
Software Processes
!
!

Chapter 2

!1

Software Processes
Outline:

1. What is a software process?
A. Four primary software engineering activities

2. Traditional software process models
A. Waterfall
B. Incremental development
C. Spiral model
D. Reuse-oriented software engineering

3. Coping with change
4. Example process: Rational Unified Process

!2

1. What is a software process?

• Software Process: A structured set of activities used
to develop a software system.  

• It is a description of
- what tasks need to be performed in
- what sequence under
- what conditions by
- whom to

achieve the “desired results.” 

• Desired results: high quality software product.
!3

A simple process

• Suitable for student projects
• Students encounter problems when

- some steps are skipped
- problem statement is not well stated or understood

!4

Coding Compiling

Debugging

Problem
Statement

Release

problem problem

Unit
Testing

What important 
step is missing?

Error Error

As projects get larger and more
complex . . .

• We need more people and more coordination
- Problem statement needs to be expanded and clarified

(requirements/specifications)

- Need a good, well-documented design

- Need to make sure various developers can work together
(tools, documentation)

- Need to ensure adequate testing is done

!

• We need a more detailed process

!5

1A. Four primary software engineering
activities

• There are many different software processes but all
involve these activities:

- Specification – defining what the system should do (stating
the requirements)

- Development – defining the organization of the system (aka
the design) and implementing the system

- Validation – checking that the system does what the
customer wants

- Evolution – changing the system in response to customer
needs.

• Different software processes do the activities in
different ways.

!6

Software specification

• The process of establishing the requirements:
- the features/functions that are required by the users
- the constraints on the system’s operation and development.

• Requirements engineering process
- Requirements elicitation and analysis

❖ What do the customers/users require or expect from the system?
❖ May observe existing systems, develop models or prototype

- Requirements specification
❖ Defining the requirements in detail and documenting them.

- Requirements validation
❖ Checking them for clarity, consistency, completeness, etc.

!7

Software development:
design and implementation

!

• Converting the requirements into an executable
system.

• Software design
- Description of the structure of the software using various

models (describing the subcomponents, how they interact, etc)

• Implementation
- Translate the design into an executable program

• Design and implementation are closely related and
often interleaved.

!8

Software validation

• Verification and validation (V & V) is intended to
- show that a system conforms to its specification and
- meets the needs of the system customer.
!

• Program testing:
- executing the system over simulated data, ensuring the results

are correct.

• Inspections and reviews:
- humans analyze models and source code looking for errors or

problems

!9

Software evolution

!10

• After the software has been released, it must be
kept up to date.
- Customers require new functions
- Defects must be repaired
- Must adapt to new platforms and machines

!

• Activities include:
- Modifying requirements/specifications (as needed)
- Modifying design (as needed)
- Modifying the implementation
- Retesting, adding new test cases.

2. Traditional Software process models
(or frameworks, or paradigms)

• A software process model:
- is a simplified (or abstract) representation of a set of specific

software processes.
- must be “extended” with more detail to become an actual

software process.

• Traditional software process models:
A. Waterfall model
B. Incremental development
C. Spiral model
D. Reuse-oriented software engineering

!11

2A. Waterfall model

• The waterfall model
- One of the first published models
- Separate and distinct phases are performed in sequence.
- Planning occurs up front: “Plan-driven”

• The separate phases:
- Requirements definition
- Software design
- Implementation
- Testing
- Maintenance

• The output of one stage is input to the next.

• Tends to require/generate much documentation.
!12

Waterfall model

!13

Requirements
definition

System and
software design

Implementation
and unit testing

Integration and
system testing

Operation and
maintenance

What makes it go backwards?

Waterfall model issues

• Good features:
- Simple and easy to implement (better than no process)
- Easy for managers to track the progress of the project

• Can be used for large projects when a system is developed
at several sites.
- Plan-driven nature of the this model helps coordinate the work.

