
Software Evolution

Chapter 9

1

Software Evolution
in the textbook

• Introduction

• 9.1 Evolution processes
- Change processes for software systems.

• 9.2 Program evolution dynamics
- Understanding software evolution

• 9.3 Software maintenance
- Making changes to operational software systems

• 9.4 Legacy system management
- Making decisions about aging software

2

Software change

• Software must change to remain useful
- The business environment changes
- Errors must be repaired
- New computers and equipment are added to the system
- The performance or reliability of the system may have to

be improved.

• Key problem: managing change to existing
software systems

3

Importance of evolution

• Software systems: critical and costly business
assets.

• Software must be changed/updated to maintain
its value

• Goal: use software many years to get return on
investment
- Air traffic control: 30 years
- Business systems: 10 years

• Large companies spend more on changing
existing software than developing new software.

4

The software evolution process

5

Specification Implemention

ValidationOperation

Start

Release 1

Release 2

Release 3

etc.

Bottom Line: All software processes become iterative development.

Before Release 1:
Development

After Release 1:
Maintenance
(may NOT be handled
by original developers)

Evolution vs servicing

6

System is in operational use,
evolving as new requirements
are proposed and implemented.

Initial
development

Evolution Servicing Phase -out

System remains useful but the
only changes made are those
required to keep it operational.
No new functionality is added.

The software may still be used
but it’s no longer updated.

This is an alternative view of the software evolution life cycle

9.1 Evolution processes

• Software evolution processes depend on
- The type of software being maintained
- The development processes used
- The skills and experience of the people involved.

• Process may be informal or formal

• Proposals for change are the driver for system
evolution.

7

The software evolution process

8

Cost of implementing
change

Release
planning

Change
implementation

System
release

Impact
analysis

Change
requests

Platform
adaptation

System
enhancementFault repair

Bugs Change in
environment

New features

If evolution is handled by a team other than original development team:
program understanding is an additional required step.

Change implementation

• Requirements (follow change process)
- Analysis
- Update specifications
- Validation

• Program understanding, as needed

• Design
- Update design documents and/or models

• Implementation
- Modify source code

• Testing
9

Urgent change requests
• Sources of urgent changes

- Defect somehow blocking normal operation
- Changes to the system’s environment (e.g. OS upgrade)
- Business changes requiring rapid response (e.g. the

release of a competing product).

• May not be able to follow formal change process
- Quick and dirty code change
- Minimal testing

• Problem:
- Code quality is diminished
- Specs and code are now inconsistent

• Should: follow formal process later.
10

Agile methods and evolution

• Transition from development to evolution is
seamless.
- Agile methods and traditional evolution are based on

incremental development

• Evolution is equivalent to the later releases.

• No changes to the standard agile methods are
necessary.

• Only problem is transitioning to another team.

11

Handover problems

• Development team used an agile approach but
evolution team prefers a plan-based approach.
- Evolution team may expect detailed documentation to

support evolution

• Development team used a plan-based approach
but the evolution team prefers agile methods.
- Automated tests may need to be developed from scratch.
- Code in the system may need to be refactored.

12

9.2 Program evolution dynamics

• The study of system change.

• Lehman and Belady (1985): made several major
empirical studies of evolving systems.

• Lehman’s laws derived from these studies

• Apply to
- large systems developed by large organizations
- systems subject to changing business requirements

• Take them into account when planning releases
of large systems

13

Lehman’s laws 1-4

14

Law Description

Continuing change A program that is used in a real-world environment must necessarily
change, or else become progressively less useful in that
environment.

Increasing complexity As an evolving program changes, its structure tends to become more
complex. Extra resources must be devoted to preserving and
simplifying the structure. [Additional cost]

Self-regulation Program evolution is a self-regulating process. System attributes
such as size, time between releases, and the number of reported
errors is approximately invariant for each system release.

Organizational stability
[Invariant work rate]

Over a program’s lifetime, its rate of development is approximately
constant and independent of the resources devoted to system
development. [More developers don’t help]

Lehman’s laws 5-7

15

Law Description

Conservation of
familiarity

Over the lifetime of a system, the incremental change in
each release is approximately constant. [features per
release]

Continuing growth The functionality offered by systems has to continually
increase to maintain user satisfaction.

Declining quality The perceived quality of systems will decline unless they
are modified to reflect changes in their operational
environment.

9.3 Software maintenance

• Modifying a program after it has been put into use.

• The term is often applied to cases where a
separate development team takes over after
delivery.

• Modifications may be simple or extensive
- But not normally involving major changes to the system’s

architecture.

16

Types of maintenance

• Repairing software faults
- Changing a system to correct coding, design, or

requirements errors.

• Adapting software to a different operating
environment
- Changing a system so that it operates with a modified

external system (e.g. new OS, or other software).

• Adding to or modifying the system’s functionality
- Modifying the system to satisfy new requirements.

17

Maintenance effort distribution

18

Functionality
addition or

modification
(65%)

Fault repair
(17%)

Environmental
adaptation

(18%)

Development and maintenance costs

19

0 50 100 150 200 250 300 350 400 450 500

System 1

System 2

Development costs Maintenance costs

$

In system 1, extra development costs are invested in making the
system more maintainable, effectively reducing overall costs.

Maintenance cost factors
why adding new functionality after delivery costs more

• Team stability
- New team members take time to learn the system.

• Poor development practice
- The developers of a system may have no incentive to write

maintainable software if they won’t be maintaining it.

• Staff skills
- Maintenance staff are often inexperienced and have

limited domain knowledge.

• Program age and structure
- As programs age, (without refactoring) their structure is

degraded--they become harder to understand and change.

