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Overview

* »  Theory of computation: central areas:

Automata, Computability, Complexity

« Computability: Is the problem solvable?
— solvable and unsolvable

J

% ' . Complexity: Is the problem easy to solve?
" — easy ones and hard ones

§ . Both deal with formal models of computation: Turing machines, recursive
functions, lambda calculus, and production systems




Overview

Automata theory: study of abstract machines and problems
they are able to solve.

— closely related to formal language theory as the automata are often
classified by the class of formal languages they are able to recognize.

— An abstract machine, also called an abstract computer, is a theoretical
model of a computer hardware or software system

— FSM, PDA, Turing machine

Formal language: A set of strings over a given alphabet.
— In contrast to natural language

— Often defined by formal grammar

— Regular, context-free, D, SD



Approach

. » Language recognition framework:

* transform a problem into a decision problem
(verification) if it is not

« encode the inputs as strings and then define a
language that contains exactly the set of inputs for which

the desired answer is yes
* the original problem now becomes a language

recognition problem
| § + Now, all problems have the same look

« Machines (FSM, PDA, TM ... ) are abstract computational
& models. They are used to classify problems.



Grammars, Languages, and Machines

Generates Language

Recognizes
or
Accepts




Path

» Given input w, a maximal sequence of moves that M takes from the
. starting configuration

¥ 2 *Apath P ends when it enters an accepting configuration, or there is no

& transition defined for its current configuration, i.e., it has no where to go.
¢ « If P ends in an accepting configuration, P accepts w.

= ¢ If P ends in a non-accepting configuration, P rejects w.

8 & - If there is some path of M that accepts w, M halts and accepts w.

4 % - If all paths of M reject w, M halts and rejects w.

~ & < |t is possible that M neither accepts nor rejects w. In which case, none
2 & of its paths accepts w and some path does not reject w.

;‘i * Applies to all kinds of automata in the scope of our study.

Different from the text



In Particular

* If M is deterministic, there’s only one path.

* For DFSM and DPDA, the path is finite and guaranteed to end. Upon
halting, it either accepts or rejects. So, DFSM and DPDA are
guaranteed to halt (in at most |w| moves).
» Since DFSM = regular languages, the above halting property of
DFSM implies that regular languages are in D.
* For DTM, the path maybe infinite. So DTM may not halt for some w.
It happens when M is a semi-decider and not a decider, and for
w that is not in L(M)
« Not that DTM = SD 7



In Particular

* If M is nondeterministic, there’re maybe multiple paths.

4  For NDFSM and NDPDA, if without e-transitions, they are guaranteed

to halt in at most |w| moves. Otherwise, no.
* For each NDFSM M, there is an equivalent DFSM M’
« “equivalent” means L(M) = L(M’)
« For each NDPDA M, there an equivalent NDPDA M’ that halts.
» Since NDPDA = context-free languages, the above halting property of
NDPDA implies that context-free languages are in D.

« For NDTM, no such properties, as DTM does not even always halt.



Recognizer and Decider

. s . L(M): language accepted by M.
o * For each w € L(M), M halts

' - Recognizer: M is a recognizer (acceptor) of L if M
. # halts on any w € L and returns “yes”

* They are semi-deciders

¥ -+ Decider: M is a decider of L if M always halts,
& returns “yes” ifw e L and “no” ifw ¢ L



~ Languages, Machines, and Grammars

SD (recursively enumerable)
TMs
Unrestricted grammar

D (recursive)

Context-sensitive languages
LBASs
Context-sensitive grammar

Context-free languages
NDPDAs
Context-free grammar

DCF
DPDAs

Regular languages
FSMs

Regular grammar / regular expression
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Language Summary

IN
Semideciding TM

Unrestricted grammar,
Deciding TM
L and —L in SD

Context-Free
CF grammar ArBn
PDA

Closure

Regular grammar

Regular Expression
FSM
Closure

OouT
Reduction

Diagonalization
Reduction

Pumping
Closure

Pumping
Closure
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Reduction

Poldg Pnew

 means that P, is reducible to P,
* reduction from L 4 to L,

- if L., Ccan be done, L,4can be done

= 1. Known P, is not in D, we can show P,, is notin D

s 2. Known P, is not in SD, we can show P, is not in SD

* For both, no need to care about the efficiency of the reduction.

‘ Can also be used in complexity to show NP-hardness:

L._ 3. Known P, is NP-hard, we can show P, is NP-hard
2 B+ Need to care about the efficiency of the reduction (polynomial).

'8 Mapping reduction: the most straightforward way of reduction is to

transform instances of L, into instances of L,

& |, is mapping reducible to L., (L,g <um L,ew) iff there exists some

computable function f such that:

VxeX* (X € Loy > f(X) € Lyew)

12



The Complexity Zoo

The attempt to characterize the decidable languages by their complexity:

http://gwiki.stanford.edu/wiki/Complexity Zoo

Notable ones:

P: solution found by deterministic TM (algorithm) in polynomial time
« tractable
« context-free (including regular) languages are in P
NP: solution found by nondeterministic TM (algorithm) in polynomial time
« solution can be verified by DTM in polynomial time
NP-complete: as hard as any one in NP & in NP (hardest ones in NP)
* no efficient algorithm is known
* require non-trivial search, as in TSP
NP-hard: as hard as any one in NP (not necessarily in NP)
« Lis NP-complete if it is in NP and it is NP-hard
 Intractable = not in P. But since it’ s believed P = NP, loosely intractable
= NP hard = NP complete + not in NP
« Ifit’s proved that P = NP, then intractable = not in P = not in NP

13


http://qwiki.stanford.edu/wiki/Complexity_Zoo

P and NP

;'.’1 Greatest unsolved problem in theoretical computer science:
. Is P =NP? The Millenium Prize

If P = NP, any polynomially verifiable problems would be
polynomially decidable

s

v

»
[

« Two possibilities:

y v
oA
S S X
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http://www.claymath.org/millennium/P_vs_NP/

NP-Completeness

* The class of NP-complete is important, many of its
members, like TSP, have substantial practical significance.
* Two possibilities:

NP

< P > NP-complete

o
]

NP NP-complete
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4

5 Strategy for Proving NP-completeness of L,

« Show that L, belongs to NP
— Exhibit an NDTM to decide it in polynomial time
Or, equivalently,
— Exhibit a DTM to verify it in polynomial time

— This establishes an upper bound on the complexity of L.,

« Show that L, is NP-hard by finding another NP-hard
language L, such that

Lold SP Lnew

— This establishes a lower bound on the complexity of L,
16




Example Reductions

SAT SAT
3-SlAT 3-SAT
|NDEPEN§)ENT.SET HAMILTONIAN-CIRCUIT
SAT l
l TSP
3-SAT

|
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