• Main drawback: The difficulty of accommodating changes
after the process is underway.
- Change requires “backtracking”: revising previous step(s), re-work (costly)
- This model is appropriate only when

a) the requirements are well-understood upfront and
b) changes will be fairly limited during the design process.

• Customers often need to change the requirements

!14

2B. Incremental development
(a.k.a Iterative development)

• Several development iterations are performed in sequence.

• Each iteration is a self-contained mini-project composed of
activities such as requirements analysis, design,
programming, and test

!

• Each iteration produces a new version (called an increment).
- Each version adds functionality to the previous version.
- Only the final version is a complete system.

• Each version is exposed to the user for feedback
- The customer may come to the developers’ site for demos/testing.
- If the intermediate versions are given to the customer, it is called

Incremental Delivery.

!15

From: Craig Larman,
Agile and Iterative Development - A Manager's Guide

Incremental development

!16

Each time around the loop produces
a new version of the software.

Incremental development benefits

• Reduces cost of accommodating changing customer
requirements.
- Early versions are incomplete, so less re-work to do.
- May require no changes to current version (add to future version).

• It is easier to get customer feedback.
- Users understand a working incremental release better than

documents from the specification or design phase.

• Does not need to be planned entirely up front.

• Early versions can implement the most important,
urgent, or risky features

!17

Incremental development problems

• The process is not visible
- there’s less process documentation, so it’s difficult to measure progress.
- may not know how many more increments are required.

• Difficult to design and implement common facilities needed by
all versions

• System structure tends to degrade as new increments are
added.
- this makes the code more difficult to modify each time.
- UNLESS time and money are spent on refactoring to improve the

software.
- Refactoring: disciplined technique for restructuring an existing body of

code, altering its internal structure without changing its external behavior.
- Modifying a program to improve its structure, reduce its complexity, or

make it easier to understand.

!18

2C. Spiral model

• Proposed by Barry Boehm in 1988.

• Process represented as a spiral
- Each loop represents a phase in the process.
- Content of each phase is not predetermined, plan as you go.

• Risks are explicitly assessed and resolved.
- Assumes need for change are a result of project risks.

• Sectors of the model:
- Identify objectives, alternatives and constraints.
- Evaluate and reduce risk (may develop prototype).
- Development and validation
- Plan next phase (after review of current phase).

!19 !20

Spiral model issues

• Good for high-risk projects.
- Often used in combination with other process models.

• In practice, the model is rarely used as published.
!

• Somewhat similar to incremental development, but
- Risk assessment is incorporated into the process
- Development is not required to be incremental:

✦ prototypes and results of previous loops can be discarded.
✦ production development could be postponed until the last loop.

!21

2D. Reuse-oriented software
engineering

• The system is assembled from existing components.

• Components may be in the form of
- source code that must be compiled into the final product OR
- already compiled code that can be accessed from other programs.

• Process stages:
- Requirements specification (similar to other process models)
- Component analysis: search for close matches to requirements
- Requirements modification: to reflect available components
- System design with reuse: organize framework around acceptable

components (may require designing new code).
- Development and integration: components are integrated along with

new code
- System validation (similar to other process models)

!22

Types of software components for
reuse

• Web services (or “API”)
- Various “functions” available for remote invocation from apps
- Examples: Weather API from Weather Channel, Endicia Label

Server API (labels with USPS postage)

• Library of Classes: framework
- Developed as a package to be integrated (compiled) with a

component framework such as .NET or J2EE.
- Example: parsekit for Mac OS X apps (scanners/parsers)

• Stand-alone software systems that are configured
for use in a particular environment.
- often called COTS: “Commercial off the Shelf” systems
- Example: PeopleSoft, HR management for companies

!23

Advantages and Disadvantages of
Reuse-oriented Software Engineering

• Benefits
- Reduces costs and risks (less code to write, already tested)
- Usually leads to faster delivery.

