
Architectural Design

Chapter 6

1

Architectural Design

• Architectural Design:
- the desig
- the subsystems making up a system and
- the relationships between the subsystems

• what’s a subsystem?
- A subsystem is a sub-part of the system that provides

(and/or consumes) services to other subsystems

• Architectural Design = subsystem decomposition
- break the system into subparts with the goal of

simplifying the overall system.

2

the design process for identifying:

Software Architecture

• Software Architecture:
- a description of how a software system is organized (or

decomposed)
- an architectural model that is the output of architectural

design
- represents the subsystems and which ones

communicate with each other

3

Architectural Models

• Simple box and line diagrams

• Each box is a component of the system (a
subsystem)

• Boxes within boxes are subcomponents of a
subsystem

• Arrows indicate data and/or messages are
passed between components

4

Example: Architecture of a
packing robot control system

5

Vision
system

Object
identification

system

Arm
controller

Gripper
controller

Packaging
selection
system

Packing
system

Conveyor
controller

The robot uses the vision
system to pick out
objects on a conveyor,
identify the type of object,
and select the right kind
of packaging. It packs the
object, and places it on
another conveyor.

Architectural Design in the
software engineering process
• Specification-Development-Verification-Evolution

• Development =
Design+Implementation

• First step in Design is
Architectural Design

• Critical link between requirements engineering
and the design processes.

• In iterative development, system architecture is
designed and implemented in the first iteration
- Refactoring the overall structure is costly.

6

Use of Architectural Models

• Facilitating discussion about the system
- For communication with stakeholders and project

planners.
- Use to discuss requirements with stakeholders

• Documenting the design of an architecture
- Used as a basis for implementation, further design
- Requires complete, detailed system model

7

6.1 Architectural
Design Decisions

• Architectural Design is a creative process:
- It is a series of decisions to be made.

• Will the system be standalone or distributed?
- It may require having the subsystems distributed over

different machines/processors.
- This decision affects performance and other system-

wide attributes (nonfunctional requirements).

8

Some issues to be considered:

Nonfunctional requirements
affected by architecture

• To maximize Performance
- Localize performance-critical operations within a few

components on one processor
- Minimize communications.

• To maximize security
- Use a layered architecture with critical assets in the

innermost layers (must be authorized to access layer).

• To maximize safety
- Localize safety-critical features in a small number of sub-

systems (simplifies validation).

9

Coupling and Cohesion

• Coupling: the number of dependencies (amount
of communication) between two subsystems

• Cohesion: the number of dependencies within a
subsystem (ie between classes in a subsystem).

• Goal: low coupling and high cohesion
- subsystems should be independent, then modifications to

one are unlikely to affect another.
- subsystems should have internal units that are highly

dependent on one another. These subsystems are easily
understood and more reusable.

10

6.3 Architectural Patterns

• An architectural pattern is an abstract description of
system organization that has been successful in
previous projects (in various contexts)

• Patterns are a means of representing, sharing and
reusing knowledge.

• Each pattern description should indicate in which
contexts it is and is not useful.

• Architectural designers can browse pattern
descriptions to identify potential candidates

11

Model-View-Controller (MVC)
Pattern

• Commonly used in desktop applications and web
applications.

• Used to separate the data (the model) from the
way it is presented to the user (the views)

• Model objects encapsulate the data.

• View objects present data to and receive actions
from the user.

• Controller manages communication between
Model and View (responds to user actions).

12

Model-View-Controller (MVC)
Pattern Description

13

Name MVC (Model-View-Controller)

Description Separates presentation and interaction from the system data. The system
is structured into three logical components that interact with each other.
•Model component manages the system data and associated operations
on that data.

•View component defines and manages how the data is presented to the
user.

•Controller component manages user interaction (e.g., key presses,
mouse clicks, etc.) and passes these interactions to the View and the
Model.

Example Most web-based application systems, most desktop apps.
When used When there are multiple ways to view and interact with data. Also used

when the future requirements for interaction and presentation of data are
unknown.

Advantages Allows the data to change independently of its representation and vice
versa. Supports presentation of the same data in different ways with
changes made in one representation shown in all of them.

Disadvantages Can involve additional code and code complexity when the data model and
interactions are simple.

Model-View-Controller (MVC)
Pattern Diagram

14

Controller View

Model

View
selection

State
change

Change
notification

State query

User events

Maps user actions
to model updates
Selects view

Renders model
Requests model updates
Sends user events to
controller

Encapsulates application
state
Notifies view of state
changes

(set values
in model)

(get values
 from model)

Layered Architecture Pattern

15

• System functionality is organized into separate
layers.

