
Chapter 2 Software Processes

Chapter 2 – Software Processes

Lecture 1

1 Chapter 2 Software Processes

Topics covered

 Software process models
 Process activities
 Coping with change
 The Rational Unified Process

 An example of a modern software process.

2

Chapter 2 Software Processes

The software process

 A structured set of activities used to develop a
software system/product.

 Many different software processes but all involve:
 Specification – defining what the system should do;
 Design and implementation – defining the organization of the

system and implementing the system;
 Validation – checking that it does what the customer wants;
 Evolution – changing the system in response to changing

customer needs.
 A software process model (or paradigm) is an abstract

representation of a process
 a framework that can be extended to create more specific

processes, which are actually used to produce software

3 Chapter 2 Software Processes

Software process descriptions

 Process descriptions may include process activities such
as specifying a data model, designing a user interface,
etc. and the ordering of these activities.

 Process descriptions may also include:
 Products: the outcomes of a process activity (models, docs)
 Roles: the responsibilities of the people involved in the process;
 Pre- and post-conditions: statements that are true before and

after a process activity has been enacted or a product produced.

4

Chapter 2 Software Processes

Plan-driven and agile processes

 Processes often categorized as plan-driven or agile.
 Plan-driven processes:

 All of the process activities are planned in advance
 Progress is measured against this plan.

 Agile processes:
 Planning is incremental (occurs during different phases)
 It is easier to change the process to reflect changing customer

requirements.
 In practice, most practical processes include elements of

both plan-driven and agile approaches.
 Many organizations have their own software processes.
 There are no right or wrong software processes.

5 Chapter 2 Software Processes

2.1 Software process models (frameworks)

 The waterfall model
 Plan-driven model. Separate and distinct phases of specification

and development.
 Incremental development

 Specification, development and validation are interleaved,
producing a series of versions. May be plan-driven or agile.

 Reuse-oriented software engineering
 The system is assembled from existing components. May be

plan-driven or agile.
 In practice, most large systems are developed using a

process that incorporates elements from all of these
models.

6

Chapter 2 Software Processes

Waterfall model phases

 There are separate identified phases in the waterfall
model:
 Requirements analysis and definition
 System and software design
 Implementation and unit testing
 Integration and system testing
 Operation and maintenance

 Main drawback: The difficulty of accommodating change
after the process is underway.
 In principle, a phase has to be complete before moving onto the

next phase.
 Change requires “backtracking”: revising previous step(s)

7 Chapter 2 Software Processes

The waterfall model

Requirements
definition

System and
software design

Implementation
and unit testing

Integration and
system testing

Operation and
maintenance

8

Chapter 2 Software Processes

Waterfall model issues

 Partitioning the project into sequential stages makes it
difficult to respond to changing customer requirements.
 Appropriate only when the requirements are well-understood and

changes will be fairly limited during the design process.
 Can be used for large systems engineering projects

where a system is developed at several sites.
 Plan-driven nature of the this model helps coordinate the work.

 Good for formal system development
 Mathematical model of system specifications is refined to

programming language code using transformations
 Good when safety, reliability, and security requirements are

critical.

9 Chapter 2 Software Processes

Incremental development

 Specification, development and validation are interleaved.
 The system is developed as a series of versions or

releases (called increments).
 Each version adds functionality to the previous version

 Each version is exposed to the user for feedback
 Early versions can implement the most important, urgent,

or risky features

10

Chapter 2 Software Processes

Incremental development

Concurrent
activities

Validation
Final

version

Development
Intermediate

versions

Specification
Initial

version

Outline
description

11 Chapter 2 Software Processes

Incremental development benefits

 The cost of accommodating changing customer
requirements is reduced.
 Analysis and documentation are added instead of reworked.

 It is easier to get customer feedback on the development
work that has been done.
 Easier to present an incremental release than results of

specification or design phase.
 Customers get functionality sooner.

 Can be plan-driven (versions are planned ahead) or agile
(determine next increment as you go).

12

Chapter 2 Software Processes

Incremental development problems

 The process is not visible.
 generally less process documentation (for rapid development).

