
Regular Expressions

Chapter 6
1

Regular Languages

Regular
Language

Regular Expression

Finite State
Machine

Recognizes
or
Accepts

Generates

2

Stephen Cole Kleene
• 1909 – 1994, mathematical logician
• One of many distinguished students (e.g., Alan Turing) of Alonzo
Church (lambda calculus) at Princeton.
• Best known as a founder of the branch of mathematical logic known as
recursion theory.
• Also invented regular expressions.
• Kleene pronounced his last name KLAY-nee. `kli:ni and `kli:n are
common mispronunciations.

• His son, Ken Kleene, wrote: "As far as I am aware
this pronunciation is incorrect in all known languages.
I believe that this novel pronunciation was invented
by my father. "

• Kleeneness is next to Godelness
• Cleanliness is next to Godliness

3

Regular Expressions

Regular expression S contains two kinds of symbols:
• special symbols, Æ, e, *, +, È, (,) …
• symbols that regular expressions will match against

The regular expressions over an alphabet S are all and only
the strings that can be obtained as follows:

1. Æ is a regular expression.
2. e is a regular expression.
3. Every element of S is a regular expression.
4. If a , b are regular expressions, then so is ab.
5. If a , b are regular expressions, then so is aÈb.
6. If a is a regular expression, then so is a*.
7. a is a regular expression, then so is a+.
8. If a is a regular expression, then so is (a). 4

Regular Expression Examples

If S = {a, b}, the following are regular expressions:

 Æ
 e
 a
 (a È b)*
 abba È e

5

Regular Expressions Define Languages
• Regular expressions are useful because each RE has a meaning
• If the meaning of an RE a is the language A, then we say that a

defines or describes A.

Define L, a semantic interpretation function for regular
expressions:

1. L(Æ) = Æ. //the language that contains no strings
2. L(e) = {e}. //the language that contains just the empty string
3. L(c) = {c}, where c Î S.
4. L(ab) = L(a) L(b).
5. L(a È b) = L(a) È L(b).
6. L(a*) = (L(a))*.
7. L(a+) = L(aa*) = L(a) (L(a))*. If L(a) is equal to Æ, then L(a+) is also

equal to Æ. Otherwise L(a+) is the language that is formed by
concatenating together one or more strings drawn from L(a).

 8. L((a)) = L(a).
6

The Role of the Rules

• Rules 1, 3, 4, 5, and 6 give the language its power to
define sets.

• Rule 8 has as its only role grouping other operators.
• Rules 2 and 7 appear to add functionality to the

regular expression language, but they don’t.

2. e is a regular expression.

7. a is a regular expression, then so is a+.

7

Analyzing a Regular Expression
The compositional semantic interpretation function lets us
map between regular expressions and the languages they
define.

 L((a È b)*b) = L((a È b)*) L(b)

 = (L((a È b)))* L(b)

 = (L(a) È L(b))* L(b)

 = ({a} È {b})* {b}

 = {a, b}* {b}.

8

Examples
L(a*b*) =

L((a È b)*) =

L((a È b)*a*b*) =

L((a È b)*abba(a È b)*) =

L((a È b) (a È b)a(a È b)*) =

9

Going the Other Way
Given a language, find a regular expression

L = {w Î {a, b}*: |w| is even}

 ((a È b) (a È b))*

 (aa È ab È ba È bb)*

L = {w Î {a, b}*: w contains an odd number of a’s}

 b* (ab*ab*)* a b*

 b* a b* (ab*ab*)*

 10

Common Idioms
(a È e)

• Optional a, matching a or the empty string

(a È b)*
• Set of all strings composed of the characters a and b

• The regular expression a* is simply a string. It is different
from the language L(a*) ={w: w is composed of zero or
more a’s}.

• However, when no confusion, we do not write the
semantic interpretation function explicitly. We will say
things like, “The language a* is infinite”

11

Operator Precedence in Regular Expressions

 Regular Arithmetic
 Expressions Expressions

Highest Kleene star exponentiation

 concatenation multiplication

Lowest union addition

 a b* È c d* x y2 + i j2

12

Details Matter
a* È b* ¹ (a È b)*

(ab)* ¹ a*b*

13

Kleene’s Theorem

Finite state machines and regular expressions define
the same class of languages. To prove this, we must
show:

Theorem: Any language that can be defined with a
regular expression can be accepted by some FSM
and so is regular.

Theorem: Every regular language (i.e., every language
that can be accepted by some DFSM) can be
defined with a regular expression.

