—

Ch 13:; Introduction to Classes

CS 2308
Spring 2014

Jill Seaman

N

Procedural Programming: Problem

It is not uncommon for

program specifications to change

representations of data to be changed for
internal improvements.

As procedural programs become larger and
more complex, it is difficult to make changes.

A change to a given variable or data structure
requires changes to all of the functions operating
over that variable or data structure.

Example: use vectors or linked lists instead of
arrays for the inventory 3

13.1 Procedural Programming
Data is stored in variables

Perhaps using arrays and structs.

Program is a collection of functions that perform
operations over the variables

Good example: PA2 inventory program

Variables are passed to the functions as
arguments

Focus is on organizing and implementing the
functions.

N

Object Oriented Programming:
Solution
An object contains
data (like fields of a struct)
functions that operate over that data

Code outside the object can access the data
only through the object’s functions.

If the representation of the data inside the object
needs to change:

Only the object’s function definitions must be
redefined to adapt to the changes.

The code outside the object does not need, to
change, it accesses the object in the same way.

Object Oriented Programming:
Concepts
Encapsulation: combining data and code into a
single object.

Data hiding (or Information hiding) is the
ability to hide the details of data representation
from the code outside of the object.

Interface: the mechanism that code outside the
object uses to interact with the object.
The object’s (public) functions

Specifically, outside code needs to “know” only
the function prototypes (not the function bodies).

5

N -

Classes and Objects

A class is like a blueprint for an object.

a detailed description of an object.

used to make many objects.

these objects are called instances of the class.
For example, the String class in C++.

Make an instance (or two):

’String cityNamel=“Austin”, cityName2=“Dallas";‘

use the object’s functions to work with the objects:

int size = cityNamel.length();

cityName2.insert(0,”Big “); ’

Object Oriented Programming:
Real World Example

In order to drive a car, you need to understand
only its interface:

ignition switch

gas pedal, brake pedal
steering wheel

gear shifter

You don’t need to understand how the steering
works internally.

You can operate any car with the same interface.

6

N -

13.2 The Class

A class in C++ is similar to a structure.

It allows you to define a new (composite) data type.
A class contains the following:

variables AND

functions (these manipulate the variables)
These are called members

A class declaration defines the member
variables and (at least) the prototypes of the
member functions.

8

Example class declaration Access rules

// models a 12 hour clock Used to control access to members of the class
flass Time //new data type public: can be accessed by functions inside AND outside
private: of the class
int hour; . .
igzdmiggggfl . private: can be called or accessed only from functions
v O that are members of the class (inside)
public: . (this is the default)
VOJ_.d setngr(lnt.:); . . .
Yot gorhot o oneas Member variables (attributes) are declared private,
int getMinute() const; to hide their definitions from outside the class.
i et tve 4 P Certain functions are declared public to provide
}i (controlled) access to the hidden/private data.
9 these public functions form the interface to the ¢lass

Using const with member functions Defining member functions

Member function definitions usually occur

const appearing after the parentheses in a outside of the class definition (in a separate file).

member function declaration specifies that the

function will not change any data inside the The name of each function is preceded by the
object. class name and scope resolution operator (::)

int getHour() const; id Time: : Hour (int hr
int getMinute() const; void e: :setHour (t) |

string display() const; hour = hr;

These member functions won’t change hour or
minute.

11 12

—

Accessors and mutators

Accessor functions

return a value from the object (without changing it)
a “getter” returns the value of one member variable

Mutator functions

Change the value(s) of member variable(s).

a “setter” changes (sets) the value of one member
variable.

