
Chapter 4 Requirements engineering

Ch 4: Requirements Engineering

 Functional and non-functional requirements
 The software requirements document
 Requirements specification
 Requirements engineering processes
 Requirements elicitation and analysis
 Requirements validation
 Requirements management

1 Chapter 4 Requirements engineering

What are requirements?

 The descriptions of what the system should do:
 the services that the customer requires
 the constraints on its operation

 IEEE standard glossary of software engineering terminology
 A condition or capability needed by a user to solve a problem or

achieve an objective.
 A condition or capability that must be met or possessed by a

system or system component to satisfy a contract, standard,
specification or other formally imposed document.

 A property that a product must have to provide value to a
stakeholder (Wiegers, Software Requirements 2)

2

 (Sommerville)

Chapter 4 Requirements engineering

What is requirements engineering?

 The process of
 finding out
 analyzing
 documenting
 and checking the required services and constraints

 The traditional approach to handling requirements.

3 Chapter 4 Requirements engineering

Levels of requirements

 Business Requirements
 High level objectives/goals of the stakeholders for the product
 Why they want the system, what goals they are trying to achieve.
 Vision + scope

 User requirements
 What the user will be able to do with the product.
 Goals or tasks the users must be able to perform with the product.
 Also the constraints under which it must operate
 natural language + diagrams

 System requirements
 Detailed descriptions of the system’s functions, services and

operational constraints.
 detailed versions of the user requirements
 What the developers must implement

4

Chapter 4 Requirements engineering

Example: User and system requirements

1. The MHC-PMS shall generate monthly management reports showing
the cost of drugs prescribed by each clinic during that month.

1.1 On the last working day of each month, a summary of the drugs
prescribed, their cost and the prescribing clinics shall be generated.
1.2 The system shall automatically generate the report for printing after
17.30 on the last working day of the month.
1.3 A report shall be created for each clinic and shall list the individual
drug names, the total number of prescriptions, the number of doses
prescribed and the total cost of the prescribed drugs.
1.4 If drugs are available in different dose units (e.g. 10mg, 20 mg, etc.)
separate reports shall be created for each dose unit.
1.5 Access to all cost reports shall be restricted to authorized users listed
on a management access control list.

User requirement definition

System requirements specification

5 Chapter 4 Requirements engineering

4.1 Functional and non-functional requirements

 Functional requirements
 Specific services or functions the system must provide.
 how it reacts to certain inputs
 Software functionality that the developers must build into the

product to enable users to accomplish their tasks.

 Non-functional requirements
 Constraints on the services or functions offered by the system.
 often apply to the system as a whole rather than individual

features or services.
 How the system must function.

6

Chapter 4 Requirements engineering

Relationship of several types of requirements

7

S
ys

te
m

R
eq

ui
re

m
en

t

Chapter 4 Requirements engineering

4.1.1 Functional requirements

1. A user shall be able to search the appointments lists for
all clinics.

2. The system shall generate each day, for each clinic, a list
of patients who are expected to attend appointments that
day.

3. Each staff member using the system shall be uniquely
identified by his or her 8-digit employee number.

8

Example: Functional requirements for the MHC-PMS

Chapter 4 Requirements engineering

4.1.2 Non-functional requirements

 Define system properties and constraints.
 performance
 reliability
 security
 usability
 must run on certain platform or operating system
 must be written in a certain programming language

 Non-functional requirements may be more critical than
functional requirements.

9 Chapter 4 Requirements engineering

Types of nonfunctional requirement

Performance
requirements

Space
requirements

Usability
requirements

Efficiency
requirements

Dependability
requirements

Security
requirements

Regulatory
requirements

Ethical
requirements

Legislative
requirements

Operational
requirements

Development
requirements

Environmental
requirements

Safety/security
requirements

Accounting
requirements

Product
requirements

Organizational
requirements

External
requirements

Non-functional
requirements

10

Chapter 4 Requirements engineering

Non-functional classifications

 Product requirements
 execution speed, reliability, etc.

 Organizational requirements
 from policies and procedures

 External requirements
 from factors external to the system and its development process

11 Chapter 4 Requirements engineering

Non-functional requirements implementation

 May affect the overall architecture of a system, rather
than a single component.

 A single non-functional requirement may generate a
number of related functional requirements

12

Chapter 4 Requirements engineering

Examples of nonfunctional requirements

Product requirement
The MHC-PMS shall be available to all clinics during normal
working hours (Mon–Fri, 0830–17.30). Downtime within
normal working hours shall not exceed five seconds in any
one day.

Organizational requirement
Users of the MHC-PMS system shall authenticate
themselves using their health authority identity card.

External requirement
The system shall implement patient privacy provisions as
set out in HStan-03-2006-priv.

