_— I

Review: arrays, pointers, structures
(Chapter 1)

CS 3358
Summer | 2012

Jill Seaman

Data Types (C/C++)

 Scalar (or Basic) Data Types (atomic values)

- Arithmetic types

* Integers
- short, int, long
- char, bool
* Floating points
- float, double, long double

« Composite (or Aggregate) Types:
- Arrays: ordered sequence of values of the same type
- Structures: named components of various types

3

Data Types

* Data Type:
- set of values
- set of operations over those values
« example: Integer
- whole numbers, -32768 to 32767
-+ 55, %, ==, 1=, <, >, <=,

* Which operation is not valid for float?

Review: Arrays

* An array contains multiple values of the same type.
* values are stored consecutively in memory.

* An array definition in C++: int numbers[5];

* Array indices (subscripts) are zero-based

numbers[0] numbers[4]

* the subscript can be ANY integer expression:

numbers[2] numbers[1i] numbers|[(i+2)/2]

* What operations can be performed over (entire)
arrays? 4

’ ’ First-Class vs Second-Class objects:

First-Class vs Second-Class objects Strings

first-class objects can be manipulated in the usual second-class object: C-String (char array)

ways without special cases and exceptions strcpy
copy (=, assignment) strien
comparison (==, <, ...) streat
strcmp

input/output (<<, >>)

second-class objects can be manipulated only in
restricted ways, may have to define operations
you rself size() member function ’The “usual” operators‘

Usually primitive (built-in) data types ==, <, ..
5 + 6

N N

’ First-Class vs Second-Class objects: ’

arrays

first-class object: string class (standard library)

vector and string

second-class object: primitive array Included in standard (template) library
= does not copy elements

length undefined

class definitions used for first class objects

’ usual operations are not defined

The definitions provide an interface that hides
==, <, ... do not perform as expected the implementation from the programmer.

Programmer does not need to understand the

first-class object: vector class (standard template library) implementation to use the types

. _ Vector: like an array, can contain elements of
size() member function [The "usual’ operators)| any Sing|e given type

==, <, ..

—

\

Using vector

Include file

#include <vector>

To define a vector give a name, element type,
and optional size (default is 0):

vector<int> a(3); // 3 int elements

Can use [] to access the elements (0-based):
a[3] = 12;

Use the size member function to get the size:

cout << a.size() << endl; //outputs 3 ’

—

Using vector

Use resize() to change the size of the vector:

vector<int> a; // size is 0
a.resize(4); // now has 4 elements

Use push_back to increase the size by one and

add a new element to the end,

pop_back removes the last element
vector<int> a; // size is 0

a.push back(25); // now has 1 element
a.pop back(); // now has 0 elements

Implementation of resizing is handled interpally
(presumably it is done efficiently).

Parameter passing

(for large objects)

Call by value is the default

int findMax(vector<int> a);

Problem: lots of copying if a is large
Call by reference can be used

int findMax(vector<int> & a);

Problem: may still want to prevent changes to a

Call by constant reference:

int findMax(const vector<int> & a);

the “const” won’t allow a to be changed !

—

Multidimensional arrays

multidimensional array: an array that is
accessed by more than one index

int table[2][5]; // 2 rows, 5 columns
table[0][0] = 10; // puts 10 in upper left

There are no first-class versions of this in the
STL

The book defines one (ch 3) called a matrix.

The primitive version can have more than 2
dimensions.

12

—

N

Pointers

Pointer: an variable that stores the address of another
variable, providing indirect access to it.

The address operator (&) returns the address of a

variable.

int x;

cout << &x << endl; // OxbffffbOc

An asterisk is used to define a pointer variable

int *ptr;

“ptr is a pointer to an int”. It can contain addresses of

int variables.

13

ptr = &Xx;

—

Pointers: watchout

What is wrong with each of the following?

int *ptr = &x;
int x = 10;

int x = 10;
int *ptr = x;

int x =
int y =
int *ptr
*ptr = x;
ptr = &x;

10;
99;
= &y;

—

The unary operator * is the dereferencing operator.

Pointers

*ptr is an alias for the variable that ptr points to.

int x = 10;

int *ptr; //declaration, NOT dereferencing
ptr = &x; //ptr gets the address of x

*ptr = 7; //the thing ptr pts to gets 7

Initialization:

int x = 10;
int *ptr = &x; //declaration, NOT dereferencing

ptr is a pointer to an int, and it is initialized to the
address of x.