—

Defining Member Functions

void Time::addMinute() {
if (minute == 59) {
minute = 0;
addHour () ; // call to private member func
} else
minute++;

}

string Time::display() const {
// returns time in a string formatted to hh:mm
ostringstream sout; //include <sstream>

sout.fill('0'); //padding char for setw
sout << hour << ":" << setw(2) << minute;
return sout.str(); //str() returns the string

// from the stream

N

Defining Member Functions

void Time::setHour(int hr) {

hour = hr; // hour is a member var
}
void Time::setMinute(int min) {

minute = min; // minute is a member var
}

int Time::getHour() const {
return hour;

}

int Time::getMinute() const {
return minute;

}

void Time::addHour() { // a private member func
if (hour == 12)
hour = 1;
else
hour++;

13.3 Defining an instance of the
class

ClassName variable; (like a structure):

This defines t1 to contain an object of type Time
(with hour and minute members).

Access public members of class with dot
notation:

tl.setHour(3);
tl.setMinute(41);] \
tl.addMinute();

Use dot notation OUTSIDE the class definitions.

—

Using the Time class

int main() {
Time t;
t.setHour(12);
t.setMinute(58);
cout << t.display() <<endl;
t.addMinute();
cout << t.display() << endl;
t.addMinute();
cout << t.display() << endl;

Output: | 12:58
12:59
1:00

N

13.5 Separating Specs from
Implementation
Class declarations are usually stored in their

own header files (Time.h)
called the specification file

filename is usually same as class name.

Member function definitions are stored in a
separate file (Time.cpp)

called the class implementation file
it must #include the header file,

Any program/file using the class must include
the class’s header file (#include “Time.h”)

| 13.4 Setters and getters:
what’s the point?

Why have setters and getters that only do
assignment and return values?

Why not just make the member variables public?

Setter functions can validate the incoming data.

setMinute can make sure minutes are between 0
and 59 (if not, it can report an error).

Getter functions could act as a gatekeeper to the
data or provide type conversion.

13.6 Inline member functions

Member functions can be defined
after the class declaration (normally) OR
inline: in class declaration

Inline is appropriate for short function bodies:

class Time {

private:
int hour;
int minute;
void addHour(); // not inlined

public:
int getHour() const { return hour; }
int getMinute() const { return minute; }
void setHour(int h) { hour = h; }
void setMinute(int m) { minute = m; }
string display() const; //not inlined
void addMinute(); //not inlined 20

—

13.7 Constructors

A constructor is a member function with the same
name as the class.

It is called automatically when an object is created
It performs initialization of the new object
It has no return type

class Time
{
private:
int hour;
int minute;
void addHour();
public:
Time(); // Constructor prototype

21

—

Constructor “call”

From main:

Constructor Definition

Note no return type, prefixed with Class::

// file Time.cpp
#include <sstream>
#include <iomanip>
using namespace std;

#include "Time.h"

Time::Time() { // initializes hour and minute
hour = 12;
minute = O0;
}
void Time::setHour(int hr) {
hour = hr;
}
void Time::setMinute(int min) {
minute = min;
} 22

//using Time class (Driver.cpp)
#include<iostream>

#include "time.h"

using namespace std;

int main() {
Time t; //Constructor called implicitly here

cout << t.display() <<endl;
t.addMinute();

cout << t.display() << endl;
return 0;

Output: | 12:00
12:01

23

Default Constructors

A default constructor is a constructor that takes

no arguments (like Time()).

If you write a class with NO constructors, the
compiler will include a default constructor for
you, one that does (almost) nothing.

The original version of the Time class did not

define a constructor, so the compiler provided a

constructor for it.

24

| 13.8 Passing Arguments to
Constructors

To create a constructor that takes arguments:
Indicate parameters in prototype:

class Time

public:

Time (int,int); // Constructor prototype

Use parameters in the definition:

Time::Time(int hr, int min) {
hour = hr;
minute = min;

}

25

Classes with no Default Constructor

When all of a class's constructors require arguments,
then the class has NO default constructor.

C++ will NOT automatically generate a constructor
with no arguments unless your class has NO
constructors at all.

When there are constructors, but no default
constructor, you must pass the required arguments to
the constructor when creating an object.