 System structure tends to degrade as new increments are
added.
 UNLESS time and money is spent on refactoring to improve the

software.

 Refactoring: disciplined technique for restructuring an existing
body of code, altering its internal structure without changing its
external behavior.

13 Chapter 2 Software Processes

Reuse-oriented software engineering

 Based on systematic reuse where systems are integrated
from existing components or COTS (Commercial-off-the-
shelf) systems.

 Process stages
 Requirements specification
 Component analysis: search for close matches
 Requirements modification: to reflect available components
 System design with reuse: organize framework around

acceptable components.
 Development and integration: components are integrated along

with new code
 System validation

14

Chapter 2 Software Processes

Types of software component

 Web services
 Developed according to service standards
 Are available for remote invocation.

 Collections of objects
Developed as a package to be integrated with a component
framework such as .NET or J2EE.

 Stand-alone software systems (COTS) that are
configured for use in a particular environment.

15 Chapter 2 Software Processes

Advantages and Disadvantages of Reuse-oriented
Software Engineering

 Benefits
 Reduces costs and risks (less code to write)
 Usually leads to faster delivery.

 Disadvantages
 Requirements may have to be compromised (no good matches)
 Control over evolution of system is lost (dependent on developers

of the components).

16

Chapter 2 Software Processes

2.2 Process activities

 The four basic process activities:
 specification
 development
 validation
 evolution

 organized differently in different development processes.
(i.e. in sequence or inter-leaved).

 Same activity may be carried out differently by different
people, or different process methods
(i.e. specifications can be typed into a document or
written on cards).

17 Chapter 2 Software Processes

Software specification

 The process of establishing:
 what services are required (features) and
 the constraints on the system’s operation and development.

 Requirements engineering process
 Feasibility study

• Is it technically and financially feasible to build the system?
 Requirements elicitation and analysis

• What do the system stakeholders require or expect from the system?
• May observe existing systems, develop models or prototype

 Requirements specification
• Defining the requirements in detail, write up in a document

 Requirements validation
• Checking the requirements for realism, consistency, and completeness.

18

Chapter 2 Software Processes

The requirements engineering process

Feasibility
study

Requirements
elicitation and

analysis
Requirements
specification

Requirements
validation

Feasibility
report

System
models

User and system
requirements

Requirements
document

19

Notice the steps
are interleaved.

Chapter 2 Software Processes

Software design and implementation

 Converting the system specification into an executable
system.

 Software design
 Description of the structure of the software, data models,

interfaces, algorithms, etc.
 Implementation

 Translate the design into an executable program;
 Design and implementation are closely related and may

be inter-leaved.

20

Chapter 2 Software Processes

A general model of the design process

Interface
design

Component
design

System
architecture

Database
specification

Interface
specification

Requirements
specification

Architectural
design

Component
specification

Platform
information

Data
description

Design inputs

Design activities

Design outputs

Database design

21

which op sys,
which dbms,
other apps,
etc.

Chapter 2 Software Processes

Design activities

 Architectural design: where you identify
 the overall structure of the system,
 the principal components,
 their relationships and
 how they are distributed.

 Interface design, where you precisely define the
interfaces between system components
(so they can be developed independently).

 Component design, where you design how each
component will function (may be left up to developer).

 Database design, where you design the system data
structures and how these are to be represented in a
database.

22

Chapter 2 Software Processes

Software validation

 Verification and validation (V & V) is intended to
 show that a system conforms to its specification and
 meets the requirements of the system customer.

 Program testing is the principal validation technique.
(executing the system over simulated data).

 Validation may also involve inspections and reviews

23 Chapter 2 Software Processes

Testing stages

 Development or component testing
 Individual components are tested independently by developers
 Components may be functions or objects or coherent groupings

of these entities.
 Unit testing: JUnit is an automatic testing tool, can be re-run

whenever the code is updated.
 System testing

 Testing of the system as a whole (after integrating the
components).

 Especially looking for errors resulting from unanticipated
interactions between components.

 Acceptance testing
 Testing with customer data

24

Chapter 2 Software Processes

Software evolution

 Software is inherently flexible and can change (as
opposed to hardware).

