]

\s White space Matches any character in [space, tab, newline, etc.] 
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Syntax Name Description

\S Nonwhite space Matches any character not matched by \s

\n Newline Matches newline

\r Return Matches return

\t Tab Matches tab

\f Formfeed Matches formfeed

\b Backspace Matches backspace inside []

\b Word boundary Matches a word boundary outside []

\B Nonword boundary Matches a non-word boundary

\0 Null Matches a null character

\nnn Octal Matches an ASCII character with octal value nnn

\xnn Hexadecimal Matches an ASCII character with hexadecimal value nn

\cX Control Matches an ASCII control character

\char Quote Matches char; used to quote symbols such as . and \

(a) Store Matches a, where a is any regex, and stores the matched string in the next variable

\1 Variable Matches whatever the first parenthesized expression matched

\2 Matches whatever the second parenthesized expression matched

… For all remaining variables

Regular Expressions in Perl 

Testing. many other online tools 27

http://regexpal.com/


Using Regular Expressions 
in the Real World 

Matching numbers:
 -?([0-9]+(\.[0-9]*)?|\.[0-9]+)

Matching ip addresses:
 [0-9]{1,3}(\.[0-9]{1,3}){3}

Trawl for email addresses:

\b[A-Za-z0-9_%-]+@[A-Za-z0-9_%-]+ (\.[A-Za-
z]+){1,4}\b 

From Friedl, J., Mastering Regular Expressions, O’Reilly,1997.

IE: information extraction, unstructured data management
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A Biology Example – BLAST 
Given a protein or DNA sequence, find others that are likely 

to be evolutionarily close to it.

ESGHDTTTYYNKNRYPAGWNNHHDQMFFWV

Build a DFSM that can examine thousands of other 
sequences and find those that match any of the selected 
patterns.
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Simplifying Regular Expressions
Regex’s describe sets:
• Union is commutative:  a È b = b È a.
• Union is associative: (a È b) È g = a È (b È g).
• Æ is the identity for union:  a È Æ = Æ È a = a.
• Union is idempotent:  a È a =  a.

Concatenation:
• Concatenation is associative:  (ab)g = a(bg).
• e is the identity for concatenation:  a e = e a = a.
• Æ is a zero for concatenation:  a Æ = Æ a = Æ.

Concatenation distributes over union:
• (a È b) g = (a g) È (b g).  
• g (a È b) = (g a) È (g b). 

Kleene star:
• Æ* = e.
• e* = e.
• (a*)* = a*. 
• a*a* = a*.  
• a È b)* = (a*b*)*. 30



Regular Grammars

Chapter 7
31
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Regular Grammars
A regular grammar G is a quadruple (V, S, R, S), where:

• V (rule alphabet) contains nonterminals and terminals
• terminals: symbols that can appear in strings generated by G
• nonterminals: symbols that are used in the grammar but do not 

appear in strings of the language

• S (the set of terminals) is a subset of V,

• R (the set of rules) is a finite set of rules of the form:

   X ® Y

• S (the start symbol) is a nonterminal
33



Regular Grammars
In a regular grammar, all rules in R must:

• have a left hand side that is a single nonterminal
• have a right hand side that is:
    e, or a single terminal, or a single terminal followed by 

a single nonterminal.

Legal:  S ® a, S ® e, and T ® aS

Not legal:  S ® aSa and aSa ® T 

• Regular grammars must always produce strings one 
character at a time, moving left to right.
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Regular Grammars
• The one we study is actually right regular grammar.

• Also called right linear grammar
• Generates regular languages, recognized by FSM
• Note FSM reads the input string w left to right

• Left regular grammar (left linear grammar)
• S ® a, S ® e, and T ® Sa
• Does it generate regular languages?
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Regular Grammar Example 
L = {w Î {a, b}* : |w| is even}     ((aa) È (ab) È (ba) È (bb))*

                                           M:
G: S ® e
 S ® aT    
 S ® bT
 T ® aS
 T ® bS

• By convention, the start symbol of any grammar G will be the symbol 
on the left-hand side of the first rule
• Notice the clear correspondence between M and G

• Given one, easy to derive the other
• Works for DFSM, and NDFSM without e-transitions
• T or F: For any NDFSM M, we can find M’, an NDFSM 
without e-transitions, such that L(M) = L(M’). 36



Regular Languages and Regular Grammars
Theorem:  The class of languages that can be defined 

with regular grammars is exactly the regular 
languages. 

Proof:  By two constructions.
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Regular Languages and Regular Grammars
Regular grammar ® FSM: 
   grammartofsm(G = (V, S, R, S)) = 
   1. Create in M a separate state for each nonterminal in V.
   2. Start state is the state corresponding to S .
   3. If there are any rules in R of the form X ® w, for some
       w Î S, create a new state labeled #.
   4. For each rule of the form X ® w Y, add a transition from
       X to Y labeled w.
   5. For each rule of the form X ® w, add a transition from X
      to # labeled w.
   6. For each rule of the form X ® e, mark state X as
       accepting.
   7. Mark state # as accepting.

FSM ® Regular grammar:  Similarly. 38



Strings That End with aaaa
L = {w Î {a, b}* : w ends with the pattern aaaa}. 

 S ® aS    
 S ® bS    
 S ® aB  
 B ® aC  
 C ® aD  
 D ® a  
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One Character Missing
L = {w Î {a, b, c}*: there is a symbol in the alphabet not 

appearing in w}. 
S ® e   A ® bA  C ® aC
S ® aB  A ® cA  C ® bC
S ® aC  A ® e   C ® e
S ® bA  B ® aB
S ® bC  B ® cB
S ® cA  B ® e
S ® cB

e Transitions are removed.
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