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1. What is a software process?

• Software Process: A structured set of activities used 
to develop a software system.  

• It is a description of  
- what tasks need to be performed in  
- what sequence under  
- what conditions by  
- whom to  

achieve the “desired results.” 

• Desired results: high quality software product.
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A simple process

• Suitable for student projects 
• Students encounter problems when 

- some steps are skipped 
- problem statement is not well stated or understood
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As projects get larger and more 
complex . . .

• We need more people and more coordination 
- Problem statement needs to be expanded and clarified 

(requirements/specifications) 

- Need a good, well-documented design 

- Need to make sure various developers can work together 
(tools, documentation) 

- Need to ensure adequate testing is done 
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• We need a more detailed process 
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1A. Four primary software engineering 
activities

• There are many different software processes but all 
involve these activities:  

- Specification – defining what the system should do (stating 
the requirements) 

- Development – defining the organization of the system (aka 
the design) and implementing the system 

- Validation – checking that the system does what the 
customer wants 

- Evolution – changing the system in response to customer 
needs. 

• Different software processes do the activities in 
different ways.
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Software specification

• The process of establishing the requirements: 
- the features/functions that are required by the users 
- the constraints on the system’s operation and development. 

• Requirements engineering process 
- Requirements elicitation and analysis 

❖ What do the customers/users require or expect from the system? 
❖ May observe existing systems, develop models or prototype 

- Requirements specification  
❖ Defining the requirements in detail and documenting them. 

- Requirements validation 
❖ Checking them for clarity, consistency, completeness, etc. 
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Software development: 
design and implementation

!

• Converting the requirements into an executable 
system. 

• Software design 
- Description of the structure of the software using various 

models (describing the subcomponents, how they interact, etc) 

• Implementation 
- Translate the design into an executable program 

• Design and implementation are closely related and 
often interleaved.
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Software validation

• Verification and validation (V & V) is intended to  
- show that a system conforms to its specification and  
- meets the needs of the system customer. 
!

• Program testing: 
- executing the system over simulated data, ensuring the results 

are correct. 

• Inspections and reviews: 
- humans analyze models and source code looking for errors or 

problems
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Software evolution
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• After the software has been released, it must be 
kept up to date.  
- Customers require new functions 
- Defects must be repaired 
- Must adapt to new platforms and machines 
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• Activities include:  
- Modifying requirements/specifications (as needed) 
- Modifying design (as needed) 
- Modifying the implementation 
- Retesting, adding new test cases.

2. Traditional Software process models  
(or frameworks, or paradigms)

• A software process model: 
- is a simplified (or abstract) representation of a set of specific 

software processes. 
- must be “extended” with more detail to become an actual 

software process. 

• Traditional software process models: 
A. Waterfall model 
B. Incremental development  
C. Spiral model 
D. Reuse-oriented software engineering
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2A. Waterfall model

• The waterfall model 
- One of the first published models 
- Separate and distinct phases are performed in sequence. 
- Planning occurs up front: “Plan-driven” 

• The separate phases: 
- Requirements definition 
- Software design 
- Implementation 
- Testing 
- Maintenance 

• The output of one stage is input to the next. 

• Tends to require/generate much documentation.
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Waterfall model
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Waterfall model issues

• Good features: 
- Simple and easy to implement (better than no process) 
- Easy for managers to track the progress of the project 

• Can be used for large projects when a system is developed 
at several sites. 
- Plan-driven nature of the this model helps coordinate the work.  

• Main drawback: The difficulty of accommodating changes 
after the process is underway.  
- Change requires “backtracking”: revising previous step(s), re-work (costly) 
- This model is appropriate only when 

a) the requirements are well-understood upfront and  
b) changes will be fairly limited during the design process.  

• Customers often need to change the requirements
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2B. Incremental development 
(a.k.a Iterative development)

• Several development iterations are performed in sequence.   

• Each iteration is a self-contained mini-project composed of 
activities such as requirements analysis, design, 
programming, and test 
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• Each iteration produces a new version (called an increment). 
- Each version adds functionality to the previous version. 
- Only the final version is a complete system. 

• Each version is exposed to the user for feedback 
- The customer may come to the developers’ site for demos/testing. 
- If the intermediate versions are given to the customer, it is called 

Incremental Delivery.
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From: Craig Larman, 
Agile and Iterative Development - A Manager's Guide

Incremental development
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Each time around the loop produces 
a new version of the software.



Incremental development benefits

• Reduces cost of accommodating changing customer 
requirements.  
- Early versions are incomplete, so less re-work to do. 
- May require no changes to current version (add to future version). 

• It is easier to get customer feedback. 
- Users understand a working incremental release better than 

documents from the specification or design phase.  

• Does not need to be planned entirely up front. 

• Early versions can implement the most important, 
urgent, or risky features
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Incremental development problems

• The process is not visible 
- there’s less process documentation, so it’s difficult to measure progress. 
- may not know how many more increments are required. 

• Difficult to design and implement common facilities needed by 
all versions 

• System structure tends to degrade as new increments are 
added.  
- this makes the code more difficult to modify each time. 
- UNLESS time and money are spent on refactoring to improve the 

software. 
- Refactoring:  disciplined technique for restructuring an existing body of 

code, altering its internal structure without changing its external behavior. 
- Modifying a program to improve its structure, reduce its complexity, or 

make it easier to understand.
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2C. Spiral model

• Proposed by Barry Boehm in 1988. 

• Process represented as a spiral 
- Each loop represents a phase in the process. 
- Content of each phase is not predetermined, plan as you go. 

• Risks are explicitly assessed and resolved. 
- Assumes need for change are a result of project risks. 