 Formerly, development and evolution were seen as two
entirely separate processes:
 development: creative, interesting.
 evolution/maintenance: dull, easy

 Now development and maintenance are more fluid,
interleaved: maintenance is just another increment, part
of the original process.

25 Chapter 2 Software Processes

Key points

 Software processes are specific, structured sets of
activities used to produce a software system.

 Software process models are abstract representations of
these processes.

 General process models describe the organization or
framework of software processes.

 Examples of these general models include
 the ‘waterfall’ model,
 incremental development, and
 reuse-oriented development.

26

Chapter 2 Software Processes

Key points

 Requirements engineering is the process of developing a
software specification.

 Design and implementation processes are concerned
with transforming a requirements specification into an
executable software system.

 Software validation is the process of checking that the
system conforms to its specification and that it meets the
real needs of the users of the system.

 Software evolution takes place when you change existing
software systems to meet new requirements. The
software must evolve to remain useful.

27 Chapter 2 Software Processes

Chapter 2 – Software Processes

Lecture 2

28

Chapter 2 Software Processes

2.3 Coping with change

 Change is inevitable in all large software projects.
 Business changes lead to new and changed system requirements
 New technologies open up new possibilities for improving

implementations
 Changing platforms require application changes

 Change leads to rework:
 new requirements lead to more requirements analysis
 this may lead to redesign of the system or components
 this may lead to changes to the implementation
 this may lead to new tests, and re-testing the system

29 Chapter 2 Software Processes

Reducing the costs of rework

 Change avoidance: include activities to anticipate
possible changes before significant rework is required.
 Develop a prototype to show some key features of the system to

users, let them refine requirements before committing to them.
 Change tolerance: design process to accommodate

change
 Use incremental development.
 Proposed changes may be implemented in new increments.
 Or only a single old increment may have be changed.

30

Chapter 2 Software Processes

Software prototyping

 A prototype is an initial version of a system used to
demonstrate concepts and try out design options.

 Allows users to see how well systems supports their
work, may lead to new ideas for requirements

 As prototype is developed, may reveal errors and
omissions in the requirements

 Can check feasibility of design
 For a database, make sure it efficient
 For user interface, prototype is much better than a text

description.

31 Chapter 2 Software Processes

Prototype development process

 Objectives for prototype should be made in advance
 Decide what to put in, what to leave out.
 Let users test the prototype and evaluate it with respect

to the objectives

32

Chapter 2 Software Processes

Throw-away prototypes

 Prototypes should be discarded after development as
they are not a good basis for a production system:
 It may be impossible to tune the system to meet non-functional

requirements;
 Prototypes are normally undocumented;
 The prototype structure is usually degraded through quick and

dirty design;
 The prototype probably will not meet normal organisational quality

standards.

33 Chapter 2 Software Processes

Incremental delivery

 The development AND delivery is broken down into
increments: each increment is delivered to users.

 Each increment provides a subset of the required
functionality as a separate release.

 Highest priority requirements are included in early
increments.

 Requirements are frozen for the current increment,
though requirements for later increments can continue to
evolve.

34

Chapter 2 Software Processes

Incremental delivery advantages

 Customer value can be delivered with each increment so
system functionality is available earlier.

 Early increments act as a prototype to help elicit
requirements for later increments.

 Like incremental development, it should be relatively easy
to incorporate change.

 The highest priority system services tend to receive the
most testing.

35 Chapter 2 Software Processes

Incremental delivery problems

 It can be difficult to identify/specify common facilities that
are needed by all increments.

 The specification is not complete until final increment.
 This conflicts with the procurement model of many organizations,

where the complete system specification is part of the system
development contract.

 Difficult to replace an existing system as increments have
less functionality than the system being replaced.

36

Chapter 2 Software Processes

Boehm’s spiral model

 Risk driven process framework
 Process is represented as a spiral.
 Each loop in the spiral represents a phase in the process.
 No fixed phases such as specification or design - loops in

the spiral are chosen depending on elements of risk.
 Risks are explicitly assessed and resolved throughout the

process.

