N

Recursion

Week 10

Gaddis:19.1-19.5

CS 5301
Spring 2014

Jill Seaman

What is recursion?

» Generally, when something
contains a reference to itself

» Math: defining a function in terms
of itself

« Computer science: when a
function calls itself:

void message() {
cout << “This is a recursive function.\n”;
message();

int main() {
message();
} What happens when this is executed? 2

—_—

This
This
This
This
This
This
This
This
This
This
This
This
This

is
is
is
is
is
is
is
is
is
is
is
is
is

A R I I I R TR VR R I R

« Infinite Recursion:

recursive
recursive
recursive
recursive
recursive
recursive
recursive
recursive
recursive
recursive
recursive
recursive
recursive

How can a function call itself?

function.
function.
function.
function.
function.
function.
function.
function.
function.
function.
function.
function.
function.

Recursive message() modified

* How about this one?

void message(int n) {
if (n > 0) {
cout << “This is a recursive function.\n”;
message(n-1);
}
}
int main() {
message(5);

}

6 nested calls to message:

message(5):
outputs “This is a recursive function”
calls message(4):
outputs “This is a recursive function”
calls message(3):
outputs “This is a recursive function”
calls message(2):
outputs “This is a recursive function”
calls message(l):
outputs “This is a recursive function”
calls message(0):
does nothing, just returns

Tracing the calls

depth of recursion (#times it calls itself) = 5:

How to write recursive functions

Branching is required (If or switch)
Find a base case

one (or more) values for which the result of the
function is known (no repetition required to solve it)

no recursive call is allowed here
Develop the recursive case

For a given argument (say n), assume the function
works for a smaller value (n-1).

Use the result of calling the function on n-1 to form a
solution for n

7

It is true that recursion is never required to
solve a problem

Any problem that can be solved with recursion can
also be solved using iteration.

Recursion requires extra overhead: function call
+ return mechanism uses extra resources

Why use recursion?

However:
Some repetitive problems are more easily and
naturally solved with recursion

the recursive solution is often shorter, more elgagant,
easier to read and debug.

N

Recursive function example
factorial

Mathematical definition of n! (factorial of n)

1
l1x2x3X ...Xn

if n=0 then n!
if n>0 then n!

What is the base case?
n=0 (the resultis 1)

Recursive case: If we assume (n-1)! can be
computed, how can we get n! from that?

n'=n*(n-1)

—_— S—

Recursive function example
factorial

int factorial(int n) {
if (n==0)
return 1;
else
return n * factorial(n-1);

int main() {
int number;
cout << “Enter a number “;
cin >> number;
cout << “The factorial of “ << number << “ is “
<< factorial(number) << endl;

\

R -
Recursive functions over ints

* Many recursive functions (over integers) look
like this:

type f(int n) {
if (n==0)
//do the base case
else
// ... £f(n-1) ...

Tracing the calls

» Calls to factorial:

factorial(4):

return 4 * factorial(3); =4*6=24
calls factorial(3):
return 3 * factorial(2); =3*2=6
calls factorial(2): \\
return 2 * factorial(l); =2*1=2

calls factorial(1l):
return 1 * factorial(0); =1*1=1

calls facto#iiiigli//////,,a
return 1;
» Every call except the last makes a recursive call
» Each call makes the argument smaller

Recursive functions over lists

* You can write recursive functions over lists using
the length of the list instead of n

- base case: length=0 ==> empty list

- recursive case: assume f works for list of length n-1,
what is the answer for a list with one more element?

* We will do examples with:
- arrays
- strings
- later: linked lists

l Recursive function example

sum of the list

* Recursive function to compute sum of a list of
numbers

* What is the base case?
- length=0 (empty list) =>sum =0

« If we assume we can sum the first n-1 items in
the list, how can we get the sum of the whole list
from that?

- sum (list) = sum (list[0..n-2]) + list[n-1]

I

Assume | am given the answer to this

\

e I
Recursive function example

count character occurrences in a string

» Recursive function to count the number of times
a specific character appears in a string

* We will use the string member function substr to
make a smaller string

- str.substr (int pos, int length);
- pos is the starting position in str
- length is the number of characters in the result

string x = “hello there”;
cout << x.substr(3,5);

* char access: x[1] is the second element (‘e!)

\

| Recursive function example

sum of a list (array)

int sum(int a[], int size) { //size is number of elems
if (size==0)
return 0;
else
return sum(a,size-1) + a[size-1];

call sum on first n-1 elements The last element

For a list with size = 4: sum(a,4)

sum(a,3) + a[3] =

sum(a,2) + a[2] + a[3] =

sum(a,l) + a[l] + a[2] + a[3] =
sum(a,0) + a[0] + a[l] + a[2] + a[3] =
0 + a[0] + a[l] + a[2] + a[3]

Recursive function example

count character occurrences in a string

int numChars(char target, string str) {
if (str.empty()) {
return 0;
} else {
int result = numChars(search, str.substr(l,str.size()));
if (str[0]==target)
return l+result;
else
return result;

}

int main() {
string a = "hello";
cout << a << numChars('l',a) << endl;

}

| Three required properties | Recursive function example

of recursive functions greatest common divisor

A Base case | Greatest common divisor of two non-zero ints is
the largest positive integer that divides the
numbers evenly (without a remainder)

This is a variant of Euclid’s algorithm:

a non-recursive branch of the function body.
must return the correct result for the base case
Smaller caller

. . ged(x,y) = ¥ if y divides x evenly, otherwise:
each recursive call must pass a smaller version of gcd(x,y) = gcd(y,remainder of x/y) (or ged(y,x%y) in c++)
the current argument.
Recursive case It's a recursive definition
assuming the recursive call works correctly, the If x <y, then x%y is x (so gcd(x,y) = gcd(y,x))

code must produce the correct answer for the

current argument. This moves the larger number to the first position.