• Sometimes FSM is easy, sometimes RE is easy.

14

For Every Regular Expression a, There is a
Corresponding FSM M s.t. L(a) = L(M)

We’ll show this by construction.
First, primitive regular expressions, then regular expressions

that exploit the operations of union, concatenation, and
Kleene star.

 Æ:

 A single element of S:

 e (Æ*): 15

Union

If a is the regular expression b È g and if both L(b) and
L(g) are regular:

16

Concatenation

If a is the regular expression bg and if both L(b) and L(g)
are regular:

17

Kleene Star

If a is the regular expression b* and if L(b) is regular:

18

From RE to FSM: An Example
(b È ab)*

An FSM for b An FSM for a An FSM for b

An FSM for ab:

19

An Example
(b È ab)*

An FSM for (b È ab):

20

An Example
(b È ab)*

An FSM for (b È ab)*:

Error

21

The Algorithm regextofsm

regextofsm(a: regular expression) =

 Beginning with the primitive subexpressions of a and
 working outwards until an FSM for all of a has been
 built do:

 Construct an FSM as described above.

22

For Every FSM There is a
Corresponding Regular Expression

We’ll show this by construction.

The key idea is that we’ll allow arbitrary regular
expressions to label the transitions of an FSM.

Read if interested …

23

A Simple Example

Let M be:

Suppose we rip out state 2:

24

The Algorithm fsmtoregexheuristic
fsmtoregexheuristic(M: FSM) =
 1. Remove unreachable states from M.
 2. If M has no accepting states then return Æ.
 3. If the start state of M is part of a loop, create a new start state s
 and connect s to M’s start state via an e-transition.
 4. If there is more than one accepting state of M or there are any
 transitions out of any of them, create a new accepting state and
 connect each of M’s accepting states to it via an e-transition.

The
 old accepting states no longer accept.
 5. If M has only one state then return e.
 6. Until only the start state and the accepting state remain do:

 6.1 Select rip (not s or an accepting state).
 6.2 Remove rip from M.
 6.3 *Modify the transitions among the remaining states so M
 accepts the same strings.

 7. Return the regular expression that labels the one remaining
 transition from the start state to the accepting state. 25

Regular Expressions in Perl
Syntax Name Description

abc Concatenation Matches a, then b, then c, where a, b, and c are any regexs

a | b | c Union (Or) Matches a or b or c, where a, b, and c are any regexs

a* Kleene star Matches 0 or more a’s, where a is any regex

a+ At least one Matches 1 or more a’s, where a is any regex

a? Matches 0 or 1 a’s, where a is any regex

a{n, m} Replication Matches at least n but no more than m a’s, where a is any regex

a*? Parsimonious Turns off greedy matching so the shortest match is selected

a+? ² ²

. Wild card Matches any character except newline

^ Left anchor Anchors the match to the beginning of a line or string

$ Right anchor Anchors the match to the end of a line or string

[a-z] Assuming a collating sequence, matches any single character in range

[^a-z] Assuming a collating sequence, matches any single character not in range

\d Digit Matches any single digit, i.e., string in [0-9]

\D Nondigit Matches any single nondigit character, i.e., [^0-9]

\w Alphanumeric Matches any single “word” character, i.e., [a-zA-Z0-9]

\W Nonalphanumeric Matches any character in [^a-zA-Z0-9]

\s White space Matches any character in [space, tab, newline, etc.]

26

Syntax Name Description

\S Nonwhite space Matches any character not matched by \s

\n Newline Matches newline

\r Return Matches return

\t Tab Matches tab

\f Formfeed Matches formfeed

\b Backspace Matches backspace inside []

\b Word boundary Matches a word boundary outside []

\B Nonword boundary Matches a non-word boundary

\0 Null Matches a null character

\nnn Octal Matches an ASCII character with octal value nnn

\xnn Hexadecimal Matches an ASCII character with hexadecimal value nn

\cX Control Matches an ASCII control character

\char Quote Matches char; used to quote symbols such as . and \

(a) Store Matches a, where a is any regex, and stores the matched string in the next variable

\1 Variable Matches whatever the first parenthesized expression matched

\2 Matches whatever the second parenthesized expression matched

… For all remaining variables

Regular Expressions in Perl

Testing. many other online tools 27

http://regexpal.com/

Using Regular Expressions
in the Real World

Matching numbers:
 -?([0-9]+(\.[0-9]*)?|\.[0-9]+)

Matching ip addresses:
 [0-9]{1,3}(\.[0-9]{1,3}){3}

Trawl for email addresses:

\b[A-Za-z0-9_%-]+@[A-Za-z0-9_%-]+ (\.[A-Za-
z]+){1,4}\b

From Friedl, J., Mastering Regular Expressions, O’Reilly,1997.