—

What is wrong with each of the following?

Pointers: watchout

int *ptr = &x; x is not declared yet
int x = 10;

int x = 10; X is not an address
int *ptr = x;

int x = 10;

int y = 99;

int *ptr = &y;

*ptr = x; y gets 10 (changes y)
ptr = &x; ptr points to x (changes ptr)

—

Pointers: More examples

What is happening in each of the following?

int *ptr = NULL;

int x = 10;
int *ptr = &x;
*ptr += 5;
*ptr++;

int x = 10, y = 99;
int *ptrl = &x, *ptr2 = &y;

ptrl = ptr2;
*ptrl = *ptr2;

if (ptrl==ptr2) ... 17
if (*ptrl==*ptr2) ...

—

Dynamic Memory Allocation

Automatic variables: an variable that are created
when declared, and destroyed at the end of their
scope.

Dynamic memory allocation allows you to create and
destroy variables on demand, during run-time.

“‘new” operator requests dynamically allocated
memory and returns address of newly created
anonymous variable.

string *ptr;

ptr = new string(“hello”);

cout << *ptr << endl;

cout << “Length: “ << (*ptr).size() << endl;

—

\

Pointers: More examples

What is happening in each of the following?

int *ptr = NULL;

int x = 10;
int *ptr = &x;
*ptr += 5;
*ptr++;

changes x to 15

‘ sets ptr to O (null ptr)

changes ptr to point to location after x (returns its value)

ptrl = ptr2;
*ptrl = *ptr2;

if (*ptrl==*ptr2)

int x = 10, y = 99;
int *ptrl = &x, *ptr2 = &y;

if (ptrl==ptr2) ...

makes ptr1 pt to what ptr2 pts to

copies what ptr2 points to into the
location ptr1 points to

do the ptrs point to the&ame location?

do the ptrs point to the same values?

Dynamic Memory Allocation:

delete

When you are finished using a variable created with
new, use the delete operator to destroy it.

int *ptr;
ptr = new int;
*ptr = 100;

delete ptr;

Do not “delete” pointers whose values were NOT

dynamically allocated using new.

Do not forget to delete dynamically allocated variables
(memory leaks: allocated but inaccessible memory).

20

—

Structures

A structure stores a collection of objects of
various types

Each object in the structure is a member, and is
accessed using the dot member operator.

struct Student {
int idNumber;
string name;
int age;
string major;

Defines a new data type

}i
Student studentl, student2; Defines new variables
studentl.name = “John Smith”; 2

—

—

Pointers to structures

We can define pointers to structures

Student sl = {12345,“Jane Doe”, 18, “Math”};
Student *ptr = &sl;

To access the members via the pointer:

cout << *ptr.name << end; // ERROR: *(ptr.name)

dot operator has higher precedence, so use ():

cout << (*ptr).name << end;

or equivalently, use ->:

cout << ptr->name << end;

23

\

Structures: operations

Valid operations over entire structs:
assignment: studentl = student2;
function call: myFunc (gradstudent, x);

Invalid operations over structs:
comparison: studentl == student2
output: cout << studentl;
input: cin >> student2;

Must do these member by member

22

—

Indigenous vs exogenous data

Consider two structure definitions:

struct Student {
int idNumber;
string name;
int age; };
string major;

}i

struct Teacher {
int idNumber;
string *name;

indigenous data: completely contained within the
structure ’all Students members

exogenous data: reside outside the structure,
and are pointed to from the structure.

’Teacher’s name ‘

24

—

Shallow copy vs deep copy

Consider structure assignment:
Student sl, s2; Teacher tl1, t2;

sl = s2; tl = t2;

By default, it is member by member copy.
This is fine for Student, but not the Teachers

t1.name and t2.name share the same memory,
point to the same place.

delete t1.name; will make t2.name invalid.

25

—

Shallow copy vs deep copy

Shallow copy: copies top level data only. For
pointers, the address is copied, not the values
pointed to. This is the default

Deep copy: copies the pointed at values instead
of their addresses. Requires allocating new
memory.

Same concepts apply to comparisons.

26

