
1

Sets & Hash Tables
Week 13

!

Weiss: 20
Main & Savitch: 3, 12.2-3

!

CS 5301
Spring 2014

!

Jill Seaman
2

What are sets?

! A set is a collection of objects of the same
type that has the following two properties:
- there are no duplicates in the collection
- the order of the objects in the collection is

irrelevant. 

! {6,9,11,-5} and {11,9,6,-5} are equivalent. 

! There is no first element, and no successor
of 9.

3

Set Operations

! Set construction
- the empty set (0 elements in the set)

! isEmpty()
- True, if the set is empty; false, otherwise.

! Insert(element)
- If element is already in the set, do nothing;

otherwise add it to the set
! Delete(element)
- If element is not a member of the set, do nothing;

otherwise remove it from the set. 4

Set Operations

! Member(element): boolean
- True, if element is a member of the set; false,

otherwise
! Union(Set1,Set2): Set
- returns all elements of two Sets, no duplications.

! Intersection(Set1,Set2): Set
- returns all elements common to both sets.

! Difference(Set1,Set2): Set
- returns all elements of the first set except for the

elements that are in common with the second set.

5

Set Operations

! Subset(Set1,Set2): boolean
- True, if Set2 is a subset of Set1. All elements of

the Set2 are also elements of Set1.

6

Implementation
! Array of elements implementation
- each element of the set will occupy an element of

the array.
- the member (find) operation will be inefficient, must

use linear search.
! see Lab 6, exercise 2
- represented a set of integers
- class contained a pointer to a dynamically allocated

array of ints
! Exercise: implement all of the set operations for

this set

7

Implementation
! Boolean array implementation
- size is equal to number of all possible elements

(the universe).
- need a mapping function to convert an element

of the universe to a position in the array
!

!

!

!

- if array[map(“Monday”)] is true, then Monday is
in the Set.

bool array[7] = {false}; //sets all elements to false
int map(string x) {
 if (x=="Sunday") return 0;
 if (x=="Monday") return 1;
 if (x=="Tuesday") return 2;
 if (x=="Wednesday") return 3;
 if (x=="Thursday") return 4;
 if (x=="Friday") return 5;
 if (x=="Saturday") return 6;
}

8

Implementation
! Boolean array implementation: member

!

!

!

!

- Exercise: implement all of the set operations for
the set implemented as a boolean array

bool member(string x) {
 int pos = map(x);
 if (0<=pos && pos<7 && array[pos])
 return true;
 return false;
}

9

What are hash tables?

! A Hash Table is used to implement a set (or
a search table), providing basic operations
in constant time:
- insert
- delete (optional)
- find (also called “member”)
- makeEmpty (need not be constant time)

! It uses a function that maps an object in the
set (a key) to its location in the table.

! The function is called a hash function.
41

!
!

!

!

!

!

!

Using a hash function

[0]
!
[1]
!
[2]
!
[3]
!
[4]
!
 .
 .
 .

Empty
!
4501
!
Empty
!
8903
!
!
!
 8
!
10

 values

!
!
!
!

!
!
[97]
!
[98]
!
[99]

7803
!
Empty
!
.
.
.
!
Empty
!
2298
!
3699

HandyParts company
makes no more than 100
different parts. But the
parts all have four digit numbers.
!
This hash function can be used to
store and retrieve parts in an array.
!
Hash(partNum) = partNum % 100

42

!
!

!

!

!

!

!

Placing elements in the array

Use the hash function
!
Hash(partNum) = partNum % 100
!
to place the element with
part number 5502 in the
array.

[0]
!
[1]
!
[2]
!
[3]
!
[4]
!
 .
 .
 .

Empty
!
4501
!
Empty
!
8903
!
!
!
 8
!
10

 values

!
!
!
!

!
!
[97]
!
[98]
!
[99]

7803
!
Empty
!
.
.
.
!
Empty
!
2298
!
3699 43

!
!

!

!

!

!

!

Placing elements in the array

Next place part number
6702 in the array.
!
Hash(partNum) = partNum % 100
!
 6702 % 100 = 2
!
But values[2] is already
occupied.
!
 COLLISION OCCURS

[0]
!
[1]
!
[2]
!
[3]
!
[4]
!
 .
 .
 .

 values

!
!
!
!