IE: information extraction, unstructured data management
28

A Biology Example – BLAST
Given a protein or DNA sequence, find others that are likely

to be evolutionarily close to it.

ESGHDTTTYYNKNRYPAGWNNHHDQMFFWV

Build a DFSM that can examine thousands of other
sequences and find those that match any of the selected
patterns.

29

Simplifying Regular Expressions
Regex’s describe sets:
• Union is commutative: a È b = b È a.
• Union is associative: (a È b) È g = a È (b È g).
• Æ is the identity for union: a È Æ = Æ È a = a.
• Union is idempotent: a È a = a.

Concatenation:
• Concatenation is associative: (ab)g = a(bg).
• e is the identity for concatenation: a e = e a = a.
• Æ is a zero for concatenation: a Æ = Æ a = Æ.

Concatenation distributes over union:
• (a È b) g = (a g) È (b g).
• g (a È b) = (g a) È (g b).

Kleene star:
• Æ* = e.
• e* = e.
• (a*)* = a*.
• a*a* = a*.
• a È b)* = (a*b*)*. 30

Regular Grammars

Chapter 7
31

Regular Languages

Regular
Language

Regular Grammar

Finite State
Machine

Recognizes
or
Accepts

Generates

32

Regular Grammars
A regular grammar G is a quadruple (V, S, R, S), where:

• V (rule alphabet) contains nonterminals and terminals
• terminals: symbols that can appear in strings generated by G
• nonterminals: symbols that are used in the grammar but do not

appear in strings of the language

• S (the set of terminals) is a subset of V,

• R (the set of rules) is a finite set of rules of the form:

 X ® Y

• S (the start symbol) is a nonterminal
33

Regular Grammars
In a regular grammar, all rules in R must:

• have a left hand side that is a single nonterminal
• have a right hand side that is:
 e, or a single terminal, or a single terminal followed by

a single nonterminal.

Legal: S ® a, S ® e, and T ® aS

Not legal: S ® aSa and aSa ® T

• Regular grammars must always produce strings one
character at a time, moving left to right.

34

Regular Grammars
• The one we study is actually right regular grammar.

• Also called right linear grammar
• Generates regular languages, recognized by FSM
• Note FSM reads the input string w left to right

• Left regular grammar (left linear grammar)
• S ® a, S ® e, and T ® Sa
• Does it generate regular languages?

35

Regular Grammar Example
L = {w Î {a, b}* : |w| is even} ((aa) È (ab) È (ba) È (bb))*

 M:
G: S ® e
 S ® aT
 S ® bT
 T ® aS
 T ® bS

• By convention, the start symbol of any grammar G will be the symbol
on the left-hand side of the first rule
• Notice the clear correspondence between M and G

• Given one, easy to derive the other
• Works for DFSM, and NDFSM without e-transitions
• T or F: For any NDFSM M, we can find M’, an NDFSM
without e-transitions, such that L(M) = L(M’). 36

Regular Languages and Regular Grammars
Theorem: The class of languages that can be defined

with regular grammars is exactly the regular
languages.

Proof: By two constructions.

37

Regular Languages and Regular Grammars
Regular grammar ® FSM:
 grammartofsm(G = (V, S, R, S)) =
 1. Create in M a separate state for each nonterminal in V.
 2. Start state is the state corresponding to S .
 3. If there are any rules in R of the form X ® w, for some
 w Î S, create a new state labeled #.
 4. For each rule of the form X ® w Y, add a transition from
 X to Y labeled w.
 5. For each rule of the form X ® w, add a transition from X
 to # labeled w.
 6. For each rule of the form X ® e, mark state X as
 accepting.
 7. Mark state # as accepting.

FSM ® Regular grammar: Similarly. 38

Strings That End with aaaa
L = {w Î {a, b}* : w ends with the pattern aaaa}.

 S ® aS
 S ® bS
 S ® aB
 B ® aC
 C ® aD
 D ® a

39

One Character Missing
L = {w Î {a, b, c}*: there is a symbol in the alphabet not

appearing in w}.
S ® e A ® bA C ® aC
S ® aB A ® cA C ® bC
S ® aC A ® e C ® e
S ® bA B ® aB
S ® bC B ® cB
S ® cA B ® e
S ® cB

e Transitions are removed.

40