13 Chapter 4 Requirements engineering

Characteristics of excellent requirements

 Correct
 The requirements should reflect the actual needs of the

stakeholders.
 Unambiguous

 They should not be able to be interpreted in different ways by
different people.

 Complete
 They should include descriptions of all facilities required.

 Consistent
 There should be no conflicts or contradictions in the descriptions

of the system facilities.
 Verifiable

 The requirements should be written in a way so that the
completed system could be tested against them. 14

Chapter 4 Requirements engineering

Ambiguous requirements

 May be interpreted in different ways by different people

 Consider requirement 1 from previous example:

A user shall be able to search the appointments lists for
all clinics.
 User intention – given a name, search across all appointments in

all clinics;
 Developer interpretation – given a name and a clinic, search in

the individual clinic only. User chooses clinic then search.

15 Chapter 4 Requirements engineering

Requirements completeness and consistency

 Complete
 Include descriptions of all services required.

 Consistent
 Should not conflict or contradict one another.

16

Chapter 4 Requirements engineering

Requirements must be verifiable

 Must be able to determine if finished system meets the
requirement(s).

 May be difficult for non-functional requirements

 For example: “Easy to use” cannot be measured or
tested.

17 Chapter 4 Requirements engineering

Non-verifiable vs. verifiable requirement

 The system should be easy to use by medical staff and
should be organized in such a way that user errors are
minimized.

 Medical staff shall be able to use all the system functions
after four hours of training. After this training, the average
number of errors made by experienced users shall not
exceed two per hour of system use.

18

Chapter 4 Requirements engineering

Metrics for specifying nonfunctional requirements

 A few examples from Table 4.5:

19

Property Measure

Speed Processed transactions/second
User/event response time

Ease of Use Training time

Reliability Mean time to failure
Rate of failure occurrence

Chapter 4 Requirements engineering

4.4 Requirements engineering discipline

20

Chapter 4 Requirements engineering

4.4 Requirements engineering processes
Good practices

 Elicitation
 Interview and observe users to identify use cases
 Hold facilitated elicitation workshops

 Analysis
 Organize requirements (into groups)
 Use models to depict the requirements

 Specification
 Carefully record requirements in a repository (document)
 Uniquely label, record source of requirement

 Validation
 Inspect the requirements
 Write test cases

21 Chapter 4 Requirements engineering

Fig 2.4 The requirements engineering process

22

Feasibility
study

Requirements
elicitation and

analysis
Requirements
specification

Requirements
validation

Feasibility
report

System
models

User and system
requirements

Requirements
document

Chapter 4 Requirements engineering

A spiral view of the requirements engineering
process (figure 4.12)

Requirements
specification

Requirements
validation

Requirements
elicitation

System requirements
specification and

modeling

System
req.

elicitation

User requirements
specification

User
requirements

elicitation

Business requirements
specification

Prototyping

Feasibility
study

Reviews

System requirements
document

Start

23 Chapter 4 Requirements engineering

Requirements engineering

 Goal is Software Requirements Specification
 Collection of requirements (usually a document)
 High quality

 Iteration is a key for requirements engineering success.

24

Chapter 4 Requirements engineering

4.2 The software requirements document

 Software Requirements Specification (SRS)
 Official statement
 What will be implemented

 Should include:
 User requirements
 Detailed system requirements
 Functional and non-functional

 It is NOT a design document.

25 Chapter 4 Requirements engineering

Requirements document variability

 Level of detail, length, and format depends on:
 Type of application
 Size of system
 Development process used

 Incremental development: Incremental SRS.

 Baseline SRS:
 Reviewed and approved
 Must have baseline for each development effort
 Changes to the baseline must be approved

26

Chapter 4 Requirements engineering

Software Requirements Doc Users/Uses

 Set of users (readers):
 System customers
 Project managers
 System developers
 System test engineers
 System maintenance engineers

 Uses:
 Understand scope of system
 Project planning
 Design and implementation
 System testing
 User documentation

27 Chapter 4 Requirements engineering

The structure of a requirements document

 Standard: IEEE-STD-830-1998

 The standard has 5 sections
 Section 4: Considerations for producing a good SRS
 Section 5: The parts of an SRS

 Three main sections:
 Introduction
 Overall description
 Specific requirements

 Also supporting info: table of contents, indices, appendices

28

Chapter 4 Requirements engineering

IEEE SRS template

29 Chapter 4 Requirements engineering

SRS template from Wiegers 2003

30

Chapter 4 Requirements engineering

SRS writing: good practices

 Label sections, subsections, requirements consistently
 Don’t ever renumber/relabel requirements
 Sequential numbers OR
 Hierarchical numbers or labels (1.1.2.3 or ship.table.col.sort)

 Use “TBD” as a placeholder for missing info
 Resolve before implementation

 Cross reference other documents (avoid duplication)

 User interface elements
 Don’t include screenshots in SRS

31

Actors in
Requirements Development
• Requirements Analyst

• Requirements Engineer

- Work with customers to gather, analyze,
document requirements

- Developer may work in this role

• Stakeholders

- customers, end users, legal staff

- maybe members of developer organization

32

Stakeholders in MHC-PMS
• Patients whose information is recorded in the system.

