
Detailed Design
!
!

Sommerville: Section 7.1
Tsui: 7.1, 7.3, 8.1-8.4

!1

Detailed Design
Outline:

I. Software Design and Implementation

II.Design Processes
1. Functional Decomposition
2. Relational Database Design
3. Object-oriented Design and UML

III.Design Characteristics and Metrics
1. Halstead Complexity Metric
2. McCabe’s Cyclomatic Complexity
3. Coupling and Cohesion
4. Law of Demeter

!2

I. Software Design

• Process of converting the requirements into the
design of the system.

• Definition of how the software is to be structured or
organized.
!

• For large systems, this is divided into two parts:
- Architectural design defines main components of the system

and how they interact.
- Detailed design: the main components are decomposed and

described at a much finer level of detail.

!3

Design and Implementation

• Software Design:
- Creative activity, in which you:
- Identify software components and their relationships
- Based on requirements.

• Implementation is the process of realizing the design
as a program.

• Design may be
- Documented in UML (or other) models
- Informal sketches (whiteboard, paper)
- In the programmer’s head.

• How detailed and formal it is depends on the process
that is in use.

!4

II. Design Processes

• Functional Decomposition
- aka: Top down design

• Relational Database Design

• Object-oriented design and UML
- class diagrams
- state diagrams
- etc.

• [User Interface design]

!5

1. Functional Decomposition 
Top-Down Design

• Used in procedural programming
- Start with a “main module”
- Repeatedly decompose into sub-modules.
- Lowest level modules can be implemented as functions.

• Can be used in Object-oriented design
- to do initial decomposition of a system (Arch design)
- to decompose member functions that are particularly

hard to implement.
!6

Definition: A software development technique that imposes a
hierarchical structure on the design of the program. It starts out by
defining the solution at the highest level of functionality and breaking it
down further and further into small routines that can be easily
documented and coded (The Free Dictionary: top-down programming).

• Design a system for managing course registration
and enrollment.

• Requirements: The system shall allow the user to:
- add, modify and delete students
- add, modify and delete courses
- add, modify, and delete sections for a given course
- register and drop students from a section.

• Main module divided into four submodules
(students, courses, sections, registration)

• Decompose each into its tasks (and subtasks).

!7

Functional Decomposition: example
student registration system

Functional Decomposition: example
student registration system

!8

2. Relational Database Design

• Many software systems must handle large
amounts of data

• In a relational database, data is stored in tables
- row corresponds to an object or entity
- columns correspond to attributes of the entities
- (basically an array of structs)

• Structured Query Language (SQL) is a set of
statements that
- create the tables
- add and modify data in the tables
- retrieve data that match specified criteria

!9

Relational Database Design

• Database design concentrates on
- how to represent the data of the system in a database, and
- how to store it efficiently

Three phases:

• Data modeling
- create a model showing the entities with their attributes, and how the

entities are related to each other

• Logical database design
- maps the model to a set of tables
- relationships are represented via attributes called foreign keys

• Physical database design
- deciding on types of attributes, how tables are stored, etc.

!10

Relational Database Design

• Data modeling: ER diagram
- Entities: rectangles
- Attributes: ovals
- Relationships: diamonds

• Identifier
- special attribute that has a unique value for each entity

(underlined)

• Relationships can be
- one to one
- one to many
- many to many

!11

Relational Database design: ER diagram
student registration system

!12

CRN

Term Section

Student registration system: tables

!13

Course Number is a
foreign key, used to
represent the
“Belongs” relationship

Student ID and CRN
are foreign keys,
used to represent
the many-to-many
relationship

CRN

Course Number

Year

ID

Name

Email

Student ID

CRN

Grade

Student Takes

3. Object-oriented design

• Object-oriented system is made up of interacting
objects
- Maintain their own local state (private).
- Provide operations over that state.

• Object-oriented design process involves
- Designing classes (for objects) and their interactions.

• Documentation is presented in UML diagrams
- UML = Unified Modeling Language.
- a graphic design notation (for diagrams/models).

!14

1 Requirements elicitation

• Client and developers define the purpose of the
system:
- Develop use cases
- Determine functional and non-functional requirements

• Major activities
- Identifying actors.
- Identifying scenarios.
- Identifying use cases.
- Refining use cases.

!15

Use case diagrams

Drop a course

2 Object Oriented Analysis

• Developers aim to produce a model of the
system
- Model is a class diagram
- Describing real world objects (only) 

(as in the SRS)

• Goal: transform use cases to objects

• Major activities
- Identifying objects: entities from the real world

❖ Look for nouns in use cases
- Drawing the UML class diagram, with relationships
- Drawing UML state diagrams as necessary

!16

3 System Design (architecture)

• Developers decompose the system into smaller
subsystems (see ch 6).

!

!

• Major activities
- Identify major components of the  

system and their interactions (including interfaces).
❖ Use architectural patterns

- Identify design goals (non-functional requirements)
- Refine the subsystem decomposition to address design goals

!17

 4 Object Design

• Developers complete the object model by adding
implementation classes to the class diagram.

!

!

• Major activities
- Interface specification: define public interface of objects
- Reuse:

❖ frameworks, existing libraries (code)
❖ design patterns (like arch. patterns at object level)

- Restructuring: maintainability, extensibility

!18

 5 Implementation

• Developers translate the class
diagram into source code.

