S
9
>
0
14

Q) ¢ L7 07 HOEON

- - o

Overview

* » Theory of computation: central areas:

Automata, Computability, Complexity

« Computability: Is the problem solvable?
— solvable and unsolvable

J

% ' . Complexity: Is the problem easy to solve?
" — easy ones and hard ones

§ . Both deal with formal models of computation: Turing machines, recursive
functions, lambda calculus, and production systems

Overview

Automata theory: study of abstract machines and problems
they are able to solve.

— closely related to formal language theory as the automata are often
classified by the class of formal languages they are able to recognize.

— An abstract machine, also called an abstract computer, is a theoretical
model of a computer hardware or software system

— FSM, PDA, Turing machine

Formal language: A set of strings over a given alphabet.
— In contrast to natural language

— Often defined by formal grammar

— Regular, context-free, D, SD

Approach

. » Language recognition framework:

* transform a problem into a decision problem
(verification) if it is not

« encode the inputs as strings and then define a
language that contains exactly the set of inputs for which

the desired answer is yes
* the original problem now becomes a language

recognition problem
| § + Now, all problems have the same look

« Machines (FSM, PDA, TM ...) are abstract computational
& models. They are used to classify problems.

Grammars, Languages, and Machines

Generates Language

Recognizes
or
Accepts

Path

» Given input w, a maximal sequence of moves that M takes from the
. starting configuration

¥ 2 *Apath P ends when it enters an accepting configuration, or there is no

& transition defined for its current configuration, i.e., it has no where to go.
¢ « If P ends in an accepting configuration, P accepts w.

= ¢ If P ends in a non-accepting configuration, P rejects w.

8 & - If there is some path of M that accepts w, M halts and accepts w.

4 % - If all paths of M reject w, M halts and rejects w.

~ & < |t is possible that M neither accepts nor rejects w. In which case, none
2 & of its paths accepts w and some path does not reject w.

;‘i * Applies to all kinds of automata in the scope of our study.

Different from the text

In Particular

* If M is deterministic, there’s only one path.

* For DFSM and DPDA, the path is finite and guaranteed to end. Upon
halting, it either accepts or rejects. So, DFSM and DPDA are
guaranteed to halt (in at most |w| moves).
» Since DFSM = regular languages, the above halting property of
DFSM implies that regular languages are in D.
* For DTM, the path maybe infinite. So DTM may not halt for some w.
It happens when M is a semi-decider and not a decider, and for
w that is not in L(M)
« Not that DTM = SD 7

In Particular

* If M is nondeterministic, there’re maybe multiple paths.

4 For NDFSM and NDPDA, if without e-transitions, they are guaranteed

to halt in at most |w| moves. Otherwise, no.
* For each NDFSM M, there is an equivalent DFSM M’
« “equivalent” means L(M) = L(M’)
« For each NDPDA M, there an equivalent NDPDA M’ that halts.
» Since NDPDA = context-free languages, the above halting property of
NDPDA implies that context-free languages are in D.

« For NDTM, no such properties, as DTM does not even always halt.

Recognizer and Decider

. s . L(M): language accepted by M.
o * For each w € L(M), M halts

' - Recognizer: M is a recognizer (acceptor) of L if M
. # halts on any w € L and returns “yes”

* They are semi-deciders

¥ -+ Decider: M is a decider of L if M always halts,
& returns “yes” ifw e L and “no” ifw ¢ L

~ Languages, Machines, and Grammars

SD (recursively enumerable)
TMs
Unrestricted grammar

D (recursive)

Context-sensitive languages
LBASs
Context-sensitive grammar

Context-free languages
NDPDAs
Context-free grammar

DCF
DPDAs

Regular languages
FSMs

Regular grammar / regular expression

10

Language Summary

IN
Semideciding TM

Unrestricted grammar,
Deciding TM
L and —L in SD

Context-Free
CF grammar ArBn
PDA

Closure

Regular grammar

Regular Expression
FSM
Closure

OouT
Reduction

Diagonalization
Reduction

Pumping
Closure

Pumping
Closure

11

Reduction

Poldg Pnew

 means that P, is reducible to P,
* reduction from L 4 to L,

- if L., Ccan be done, L,4can be done

= 1. Known P, is not in D, we can show P,, is notin D

s 2. Known P, is not in SD, we can show P, is not in SD

* For both, no need to care about the efficiency of the reduction.

‘ Can also be used in complexity to show NP-hardness:

L._ 3. Known P, is NP-hard, we can show P, is NP-hard
2 B+ Need to care about the efficiency of the reduction (polynomial).

'8 Mapping reduction: the most straightforward way of reduction is to

transform instances of L, into instances of L,

& |, is mapping reducible to L., (L,g <um L,ew) iff there exists some

computable function f such that:

VxeX* (X € Loy > f(X) € Lyew)

12

The Complexity Zoo

The attempt to characterize the decidable languages by their complexity:

http://gwiki.stanford.edu/wiki/Complexity Zoo

Notable ones:

P: solution found by deterministic TM (algorithm) in polynomial time
« tractable
« context-free (including regular) languages are in P
NP: solution found by nondeterministic TM (algorithm) in polynomial time
« solution can be verified by DTM in polynomial time
NP-complete: as hard as any one in NP & in NP (hardest ones in NP)
* no efficient algorithm is known
* require non-trivial search, as in TSP
NP-hard: as hard as any one in NP (not necessarily in NP)
« Lis NP-complete if it is in NP and it is NP-hard
 Intractable = not in P. But since it’ s believed P = NP, loosely intractable
= NP hard = NP complete + not in NP
« Ifit’s proved that P = NP, then intractable = not in P = not in NP

13

http://qwiki.stanford.edu/wiki/Complexity_Zoo

P and NP

;'.’1 Greatest unsolved problem in theoretical computer science:
. Is P =NP? The Millenium Prize

If P = NP, any polynomially verifiable problems would be
polynomially decidable

s

v

»
[

« Two possibilities:

y v
oA
S S X

14

http://www.claymath.org/millennium/P_vs_NP/

NP-Completeness

* The class of NP-complete is important, many of its
members, like TSP, have substantial practical significance.
* Two possibilities:

NP

< P > NP-complete

o
]

NP NP-complete

15

4

5 Strategy for Proving NP-completeness of L,

« Show that L, belongs to NP
— Exhibit an NDTM to decide it in polynomial time
Or, equivalently,
— Exhibit a DTM to verify it in polynomial time

— This establishes an upper bound on the complexity of L.,

« Show that L, is NP-hard by finding another NP-hard
language L, such that

Lold SP Lnew

— This establishes a lower bound on the complexity of L,
16

Example Reductions

SAT SAT
3-SlAT 3-SAT
|NDEPEN§)ENT.SET HAMILTONIAN-CIRCUIT
SAT l
l TSP
3-SAT

|

VERTEX-COVER 17