• Each layer relies only on facilities and services of
layer immediately beneath it.

Layered Architecture Pattern
Diagram

16

User interface

Core business logic/application functionality
System utilities

System support (OS, database etc.)

User interface management
Authentication and authorization

Layered Architecture Pattern
Advantages

17

• Separation/independence: allows changes to be
localized.

• Supports incremental development: as services
are added to layers, expose them to the user.

• Changeability:
- Easily replace one layer by another equivalent one (with

same interface).
- If interface changes, affects only layer above.

• Portability: need to change only bottom layer to
port to different machine(s).

Layered Architecture Pattern
Description

18

Name Layered architecture

Description Organizes the system into layers with related functionality associated
with each layer. A layer provides services to the layer above it so the
lowest-level layers represent core services that are likely to be used
throughout the system.

Example A layered model of a system for sharing copyright documents held in
different libraries: LIBSYS

When used Used when
•building new facilities on top of existing systems
• the development is spread across several teams with each team

responsibility for a layer of functionality
• there is a requirement for multi-level security.

Advantages Allows replacement of entire layers so long as the interface is
maintained. Redundant facilities (e.g., authentication) can be provided in
each layer to increase the dependability of the system.

Disadvantages In practice, providing a clean separation between layers is often difficult
and a high-level layer may have to interact directly with lower-level layers
rather than through the layer immediately below it. Performance can be a
problem because of multiple levels of interpretation of a service request
as it is processed at each layer.

Layered Architecture Pattern
Example: LIBSYS

19

Web browser interface

Library index

LIBSYS
login

Distributed
search

Document
retrieval

Rights
manager Accounting

Forms and
query manager

Print
manager

DB1 DB2 DB3 DB4 DBn

Databases from
different libraries

Allows controlled electronic
access to copyrighted
material from a group of
university libraries

Repository Architecture

20

• Data is stored in a central shared repository.

• Components interact through the repository only.

• Suited to applications whose data is generated by
one component and used by another.

• Advantages:
- Components are independent/separate.
- Changes to data are automatically available to other

components.

• Communication between components may be
inefficient.

Repository Architecture
Description

21

Name Repository

Description All data in a system is managed in a central repository that is accessible to all
system components. Components do not interact directly, only through the
repository.

Example An IDE where the components use a repository of system design information.
Each software component generates information which is then available for use
by other tools.

When used •when large volumes of information are generated that has to be stored for a
long time.

•in data-driven systems where the inclusion of data in the repository triggers an
action or tool.

Advantages Components can be independent—they do not need to know of the existence
of other components. Changes made by one component can be propagated to
all components. All data can be managed consistently (e.g., backups done at
the same time) as it is all in one place.

Disadvantages The repository is a single point of failure so problems in the repository affect the
whole system. May be inefficiencies in organizing all communication through
the repository. Distributing the repository across several computers may be
difficult.

Repository Architecture
Example: IDE

22

Project
repository

Design
translator

Java
editor

UML
editors

Code
generators

Design
analyzer

Report
generator

Python
editor

Different “tools” supporting
model-driven development

Client-Server Architecture

23

• Commonly used organization for distributed systems.
• Composed of:

- A set of servers that offer specific (unique) services to other
components.

- A set of clients that call on services offered by the servers
- A network that allows the clients to access the services.

• Could run on a single computer: separation/
independence.

• Clients make remote procedure calls to servers using
a protocol like http, waits for reply.

• Several instances of client on different machines.

Client-Server Architecture
Description

24

Name Client-server

Description In a client–server architecture, the functionality of the system is organized
into services, with each service delivered from a separate server. Clients
are users of these services and access servers to make use of them.

Example The film and video/DVD library organized as a client–server system.

When used Used when data in a shared database has to be accessed from a range of
locations. Because servers can be replicated, may also be used when the
load on a system is variable.

Advantages The principal advantage of this model is that servers can be distributed
across a network. General functionality (e.g., a printing service) can be
available to all clients and does not need to be implemented by all services.

Disadvantages Each service is a single point of failure so susceptible to denial of service
attacks or server failure. Performance may be unpredictable because it
depends on the network as well as the system. May be management
problems if servers are owned by different organizations.

Client-Server Architecture
Example: Film Library

25

Catalog
server

Library
catalogue

Video
server

Film store

Picture
server

Photo store

Web
server

Film and
photo info.

Client 1 Client 2 Client 3 Client 4

Internet

Serves information,
videos, still photos.
Catalog server
handles searching.
Clients are multiple
instances of a user
interface (in a web
browser).