• Doctors who are responsible for assessing and treating patients.

• Nurses who coordinate the consultations with doctors and administer
some treatments.

• Medical receptionists who manage patients’ appointments.

• IT staff who are responsible for installing and maintaining the system.

• A medical ethics manager who must ensure that the system meets
current ethical guidelines for patient care.

• Health care managers who obtain management information from the
system.

• Medical records staff who are responsible for ensuring that system
information can be maintained and preserved, and that record keeping
procedures have been properly implemented.

33

Requirements Elicitation

• What is the goal of this discipline?
Identify needs and constraints of stakeholders

• What methods are used to carry it out?
- Interviews: meet with stakeholders one on one
- Elicitation workshops: panel or forum of stakeholders
- Ethnography: observation/immersion

• What are some tools that the requirements
analyst can use?

- Scenarios: describes interaction, outline/form
- Use Cases: diagrams with actors and interactions

34

Scenario for collecting medical history in
MHC-PMS (part 1)

35

Scenario for collecting medical history in
MHC-PMS (part 2)

36

Use cases for the MHC-PMS

37

Nurse

Medical receptionist
Manager

Register
patient

View
personal info.

View record

Generate
report

Export
statistics

Doctor
Edit record

Setup
consultation

Requirements Analysis

• What is the goal of this discipline?
Develop requirements of sufficient quality and detail

• What methods are used to carry it out?
- Modeling: represents requirements in a model, refine
- Prototypes: use to clarify and explore requirements

• What are some tools that the requirements analyst
can use?

- Data flow diagrams (DFD) (ch5)
- Entity-Relationship diagram (database design)
- State transition diagrams (UML-ch5)
- Class diagrams (UML-ch5)
- Activity diagrams (UML-ch5)

38
Most of these models are supported by CASE tools

Example Data Flow Diagram:
Order Processing

39

Oval: functional processing
Rectangle: data store
Labeled arrow: data movement

Example Entity Relationship Diagram:
Library management

40

Rectangle: entity
Diamond: relationship
Oval: attributes

Requirements Specification

• What is the goal of this discipline?
Translate collected user needs and constraints into
written requirements

• What format do the specifications take?
- Natural language sentences: pros and cons
- Structured specifications: add uniformity to nat. language
- Graphical notations (UML)
- Design description languages: clear, not universal
- Mathematical specifications: clear, not universal

• What are good guidelines for writing specifications?
- Use a standard format
- Use active voice (the system shall ...)

41

Example requirements for the insulin
pump software system

42

3.2 The system shall measure the blood sugar and
deliver insulin, if required, every 10 minutes.
(Changes in blood sugar are relatively slow so more
frequent measurement is unnecessary; less frequent
measurement could lead to unnecessarily high sugar
levels.)

3.6 The system shall run a self-test routine every
minute with the conditions to be tested and the
associated actions defined in Table 1. (A self-test
routine can discover hardware and software problems
and alert the user to the fact the normal operation
may be impossible.)

A structured specification of a
requirement for an insulin pump (p1)

43

A structured specification of a
requirement for an insulin pump (p2)

44

Requirements Validation
• What is the goal of this discipline?

Ensure requirements demonstrate desired quality
characteristics

• What are the desired characteristics?
- See slide 14

• What methods are used to carry it out?
- Requirements reviews (inspections): analyzed formally by

stakeholders and developers
- Test case generation: can reveal problems in

requirements: ambiguity, vagueness, omissions

• How successful is this process?
- Somewhat, it’s a very difficult problem.

45

Requirements Development

46

Requirements Management

• Problem: the requirements specification
document will need to change after
development begins.

- Errors may be found in the requirements
- Users needs change
- Business needs change

• What are the effects of changing the set of
requirements during development?

- Rework: re-do design and implementation, if already
started.

- Rewrite part of the requirements specification doc

47

Requirements Management

• Who should decide what changes should be
accepted?

- Developers?
- Customers/Users?
- Project managers?
- Requirements Analyst?
- Change Control board

• How do they decide?
- change is proposed, validated against requirements
- proposal is evaluated for impact and cost
- if approved, requirements doc, design and

implementation are updated

48

49

Requirements Management
summary

• Includes all activities that maintain the integrity,
accuracy, and currency of the requirements
document as the project progresses.

- Controlling changes to requirements baseline
(Change control board)

- Controlling versions of the requirements document
(revision control/version control/source control software)

50