37 Chapter 2 Software Processes

Boehm’s spiral model of the software process

Risk
analysis

Risk
analysis

Risk
analysis

Risk
analysis Proto-

type 1

Prototype 2

Prototype 3
Opera-
tional
protoype

Concept of
Operation

Simulations, models, benchmarks

S/W
requirements

Requirement
validation

Design
V&V

Product
design Detailed

design

Code
Unit test

Integration
testAcceptance

testService Develop, verify
next-level product

Evaluate alternatives,
identify, resolve risks

Determine objectives,
alternatives and

constraints

Plan next phase

Integration
and test plan

Development
plan

Requirements plan
Life-cycle plan

REVIEW

38

Chapter 2 Software Processes

Spiral model sectors

 Objective setting
 Specific objectives for the phase are identified.

 Risk assessment and reduction
 Risks are assessed and activities put in place to reduce the key

risks.
 Development and validation

 A development model for the system is chosen which can be any
of the generic models, appropriate for current risk

 Planning
 The project is reviewed and the next phase of the spiral is

planned.

39 Chapter 2 Software Processes

Spiral model usage

 Spiral model has been very influential in helping people
think about iteration in software processes and
introducing the risk-driven approach to development.

 In practice, however, the model is rarely used as
published for practical software development.

40

Chapter 2 Software Processes

2.4 The Rational Unified Process

 A modern generic process derived from the work on the
UML and associated process.

 Brings together aspects of the 3 generic process models
discussed previously.

 Normally described from 3 perspectives
 A dynamic perspective that shows phases over time;
 A static perspective that shows process activities;
 A practice perspective that suggests good practice.

41 Chapter 2 Software Processes

RUP phases

 Inception
 Establish the business case for the system. Who uses it? what

do they get out of it?
 Elaboration

 Develop an understanding of the problem domain and develop
the system architecture, develop plan, identify risk.

 Construction
 System design, programming and testing.

 Transition
 Deploy the system in its operating environment.

42

Chapter 2 Software Processes

Phases in the Rational Unified Process

Inception Elaboration Construction

Phase iteration

Transition

43

Note the phases may be repeated iteratively/incrementally

Chapter 2 Software Processes

Static workflows (process activities)
in the Rational Unified Process

Workflow Description

Business modelling The business processes are modelled using business
use cases.

Requirements Actors who interact with the system are identified and
use cases are developed to model the system
requirements.

Analysis and design A design model is created and documented using
architectural models, component models, object models
and sequence models.

Implementation The components in the system are implemented and
structured into implementation sub-systems. Automatic
code generation from design models helps accelerate
this process.

44

Note: workflows are not tied to specific phases

Chapter 2 Software Processes

Static workflows (process activities)
in the Rational Unified Process

Workflow Description

Testing Testing is an iterative process that is carried out in conjunction
with implementation. System testing follows the completion of the
implementation.

Deployment A product release is created, distributed to users and installed in
their workplace.

Configuration and
change management

This supporting workflow managed changes to the system (see
Chapter 25).

Project management This supporting workflow manages the system development (see
Chapters 22 and 23).

Environment This workflow is concerned with making appropriate software tools
available to the software development team.

45 Chapter 2 Software Processes

RUP good practice

 Develop software iteratively
 Plan increments based on customer priorities and deliver highest

priority increments first.
 Manage requirements

 Explicitly document customer requirements and keep track of
changes to these requirements.

 Use component-based architectures
 Organize the system architecture as a set of reusable

components.

46

Chapter 2 Software Processes

RUP good practice

 Visually model software
 Use graphical UML models to present static and dynamic views of

the software.
 Verify software quality

 Ensure that the software meet’s organizational quality standards.
 Control changes to software

 Manage software changes using a change management system
and configuration management tools.

47 Chapter 2 Software Processes

Key points

 Processes should include activities to cope with change.
 This may involve a prototyping phase that helps avoid

poor decisions on requirements and design.
 Processes may be structured for iterative development

and delivery so that changes may be made without
disrupting the system as a whole.

 The Rational Unified Process is a modern generic
process model that is organized into phases (inception,
elaboration, construction and transition) but separates
activities (requirements, analysis and design, etc.) from
these phases.

48