Pipe and Filter Architecture

26

• A series of transformations on data
• Composed of:

- A set of “filters”, each one transforming some input stream into
an output stream.

- Pipes connecting the filters.

• Data is transformed as it moves through the system.
• Transformations can be run concurrently.
• Commonly used in batch processing systems and

embedded control systems.
• Difficult to use for interactive systems.

Pipe and Filter Architecture
Description

27

Name Pipe and filter

Description The processing of the data in a system is organized so that each
processing component (filter) is discrete and carries out one type
of data transformation. The data flows (as in a pipe) from one
component to another for processing.

Example The pipe and filter system used for processing invoices.

When used Commonly used in data processing applications (both batch- and
transaction-based) where inputs are processed in separate
stages to generate related outputs.

Advantages Easy to understand and supports transformation reuse. Workflow
style matches the structure of many business processes.
Evolution by adding transformations is straightforward. Can be
implemented as either a sequential or concurrent system.

Disadvantages The format for data transfer has to be agreed upon between
communicating transformations. Each transformation must parse
its input and unparse its output to the agreed form. This increases
system overhead and may mean that it is impossible to reuse
functional transformations that use incompatible data structures.

Pipe and Filter Architecture
Example: Processing invoices

28

Read issued
invoices

Identify
payments

Issue
receipts

Find
payments

due

Receipts

Issue
payment
reminder

Reminders

Invoices Payments

Once a week, payments are reconciled against invoices (issued
at the beginning of the month). For paid invoices, it issues a
receipt. For unpaid, it issues a reminder.

6.4 Application Architectures

• Systems in the same domain often have similar
architectures that reflect domain concepts.
- data collection systems
- monitoring systems
- billing systems
- supply chain management
- compilers
- etc.

• If application reuse (COTS) is not possible, it
may be possible to re-use the architecture.

29

Transaction Processing
Systems

• Database centered applications that
‣ process user requests for information and
‣ update information in a system database.

- Prevent users actions from interfering with each other.
- Preserve integrity of the database
- Examples:
‣ E-commerce systems
‣ Reservation systems.

30

Transaction Processing
Systems

31

• Process user requests for information from a
database or requests to update the database.

• Transaction: sequence of operations treated as a
single unit.
- when all operations are done, they are made permanent
- failure must not put database in inconsistent state.

• Example: transfer money between accounts
- Really two operations: debit one account, credit the other.
- If one succeeds but the other does not, the database is in an

inconsistent state (the bank’s books will not balance)

Transaction Processing
Systems: Architecture

32

I/O
processing

Application
logic

Transaction
manager Database

A simple layered architecture (this one is drawn sideways)

•User makes request through I/O processing
•Request is processed by application logic, creates a transaction.
•Transaction manager communicates with Database, makes sure
transaction is completed as a unit.

•Result is passed back through to the user.

Language Processing Systems

33

• Process instructions in a given language.
- natural or artificial language

• Translators
- convert instructions in one language to another language

• Interpreters
- execute instructions in a given language

• Examples
- compilers: g++, javac
- interpreters: sql evaluation, JVM (java)
- browser: html, xml
- simulator: iphone (for testing apps on mac)

Language Processing Systems
Simple architectures

34

Source
language

instructions

Data Results

Translator

Interpreter

Abstract m/c
instructions

Check syntax
Check semantics
Generate

Fetch
Execute

Target

input language

Language Processing Systems
components

35

• Lexical analyzer (scanner), groups characters into
tokens (identifiers, words, operators, numbers, etc.)

• Syntax analyzer (parser), groups tokens into
phrases, sentences, etc. (produces syntax tree)

• Syntax tree, an internal structure representing the
parsed input stream.

• Symbol table, holds info about the names of entities
(variables, functions, objects,...) used in the text.

• Semantic analyzer: checks the semantic
correctness of the input text (type checking)

• Code generator: ‘walks’ (traverses) the syntax tree
and generates text in target language.

Language Processing Systems
Pipe and Filter

36

Lexical
analysis

Syntactic
analysis

Semantic
analysis

Code
generation

Symbol table

Syntax tree

lexical analysis
produces stream
of tokens

source
code

target
code

Syntax tree is output of Syntactic
analysis, which is transformed by
Semantic analysis

Good for batch processing,
run from the command line.

37

Syntax
analyzer

Lexical
analyzer

Semantic
analyzer

Abstract
syntax tree

Grammar
definition

Symbol
table

Output
definition

Pretty-
printer

Editor

Optimizer

Code
generator

Repository

Good for interactive,
combined system, IDE

Grammar definition:
syntax rules for
input language

Output definition:
syntax rules for
output language

Language Processing Systems
Repository