• Sectors of the model: 
- Identify objectives, alternatives and constraints. 
- Evaluate and reduce risk (may develop prototype). 
- Development and validation 
- Plan next phase (after review of current phase).
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Spiral model issues

• Good for high-risk projects. 
- Often used in combination with other process models. 

• In practice, the model is rarely used as published. 
!

• Somewhat similar to incremental development, but 
- Risk assessment is incorporated into the process 
- Development is not required to be incremental: 

✦ prototypes and results of previous loops can be discarded.  
✦ production development could be postponed until the last loop.
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2D. Reuse-oriented software 
engineering

• The system is assembled from existing components. 

• Components may be in the form of  
- source code that must be compiled into the final product OR  
- already compiled code that can be accessed from other programs.  

• Process stages:  
- Requirements specification (similar to other process models) 
- Component analysis: search for close matches to requirements 
- Requirements modification: to reflect available components 
- System design with reuse: organize framework around acceptable 

components (may require designing new code). 
- Development and integration: components are integrated along with 

new code 
- System validation (similar to other process models)
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Types of software components for 
reuse

• Web services (or “API”) 
- Various “functions” available for remote invocation from apps 
- Examples: Weather API from Weather Channel, Endicia Label 

Server API (labels with USPS postage) 

• Library of Classes: framework 
- Developed as a package to be integrated (compiled) with a 

component framework such as .NET or J2EE. 
- Example: parsekit for Mac OS X apps (scanners/parsers) 

• Stand-alone software systems that are configured 
for use in a particular environment.  
- often called COTS: “Commercial off the Shelf” systems 
- Example: PeopleSoft, HR management for companies

!23

Advantages and Disadvantages of 
Reuse-oriented Software Engineering

• Benefits 
- Reduces costs and risks (less code to write, already tested)  
- Usually leads to faster delivery.  

• Disadvantages 
- Requirements may have to be compromised (no good 

matches found) 
- Control over evolution of system is lost (dependent on 

developers of the components).
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3. Coping with change

• Change is inevitable in all large software projects. 
- Changing business environments lead to changing requirements 

❖ New opportunities and technologies 
❖ Changing markets, new competitors 

- New technologies open up new possibilities for improving 
implementations 

- New platforms require application changes 

• Change leads to rework: 
- new requirements lead to more requirements analysis 
- this may lead to redesign of the system or components 
- this may lead to changes to the implementation 
- this may lead to new tests, and re-testing the system
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Reducing the costs of rework:  
two approaches

• Change avoidance: include process activities that 
anticipate possible changes before significant 
rework is required.  
- i.e. develop a prototype to show some key features of the 

system to users, let them refine requirements before 
committing to them. 

• Change tolerance: design the process to 
accommodate change at low cost 
- Use incremental development, get feedback from users.  
- Changes likely apply to most recent increment only, OR 
- Can be incorporated into later increments. 
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Software prototyping

• Prototype: an initial, incomplete, version of a system 
used to demonstrate concepts and try out options. 

• Allows users to see how well system could support 
their work 

• May lead to new ideas for requirements 

• As prototype is developed, may reveal errors and 
omissions in the requirements 

• Can check feasibility of design  
- For a database, make sure it efficient for most common queries 
- For a user interface, user understands a prototype much better 

than a text description (get better feedback).
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Prototype process

• Objectives for prototype should be made in advance 
- Decide what to put in, what to leave out. 

• Must be developed quickly! 

• Users test the prototype and evaluate it with respect 
to the objectives  

• Prototypes should be discarded after use! 
- It may be impossible to tune the prototype to meet performance 

and reliability requirements 
- Prototypes are normally undocumented 
- The structure is usually degraded through quick and dirty design 
- The prototype probably will not meet normal organizational 

quality standards.
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Incremental delivery

• Special case of Incremental Development where 
each version is delivered to users. 

• Generally same advantages as Incremental 
Development 
- Good response to changing requirements 

• Major system functionality is available to users earlier. 

• Early increments act as a prototype to help elicit 
requirements for later increments. 

• Highest priority requirements are included in early 
increments, so they receive the most testing.
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Incremental delivery problems

• Generally same problems as Incremental 
Development 
- Difficult to design and implement common facilities needed by 

all versions 
- Constant upgrading can degrade structure of code 

• Contract negotiations are more difficult 
- The specification is developed in stages  
- Unable to use it as part of the development contract.  

• Difficult to get feedback when replacing an existing 
system: 
- Users won’t be motivated to use the less functional new 

system. 
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4. The (Rational) Unified Process

• Unified Process: A popular software process 
- a hybrid process: iterative/incremental AND staged. 

• Has 4 main phases or stages. 
- correspond to business concerns, not technical 

activities 

• Each phase may contain several iterations. 

• Has 6 disciplines (= activities) performed 
across the 4 phases. 

• Each phase involves all the disciplines, in 
varying amounts.
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Four phases of UP
• INCEPTION 

- High level requirements established 
- Key risks identified 

• ELABORATION 
- Significant elements (core architecture) are 

programmed and tested 

• CONSTRUCTION 
- Remainder of system is built and tested 

• TRANSITION 
- The system is fully deployed to the customer
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Certain milestones must be completed in each phase, 
before moving on to the next one.



Disciplines of UP

• Business Modeling 
- business processes are modeled using use cases 

• Requirements 

• Design 

• Implementation 

• Testing 

• Deployment 
- product is released, distributed, and installed 

• Project Management 
- scheduling, managing resources
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Phases of UP

• Disciplines over the phases 
- each column is an iteration.
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The Rational Unified Process

• Rational Unified Process (RUP) is a 
refinement or specialization of UP 
- A product from IBM 
- Hyperlinked knowledge base with sample artifacts 
- Enables developer organization to tailor UP to its 

needs: 
❖ allows developer to select appropriate elements 

of the process 
❖ manages documentation 
❖ provides tools for applying the process
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