| Pointers to Structs and Objects,
and the “this” pointer

Sections: 11.9, 13.3, & 14.5

CS 2308
Spring 2014

Jill Seaman

—

Given the following Structure:

struct Student {

11.9: Pointers to Structures

string name; // Student’s name

int idNum; // Student ID number

int creditHours; // Credit hours enrolled
float gpa; // Current GPA

+i

We can define a pointer to a structure

Student sl = {“Jane Doe”, 12345, 15, 3.3};
Student *studentPtr;
studentPtr = &sl;

Now studentPtr points to the s1 structure.

Pointers to Structures

How to access a member through the pointer?
Student sl = {“Jane Doe”, 12345, 15, 3.3};

Student *studentPtr;

studentPtr = &sl;

cout << *studentPtr.name << end; // ERROR
dot operator has higher precedence than the
dereferencing operator, so:

*studentPtr.name iS equivalentto *(studentPtr.name)
So this will work:

’cout << (*studentPtr).name << end; // WORKS 3

"

structure pointer operator: ->

Due to the “awkwardness” of the notation, C has

provided an operator for dereferencing structure
pointers:

studentPtr->name is equivalent to (*studentPtr).name

The structure pointer operator is the hyphen (-)
followed by the greater than (>), like an arrow.

In summary:

sl.name // a member of structure sl

sptr->name // a member of a structure pointed to by sptr

4

— I

Structure Pointer: example

* Function to input a student, using a ptr to struct

void inputStudent(Student *s) {
cout << “Enter Student name: “;
getline(cin,s->name);

cout << “Enter studentID: “;

cin >> s->idNum;

cout << “Enter credit hours: “;
cin >> s->creditHours;

cout << “Enter GPA: “;
cin >> s->gpa;

}

» Call: Student s1;
inputStudent (&sl);
cout << sl.name << endl;

(5, o Structures.

ynamically Allocating Structures

« Structures can be dynamically allocated with new:

Student *sptr;
sptr = new Student;

sptr->name = “Jane Doe”;
sptr->idNum = 12345;

delete sptr;

* Arrays of structures can also be dynamically
allocated:

Student *sptr;
sptr = new Student[100];
sptr[0].name = “John Deer”;

delete [] sptr; 6

Structures and Pointers: syntax

* Expressions:

s->m s is a structure pointer, m is a member

*a.p ais a structure, p (a pointer) is a member. This
expr is the value pointed to by p: *(a.p)

(*s).m |sis a structure pointer (a pointer to a structure),
m is a member. Equivalent to s->m

*g->p s is a structure pointer, and p (a pointer) is in the
structure pointed to by s. Equiv to * (s->p).

*(*s).p |Sis a structure pointer, and p (a pointer) is in the
structure pointed to by s. Equiv to * (s->p).

in 13.3: Pointers to Objects

» We can define pointers to objects, just like

pointers to structures
Time t1(12,20);

Time *timePtr;
timePtr = &tl;

* We can access public members of the object
using the structure pointer operator (->)

timePtr->addMinute();
cout << timePtr->display() << endl;

Output:
12:21

—

Dynamically Allocating Objects

N

Objects can be dynamically allocated with new:

Time *tptr;

delete tptr;

tptr = new Time(12,20); *———to a constructor using

You can pass arguments

this syntax.

Arrays of objects can also be dynamically

allocated:

Time *tptr;
tptr = new Time[100];

It can use only the default
constructor to initialize the

tptr[0].addMinute();

delete [] tptr;

elements in the new array.

deleting Dynamically Allocated
Objects

Recall IntCell, with dynamically allocated

member. class IntCell
{
private:
int *storedvalue;
public:
IntClass(int);
~IntClass();
int read();
void write(int);

}i

IntCell::IntCell(int val) {
storedvalue = new int;
*storedvValue = val;

}

IntCell::~IntCell() {
delete storedvalue;

} 10

deleting Dynamically Allocated

Obijects

When is the storedValue deallocated?

#include "IntCell.h"
int main() {

IntCell *icptr;
icptr = new IntCell(5);

cout << icptr->read()
<< endl;

delete icptr;
//e..

return 0;

}
X

#include "IntCell.h"
int main() {
IntCell ic(5);

cout << ic.read()
<< endl;

/...

return 0;

}\

This calls icptr->~IntCell() first, which

deletes (deallocates) icptr->storedValue.

Then it deallocates icptr.

ic.~IntCell() is called here, which
deletes (deallocates) ic.storedValué.
Then ic is destroyed

in 14.5 The this pointer

this: a predefined pointer available to a class’s
member function definitions

this always points to the instance (object) of
the class whose function is being executed.

Use this to access member vars that may be
hidden by parameters with the same name:

Time::Time(int hour, int minute) {
// Time *this; implicit decl

this->hour = hour;
this->minute = minute;

}

this: an object can return itself

 Often, an object will return itself as the result of a
binary operation, like assignment:

vl = v2 = x; isequivalentto vi = (v2 = x);
* because associativity of = is right to left.
 But what is the result of (v2 = x)?

* It is the left-hand operand, v2.

vl = v2 = x; isequivalentto v2

X7
13
vl

v2;

—

Returning *this

class Time {
private:
int hour, minute;
public:
Time operator= (Time);

}i

Time Time::operator= (Time right) {

hour = right.hour;
minute = right.minute;
return *this;

}

Time timel, time2, time3(2,25);

timel = time2 = time3;

cout << timel.display() << “ “
<< time2.display() << “ “
<< time3.display() << endl;

Output:
2:25 2:25 2:25

14