• Goal: map object model to code.

!19

• Major activities
- Map classes in model to classes in source language
- Map associations in model to collections in source language

❖ OO languages don’t have “associations”
❖ tricky: maintaining bidirectional associations

- Refactoring

III. Design characteristics and
metrics

• Legacy Characteristics of Design Attributes
- Programming and programming modules were considered

the most important artifacts.
- Metrics and characteristics focused on the code (and very

detailed design, if any).

• More Current Good Design Attributes
- Design diagrams/models are considered the important

design artifacts now.
- Simplicity is the main design goal now (simplify a complex

system into smaller pieces, etc.)
- How do we measure simplicity?

!20

Halstead Complexity Metric

• Analyze source code to determine:
- n1 = number of distinct operators
- n2 = number of distinct operands
- N1 = total number of operators (counting duplicates)
- N2 = total number of operands (counting duplicates)

• From these numbers, we calculate
- Program vocabulary: n = n1+n2
- Program length: N = N1+N2

!21

Halstead Complexity Metric, cont.

• Three more measurements
- Volume: V = N * (Log2 n)
- Difficulty: D = n1/2 * N2/n2 

The difficulty to write or understand the program
- Effort: E = D * V  

A measure of actual coding time.

• Criticisms:
- These metrics really measure only the lexical complexity

of the source program and not the structure or the logic.
- Therefore not useful for analyzing design characteristics.

!22

McCabe’s Cyclomatic Complexity

• Basic idea: program quality is directly related to
the complexity of the control flow (branching)

• Computed from a control flow diagram
- Cyclomatic complexity = E - N + 2p
- E = number of edges of the graph
- N = number of nodes of the graph
- p = number of connected components (usually 1)

• Alternate computations:
- number of binary decision + 1
- number of closed regions +1

!23

McCabe’s Cyclomatic Complexity
example

!24

• Using the different computations:
- 7 edges - 6 nodes + 2*1 = 3
- 2 regions + 1 = 3
- 2 binary decisions (n2 and n4) + 1 = 3

McCabe’s Cyclomatic Complexity

• What does the number mean?

• It’s the maximum number of linearly independent
paths through the flow diagram
- used to determine the number of test cases needed to

cover each path through the system

• The higher the number, the more risk exists (and
more testing is needed)
- 1-10 is considered low risk
- greater than 50 is considered high risk

!25

Good Design attributes

• Main goal: Simplicity
- Easy to understand
- Easy to change
- Easy to reuse
- Easy to test
- Easy to code

• How do we measure simplicity of a design?
- Coupling (goal: loose coupling)
- Cohesion (goal: strong cohesion)

!26

Coupling

• Coupling is an attribute that specifies the number of
dependencies between two software units.

- It measures the dependencies between two subsystems.

• If two subsystems are loosely coupled, they are relatively
independent

- Modifications to one of the subsystems will have little impact on
the other.

• If two subsystems are strongly coupled, modifications to
one subsystem is likely to have impact on the other.

• Goal: subsystems should be as loosely coupled as is
reasonable.
- In chapter 6 we called this “Independence”

!27

Example: reducing the coupling of
subsystems

!28

MapManagement

IncidentManagement

Database

ResourceManagement

Alternative 1: Direct access to the Database subsystem!

High coupling:
The subsystems are
vulnerable to changes
in the interface of the
Database subsystem

Example: reducing the coupling of
subsystems

!29

Added a subsystem: Storage
Only one subsystem must
change if the interface to the
Database changes
(Assumes Storage interface
does not change)

MapManagement

IncidentManagement

Storage

ResourceManagement

Database

Alternative 2: Indirect access to the Database through a Storage subsystem!

Cohesion

• Cohesion is the number of dependencies within a
subsystem.

- It measures the dependencies among classes within a
subsystem.

• If a subsystem contains many objects that are related to
each other and perform similar tasks, its cohesion is high.

• If a subsystem contains a number of unrelated objects, its
cohesion is low. 

• Goal: decompose system so that it leads to subsystems
with high cohesion.

- These subsystems are more likely to be reusable

!30

Example: Decision tracking system

!31

Alternative

Decision

Criterion

subtasks

*
SubTask

ActionItem

DesignProblem

Task

assesses

solvableBy

resolvedBy
based-on

* * *

implementedBy

DecisionSubsystem

Low Cohesion:
Criterion, Alternative, and DesignProblem have No
relationships with SubTask, ActionItem, and Task

Alternative decomposition:
Decision tracking system

!32

subtasks!

*!

assesses!

solvableBy!

resolvedBy!
based-on!

*! *! *!

implementedBy!

RationaleSubsystem!

PlanningSubsystem!

Criterion! Alternative!

Decision!

DesignProblem!

SubTask!

ActionItem! Task!

Higher cohesion in each
subsystem.
But more subsystems and
an extra interface between
Task and Decision

Law of Demeter

• Good guideline for object-oriented design

• An object should send messages to only the following
- the object itself
- the objects attributes (instance variables)
- the parameters of member functions of the object
- Any object created by this object
- Any object returned from a call to one of this objects member

function
- Any object in any collection that is in one of the preceding

categories.

• “Only talk to your immediate neighbors” 
“Don’t talk to strangers”

!33

