
Review

1

Overview
• Theory of computation: central areas:

Automata, Computability, Complexity

• Computability: Is the problem solvable?
– solvable and unsolvable

• Complexity: Is the problem easy to solve?
– easy ones and hard ones

• Both deal with formal models of computation: Turing machines, recursive
functions, lambda calculus, and production systems

2

Overview
• Automata theory: study of abstract machines and problems

they are able to solve.
– closely related to formal language theory as the automata are often

classified by the class of formal languages they are able to recognize.
– An abstract machine, also called an abstract computer, is a theoretical

model of a computer hardware or software system
– FSM, PDA, Turing machine

• Formal language: A set of strings over a given alphabet.
– In contrast to natural language
– Often defined by formal grammar
– Regular, context-free, D, SD

3

• Language recognition framework:
• transform a problem into a decision problem
(verification) if it is not
• encode the inputs as strings and then define a
language that contains exactly the set of inputs for which
the desired answer is yes
• the original problem now becomes a language
recognition problem

• Now, all problems have the same look

• Machines (FSM, PDA, TM …) are abstract computational
models. They are used to classify problems.

Approach

4

Grammars, Languages, and Machines

Language

Grammar

Machine

Generates

Recognizes
or
Accepts

5

Path
• Given input w, a maximal sequence of moves that M takes from the
starting configuration
• A path P ends when it enters an accepting configuration, or there is no
transition defined for its current configuration, i.e., it has no where to go.
• If P ends in an accepting configuration, P accepts w.
• If P ends in a non-accepting configuration, P rejects w.
• If there is some path of M that accepts w, M halts and accepts w.
• If all paths of M reject w, M halts and rejects w.
• It is possible that M neither accepts nor rejects w. In which case, none
of its paths accepts w and some path does not reject w.

• Applies to all kinds of automata in the scope of our study.

Different from the text

6

In Particular

• If M is deterministic, there’s only one path.

• For DFSM and DPDA, the path is finite and guaranteed to end. Upon

halting, it either accepts or rejects. So, DFSM and DPDA are

guaranteed to halt (in at most |w| moves).

• Since DFSM = regular languages, the above halting property of

DFSM implies that regular languages are in D.

• For DTM, the path maybe infinite. So DTM may not halt for some w.

• It happens when M is a semi-decider and not a decider, and for

w that is not in L(M)

• Not that DTM = SD 7

In Particular

• If M is nondeterministic, there’re maybe multiple paths.

• For NDFSM and NDPDA, if without e-transitions, they are guaranteed

to halt in at most |w| moves. Otherwise, no.

• For each NDFSM M, there is an equivalent DFSM M’

• “equivalent” means L(M) = L(M’)

• For each NDPDA M, there an equivalent NDPDA M’ that halts.

• Since NDPDA = context-free languages, the above halting property of

NDPDA implies that context-free languages are in D.

• For NDTM, no such properties, as DTM does not even always halt.

8

Recognizer and Decider

• L(M): language accepted by M.
• For each w Î L(M), M halts

• Recognizer: M is a recognizer (acceptor) of L if M
halts on any w Î L and returns “yes”

• They are semi-deciders

• Decider: M is a decider of L if M always halts,
returns “yes” if w Î L and “no” if w Ï L

9

Languages, Machines, and Grammars
SD (recursively enumerable)

TMs
Unrestricted grammar

DCF
DPDAs

Regular languages
FSMs

Regular grammar / regular expression

Context-free languages
NDPDAs

Context-free grammar

Context-sensitive languages
LBAs

Context-sensitive grammar

D (recursive)

10

IN SD ¬H OUT
Semideciding TM H Reduction
Enumerable
Unrestricted grammar

D
Deciding TM AnBnCn Diagonalization
Lexic. enum Reduction
L and ¬L in SD

Context-Free
CF grammar AnBn Pumping
PDA Closure
Closure

Regular
Regular grammar a*b* Pumping
Regular Expression Closure
FSM
Closure

Language Summary

11

Reduction
Pold £ Pnew

• means that Pold is reducible to Pnew
• reduction from Lold to Lnew
• if Lnew can be done, Lold can be done

1. Known Pold is not in D, we can show Pnew is not in D
2. Known Pold is not in SD, we can show Pnew is not in SD
• For both, no need to care about the efficiency of the reduction.

Can also be used in complexity to show NP-hardness:
3. Known Pold is NP-hard, we can show Pnew is NP-hard
• Need to care about the efficiency of the reduction (polynomial).

Mapping reduction: the most straightforward way of reduction is to
transform instances of Lold into instances of Lnew

Lold is mapping reducible to Lnew (Lold £M Lnew) iff there exists some
computable function f such that:

"xÎS* (x Î Lold « f(x) Î Lnew) 12

The Complexity Zoo
The attempt to characterize the decidable languages by their complexity:

http://qwiki.stanford.edu/wiki/Complexity_Zoo

Notable ones:
P: solution found by deterministic TM (algorithm) in polynomial time

• tractable
• context-free (including regular) languages are in P

NP: solution found by nondeterministic TM (algorithm) in polynomial time
• solution can be verified by DTM in polynomial time

NP-complete: as hard as any one in NP & in NP (hardest ones in NP)
• no efficient algorithm is known
• require non-trivial search, as in TSP

NP-hard: as hard as any one in NP (not necessarily in NP)
• L is NP-complete if it is in NP and it is NP-hard
• Intractable = not in P. But since it’s believed P ¹ NP, loosely intractable

= NP hard = NP complete + not in NP
• If it’s proved that P = NP, then intractable = not in P = not in NP

13

http://qwiki.stanford.edu/wiki/Complexity_Zoo

Greatest unsolved problem in theoretical computer science:
Is P = NP? The Millenium Prize

Two possibilities:

P and NP

NPP P = NP

If P = NP, any polynomially verifiable problems would be
polynomially decidable

14

http://www.claymath.org/millennium/P_vs_NP/

NP-Completeness
• The class of NP-complete is important, many of its
members, like TSP, have substantial practical significance.
• Two possibilities:

NP

P NP-complete

P = NP NP-complete

15

Strategy for Proving NP-completeness of Lnew
• Show that Lnew belongs to NP

– Exhibit an NDTM to decide it in polynomial time
Or, equivalently,

– Exhibit a DTM to verify it in polynomial time

– This establishes an upper bound on the complexity of Lnew

• Show that Lnew is NP-hard by finding another NP-hard
language Lold such that

Lold £P Lnew

– This establishes a lower bound on the complexity of Lnew

16

Example Reductions
SAT

3-SAT

INDEPENDENT-SET

SAT

3-SAT

HAMILTONIAN-CIRCUIT

TSP
SAT

3-SAT

VERTEX-COVER 17