!
!
[97]
!
[98]
!
[99]

7803
!
Empty
!
.
.
.
!
Empty

2298
!
3699

Empty
!
4501
!
5502

44

!
!

!

!

!

!

!

How to resolve the collision?

One way is by linear probing.
This uses the following function
!
 (HashValue + 1) % 100
!
repeatedly until an empty location
is found for part number 6702.

[0]
!
[1]
!
[2]
!
[3]
!
[4]
!
 .
 .
 .

 values

!
!
!
!

!
!
[97]
!
[98]
!
[99]

7803
!
Empty
!
.
.
.
!
Empty
!
2298
!
3699

Empty
!
4501
!
5502

45

!
!

!

!

!

!

!

Resolving the collision

Still looking for a place for 6702
using the function
!
 (HashValue + 1) % 100

[0]
!
[1]
!
[2]
!
[3]
!
[4]
!
 .
 .
 .

 values

!
!
!
!

!
!
[97]
!
[98]
!
[99]

7803
!
Empty
!
.
.
.
!
Empty
!
2298
!
3699

Empty
!
4501
!
5502

46

!
!

!

!

!

!

!

Collision resolved

Part 6702 can be placed at
the location with index 4.

[0]
!
[1]
!
[2]
!
[3]
!
[4]
!
 .
 .
 .

 values

!
!
!
!

!
!
[97]
!
[98]
!
[99]

7803
!
Empty
!
.
.
.
!
Empty
!
2298
!
3699

Empty
!
4501
!
5502

47

!
!

!

!

!

!

!

Collision resolved

Part 6702 is placed at
the location with index 4.
!
!
Where would the part with
number 4598 be placed using
linear probing?

[0]
!
[1]
!
[2]
!
[3]
!
[4]
!
 .
 .
 .

 values

!
!
!
!

!
!
[97]
!
[98]
!
[99]

7803
!
6702
!
.
.
.
!
Empty
!
2298
!
3699

Empty
!
4501
!
5502

17

Hashing concepts

! Hash Table: where objects are stored by
according to their key (usually an array)
- key: attribute of an object used for searching/

sorting
- number of valid keys usually greater than number

of slots in the table
- number of keys in use usually much smaller than

table size.
! Hash function: maps keys to a Table index
! Collision: when two separate keys hash to the

same location 18

Hashing concepts

! Collision resolution: method for finding an
open spot in the table for a key that has
collided with another key already in the table.

! Load Factor: the fraction of the hash table
that is full
- may be given as a percentage: 50%
- may be given as a fraction in the range from 0 to

1, as in: .5

19

Hash Function

! Goals:
- computation should be fast
- should minimize collisions (good distribution)

! Some issues:
- should depend on ALL of the key  

(not just the last 2 digits or first 3 characters,
which may not themselves be well distributed)

20

Hash Function
! Final step of hash function is usually: 

- temp is some intermediate result
- size is the hash table size
- ensures the value is a valid location in the table

! Picking a value for size:
- Bad choices:

❖ a power of 2: then the result is only the lowest order bits of temp
(not based on whole key)

❖ a power of 10: result is only lowest order digits of decimal number
- Good choices: prime numbers

temp % size

21

Collision Resolution:
Linear Probing

! Insert: When there is a collision, search
sequentially for the next available slot

! Find: if the key is not at the hashed location,
keep searching sequentially for it.
- if it reaches an empty slot, the key is not found

! Problem: if the the table is somewhat full, it
may take a long time to find the open slot.

! Problem: Removing an element in the middle
of a chain

22

Linear Probing:
Example

! Insert: 89, 18, 49, 58, 69, hash(k) = k mod 10

49 is in 0 because
9 was full

58 is in 1 because
8, 9, 0 were full

69 is in 1 because
9, 0 were full

Probing function (attempt i): hi(K) = (hash(K) + i) % tablesize

23

Collision Resolution:
Separate chaining

! Use an array of linked lists for the hash table
! Each linked list contains all objects that hashed to that

location
- no collisions

Hash function is still:
h(K) = k % 10

24

Separate Chaining
! To insert a an object:
- compute hash(k)
- insert at front of list at that location (if empty, make first node)

! To find an object:
- compute hash(k)
- search the linked list there for the key of the object

! To delete an object:
- compute hash(k)
- search the linked list there for the key of the object
- if found, remove it