27

—

assing Arguments to Constructors

Then pass arguments to the constructor when you
create an object:

int main() {
Time t (12, 59);
cout << t.display() <<endl;

}

Output:

26

13.9 Destructors

Member function that is automatically called when an
object is destroyed

Destructor name is ~classname, e.g., ~Time
Has no return type; takes no arguments

Only one destructor per class, i.e., it cannot be
overloaded, cannot take arguments

If the class dynamically allocates memory, the
destructor should release (delete) it

28

—

—

Destructors
Example: class decl
Inventory class, with dynamically allocated array:
struct Product { Inventory.h
string productName; // product description
string locator; // used to find product
int quantity; // number of copies in inventory
double price; // selling price of the product
}i
class Inventory {
private:
Product *products; //dynamically allocated array
int count;
public:
Inventory (int);
~Inventory();
bool addItem(Product);
int removeItem(String); //name of Product to remove
void showInventory(); 29
}
Destructors

Example: driver creates and destroys an Inventory

int main() {

Inventory storeProducts(100); //calls constructor
//do stuff with storeProducts here

} //end of main, storeProducts object destroyed here,
// calls its destructor (deletes products array)

When is an object destroyed?

at the end of its scope
when it is deleted (if it's dynamically allocated)

31

Destructors

Example: member function definitions (class impl)

#include "Inventory.h" Inventory.cpp

Inventory::Inventory(int size){
products = new Product[size];
count = 0;

}

Inventory::~Inventory() {
delete [] products;

}

30

13.10 Overloaded Constructors

Recall: when 2 or more functions have the same
name they are overloaded.

A class can have more than one constructor
They have the same name, so they are overloaded

Overloaded functions must have different parameter
lists:

class Time
{ .
private:
int hour;
int minute;
public:
Time();
Time(int);
Time (int,int);
32

— I

Overloaded Constructors

« definitions:

#include "Time.h"

Time::Time() {
hour = 12;
minute = 0;

}

Time::Time(int hr) {
hour = hr;
minute = 0;

}

Time::Time(int hr, int min) {
hour = hr;
minute = min;

33

Overloaded Member Functions

« Non-constructor member functions can also be
overloaded

* Must have unique parameter lists as for constructors

class Time
{
private:
int hour;
int minute;
public:
Time();
Time(int);
Time(int,int);
void addMinute();
void addMinute(int);

//adds one minute
//adds minutes from arg

35

[, vctor call

verloaded Constructor “call”

* From main:

int main() {
Time t1;
Time t2(2);
Time t3(4,50);

Output:
cout << tl.display() <<endl; 12:00
cout << t2.display() <<endl; 2:00
cout << t3.display() << endl; 4:50

34

13.12 Arrays of Objects

+ Objects can be the elements of an array:

int main() {

Time recentCalls[10]; //times of last 10 calls

+ Default constructor (Time()) is used to initialize each
element of the array when it is defined

« This array is initialized to 10 Time objects each set to
12:00.

36

Arrays of Objects Arrays of Objects

To invoke a constructor that takes arguments, you If the constructor requires more than one argument,
must use an initializer list: the initializer must take the form of a function call:
int main() { int main() {
Time recentCalls[l10] = {1,2,3,4,5,6,7,8,9,10}; Time recentCalls[5] = {Time(1,5),
Time(2,13),
} Time(3,24),
Time(3,55),
The constructor taking one argument is used to Time(4,50)};
initialize each of the 10 Time objects here }
Jis aray Is Inialized to 10 Time objects set to 1:00, This array is initialized to 5 Time objects set to 1:05,
TUE SR T : 2:13, 3:24, 3:55, and 4:50.
37 38
\ \
Arrays of Objects Accessing Objects in an Array
It isn't necessary to call the same constructor for each Objects in an array are referenced using subscripts
object in an array:
int main() { Member functions are referenced using dot notation
Time recentCalls[7] = {1, . Must access the specific object in the array BEFORE
Time(2,13),

Time(3.24). calling the member function:

4,
Time(4,50)};

}

recentCalls[2].setMinute(30);

If there are fewer initializers in the list than elements cout << recentCalls[4].display() << endl;
in the array, the default constructor will be called for
all the remaining elements.

39 40