20

9.3.1 Maintenance prediction

21

• Estimating the overall maintenance costs for a
system in a given time period.

• Assessing which parts of the system may cause
problems and have high maintenance costs

Maintenance prediction is concerned with:

Complexity metrics

22

• Studies have shown that
- Most maintenance effort is spent on a relatively small number

of system components.
- The more complex a component, the more expensive it is to

maintain.

• Software metrics
- Measure of a piece of software
- Lines of code, program size, number of objects, methods, etc.
- cyclomatic complexity: number of execution paths through

code
- These metrics are used to determine complexity

9.3.2 Software reengineering

23

• Problem: Many older systems are difficult to
understand and change.
- May have been optimized for performance or space.
- Structure may have been corrupted by series of changes
- May have been poorly designed or commented

• Solution: Reengineering
- Re-structuring or re-writing part or all of a software system

without changing its functionality.
- The system may be re-structured and re-documented to make

it easier to maintain.

Software reengineering:
Why not just rewrite from scratch?

24

• Reengineering takes less time
- Developing a new system almost always takes longer than

expected.
- Re-developing a system involves duplicating work that has

already been done for the existing system.
- No matter how bad the old system is, it can probably be

greatly improved in less time than starting over again from
scratch.

• There is no guarantee the new system would be
better.

• Joel on Software: Things you should never do
http://www.joelonsoftware.com/articles/fog0000000069.html

Software reengineering techniques

25

• Regression Testing
- To ensure modifications don’t change functionality.

• Source code translation
- If it needs to be in a new language
- Can be automated

• Reverse engineering
- Analyzing source code to determine its design/structure
- This does not change the code, produces documentation.
- Can be automated

Software reengineering techniques

26

• Program restructuring
- Restructure for understandability
- Reorganize control structures and functions.
- Can be automated, probably requires manual intervention

• Data reengineering
- Clean-up and restructure system data.
- Automated or manual

9.3.3 Preventative maintenance by refactoring

27

• Changing a software system: altering its internal
structure without changing its external behavior
- To improve readability.
- To improve structure.
- Reduce complexity.
- Bottom line: easier to modify in the future

• No added functionality

• Preventative maintenance: reduces future
maintenance costs

Refactoring versus Reengineering

28

• Both alter the code without altering functionality,
with the purpose of making code more
maintainable.

• Reengineering
- Takes place after system is in use.
- Applied when maintenance costs are too high.
- Often involves automated tools on legacy code.

• Refactoring
- Ongoing process, from start of development
- Applied on smaller scale
- Avoids structure degradation from the start

Where to apply refactoring
(bad smells)

29

• Duplicate code
- Same or very similar code found at different places in a

program.
- Extract method: put similar code into a single method/function

• Long method
- Long methods are difficult to understand, modify.
- Redesign as many shorter methods

• Switch (case) statements
- Multiple switch statements with same cases.
- Make subclasses, move each case into corresponding

subclass.

Where to apply refactoring
(bad smells)

30

• Data clumping
- When the same group of data items (fields in classes,

parameters in methods) occur in several places in a program.
- Replace with an object that encapsulates all of the data.

• Speculative generality
- When developers include generality in a program in case it is

required in the future (unused parameters, classes,
unnecessary abstract classes).

- This can often simply be removed

9.4 Legacy system management

31

• What is a legacy system?
- System developed using obsolete technology or methods

• Strategies for evolving legacy systems
- Scrap the system completely
- Continue maintaining the system
- Reengineer the system to improve its maintainability
- Replace the system with a new system

• The strategy chosen should depend on:
- the system quality
- its business value

Example legacy system assessment

32

1
2

3 4
5

6
7

8
9

10

System quality

Bu
si

ne
ss

 v
al

ue

High business value
Low quality High business value

High quality

Low business value
Low quality

Low business value
High quality

High
maintenance

costs

Important to
Business

Example legacy system assessment

33

1
2

3 4
5

6
7

8
9

10

System quality

Bu
si

ne
ss

 v
al

ue
High business value
Low quality High business value

High quality

Low business value
Low quality

Low business value
High quality

Scrap

Reengineer

Maintain until too
expensive, then scrap

Keep in place,
continue maintenance

Reevaluate all the systems regularly (each year)

Refactoring example

34

class Employee
 double monthlySalary;
 double commission;
 double bonus;
 int getType() { … }
 int payAmount() {
 switch (getType()) {
 case ENGINEER:
 return monthlySalary;
 case SALESMAN:
 return monthlySalary + commission;
 case MANAGER:
 return monthlySalary + bonus;
 default:
 throw new RuntimeException("Incorrect Employee");
 }
 }

Note: classes are incomplete:
constructors, getters/setters

are not shown.

Refactoring example

35

class Employee…
 double monthlySalary;
 double commission;
 double bonus;
 int payAmount();
}
class Engineer : Employee
 int payAmount() {
 return monthlySalary;
 }
class Salesman : Employee
 int payAmount() {
 return monthlySalary + commission;
 }
class Manager : Employee
 int payAmount() {
 return monthlySalary + bonus;
 }

Move cases into
(new) subclasses

Refactoring example

36

class Employee… {
 double monthlySalary;
 int payAmount();
}
class Engineer : Employee {
 int payAmount() {
 return monthlySalary;
 } }
class Salesman : Employee {
 double commission;
 int payAmount() {
 return monthlySalary + commission;
 } }
class Manager : Employee {
 double bonus;
 int payAmount() {
 return monthlySalary + bonus;
 }
}

Push down field: when a field is
used only by some subclasses