17

N N

Recursive function example Recursive function example
greatest common divisor greatest common divisor
Code: Output:
int ged(int x, int y) { ‘ gcd called with 9 and 1
cout << "gecd called with " << x << " and " << y << endl; GCD(9,1): 1
if (x 8y == 0) { gcd called with 1 and 9
return y; gcd called with 9 and 1
} else { GCD(1,9): 1
return gcd(y, X % Y); gcd called with 9 and 2
} gcd called with 2 and 1
} GCD(9,2): 1
ged called with 70 and 25
int main() { gcd called with 25 and 20
cout << "GCD(9,1): " << gcd(9,1) << endl; gcd called with 20 and 5
cout << "GCD(1l,9): " << gecd(1,9) << endl; GCD(70,25): 5
cout << "GCD(9,2): " << gcd(9,2) << endl; gcd called with 25 and 70
cout << "GCD(70,25): " << gcd(70,25) << endl; gcd called with 70 and 25
cout << "GCD(25,70): " << gcd(25,70) << endl; gcd called with 25 and 20
} 1o gcd called with 20 and 5 2
GCD(25,70): 5

| Recursive function example

Fibonacci numbers

Series of Fibonacci numbers:
o, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ...

Starts with 0, 1. Then each number is the sum
of the two previous numbers

Fo =0
Fi1 =1
Fi = Fi.1 + Fio (for i > 1)

It's a recursive definition

21

N

Recursive function example

Fibonacci numbers

Note: the recursive fibonacci functions works as
written, but it is VERY inefficient.

Counting the recursive calls to fib:

The first 40 fibonacci numbers:

fib (0)= 0 # of recursive calls to fib =1
fib (1)= 1 # of recursive calls to fib =1
fib (2)= 1 # of recursive calls to fib = 3
fib (3)= 2 # of recursive calls to fib = 5
fib (4)= 3 # of recursive calls to fib = 9
fib (5)= 5 # of recursive calls to fib = 15
fib (6)= 8 # of recursive calls to fib = 25
fib (7)= 13 # of recursive calls to fib = 41
fib (8)= 21 # of recursive calls to fib = 67
fib (9)= 34 # of recursive calls to fib = 109

ctt 23
fib (40)= 102,334,155 # of recursive calls to fib = 331,160,281

| Recursive function example

Fibonacci numbers
Code:

int fib(int x) {
if (x<=1) //takes care of 0 and 1
return Xx;
else
return fib(x-1) + fib(x-2);
}

int main() {
cout << "The first 13 fibonacci numbers: " << endl;
for (int i=0; i<13; i++)
cout << fib(i) << " ";
cout << endl;

The first 13 fibonacci numbers:
0112358 13 21 34 55 89 144 22

\

Recursive functions over linked lists

Recursive functions can be members of a linked
list class

These functions take a pointer to the list (p) as a
parameter

They compute the function for the list starting at the
node p points to.

The pattern:

base case: empty list, when p is NULL

recursive case: assume f works for list starting at
p->next, what is the answer for a list with one more
element (the list starting at p)? ’s

J—
Recursive function example

count the number of nodes in a list

class NumberList

{
private:
struct ListNode {
double value;
struct ListNode *next;
}i
ListNode *head;
int countNodes(ListNode *); //private version
public:
NumberList();
NumberList (const NumberList & src);
~NumberList();
void appendNode(double);
void insertNode(double);
void deleteNode(double);
void displayList();
int countNodes(); //public version, calls private
}i

25

—_—

Recursive function example
display the node values in reverse order

// the private version, needs a pointer parameter
void NumberList::reverseDisplay(ListNode *p) {
if (p == NULL) {
//do nothing
} else {
//display the “rest” of the list in reverse order
reverseDisplay(p->next);
cout << p->value << “ “;

// the public version, no arguments
void NumberList::reverseDisplay() {
reverseDisplay (head);
cout << endl;

| Recursive function example

‘ count the number of nodes in a list

// the private version, needs a pointer parameter
// How many nodes are in the list starting at the pointer?
int NumberList::countNodes(ListNode *p) {
if (p == NULL)
return 0;
else
return 1 + countNodes (p->next);

// the public version, no arguments (Nodes are private)
// calls the recursive function starting at head
int NumberList::countNodes() {

return countNodes (head);

Note that this function is overloaded‘ 26

| Recursive function example

‘ calling the functions from main

int main() {
NumberList list;
for (int i=0; i<5; i++)
list.insertNode(i);

cout << “The number of nodes is “ << list.countNodes()
<< endl;

cout << “The values in reverse order are: “;
list.reverseDisplay();

28