• Disadvantages
- Requirements may have to be compromised (no good

matches found)
- Control over evolution of system is lost (dependent on

developers of the components).

!24

3. Coping with change

• Change is inevitable in all large software projects.
- Changing business environments lead to changing requirements

❖ New opportunities and technologies
❖ Changing markets, new competitors

- New technologies open up new possibilities for improving
implementations

- New platforms require application changes

• Change leads to rework:
- new requirements lead to more requirements analysis
- this may lead to redesign of the system or components
- this may lead to changes to the implementation
- this may lead to new tests, and re-testing the system

!25

Reducing the costs of rework:
two approaches

• Change avoidance: include process activities that
anticipate possible changes before significant
rework is required.
- i.e. develop a prototype to show some key features of the

system to users, let them refine requirements before
committing to them.

• Change tolerance: design the process to
accommodate change at low cost
- Use incremental development, get feedback from users.
- Changes likely apply to most recent increment only, OR
- Can be incorporated into later increments.

!26

Software prototyping

• Prototype: an initial, incomplete, version of a system
used to demonstrate concepts and try out options.

• Allows users to see how well system could support
their work

• May lead to new ideas for requirements

• As prototype is developed, may reveal errors and
omissions in the requirements

• Can check feasibility of design
- For a database, make sure it efficient for most common queries
- For a user interface, user understands a prototype much better

than a text description (get better feedback).
!27

Prototype process

• Objectives for prototype should be made in advance
- Decide what to put in, what to leave out.

• Must be developed quickly!

• Users test the prototype and evaluate it with respect
to the objectives

• Prototypes should be discarded after use!
- It may be impossible to tune the prototype to meet performance

and reliability requirements
- Prototypes are normally undocumented
- The structure is usually degraded through quick and dirty design
- The prototype probably will not meet normal organizational

quality standards.
!28

Incremental delivery

• Special case of Incremental Development where
each version is delivered to users.

• Generally same advantages as Incremental
Development
- Good response to changing requirements

• Major system functionality is available to users earlier.

• Early increments act as a prototype to help elicit
requirements for later increments.

• Highest priority requirements are included in early
increments, so they receive the most testing.

!29

Incremental delivery problems

• Generally same problems as Incremental
Development
- Difficult to design and implement common facilities needed by

all versions
- Constant upgrading can degrade structure of code

• Contract negotiations are more difficult
- The specification is developed in stages
- Unable to use it as part of the development contract.

• Difficult to get feedback when replacing an existing
system:
- Users won’t be motivated to use the less functional new

system.
!30

4. The (Rational) Unified Process

• Unified Process: A popular software process
- a hybrid process: iterative/incremental AND staged.

• Has 4 main phases or stages.
- correspond to business concerns, not technical

activities

• Each phase may contain several iterations.

• Has 6 disciplines (= activities) performed
across the 4 phases.

• Each phase involves all the disciplines, in
varying amounts.

!31

Four phases of UP
• INCEPTION

- High level requirements established
- Key risks identified

• ELABORATION
- Significant elements (core architecture) are

programmed and tested

• CONSTRUCTION
- Remainder of system is built and tested

• TRANSITION
- The system is fully deployed to the customer

!32

Certain milestones must be completed in each phase,
before moving on to the next one.

Disciplines of UP

• Business Modeling
- business processes are modeled using use cases

• Requirements

• Design

• Implementation

• Testing

• Deployment
- product is released, distributed, and installed

• Project Management
- scheduling, managing resources

!33

Phases of UP

• Disciplines over the phases
- each column is an iteration.

!34

The Rational Unified Process

• Rational Unified Process (RUP) is a
refinement or specialization of UP
- A product from IBM
- Hyperlinked knowledge base with sample artifacts
- Enables developer organization to tailor UP to its

needs:
❖ allows developer to select appropriate elements

of the process
❖ manages documentation
❖ provides tools for applying the process

!35

