(_ Week 2

Control Constructs & Functions

Gaddis: Chapters 4, 5, 6

CS 5301
Spring 2014

Jill Seaman

Control structures: if else

if and else if (czxiressicl)n) statement may be a
statemen compound statement

else .
statement2 (a block: {statements})

if expression is true, statement 1 is executed
if expression is false, statement2 is executed

if (expression)

the else is optional: Staremont
nested if else

if (expressionl)
statementl

else if (expression2)
statement?2

else if (expression3)
statement3

else
statement4

Relational and Logical Operators

relational operators (result is bool):

== Equal to

= Not equal to ;9<=55x
> Greater than x %2 1=0
< Lessthan 8 + 5 * 10 <=100 * n

>= Greater than or equal to
<= Less than or equal to

logical operators (values and results are bool):

! not x < 10 && x > 0
8& and y ==10 || y == 20
Il or !(a == b) |
(arithmetic operators here)
operator precedence: <><=>=

&& 2
Il

Control structures: switch

. . |switch (expression) {

SWItCh Stmt case constant: statements
case constant: statements
default: statements

}
execution starts at the case labeled with the value of

the expression.
if no match, start at default
use break to exit switch (usually at end of statements)

example: [switch (ch) ¢

case ‘a’:

case ‘A’: cout << “Option A";
break;

case ‘b’:

case ‘B’: cout << “Option B”;
break;

default: cout << “Invalid choice”;

([, (

More assignment statements Control structures: loops
. statement may be a
Compound aSSignment while while (expression) compound statement
statement (a block: {statements})

operator usage equivalent syntax:

+= X += e; X =X + e; H H H H

— .. e e if expression is true, statement is executed, repeat

*= X *= e; X =X * e; for:

/= % /= o x=x/ e for (exprl; expr2; expr3)

! ! statement
increment, decrement .
equivalent to: |expri;
operator usage equivalent syntax: while (expr2) {
statement
++ X++; ++xX; |x = x + 1; expr3;
. }
- i o x o do while:
do statement is executed.
statement if expression is true, then repeat
5 while (expression); 6
Nested loops continue and break Statements

When one loop appears in the body of another Use break to terminate execution of a loop
For every iteration of the outer loop, we do all When used in a nested loop, terminates the

the iterations of the inner loop inner loop only.

for (row=1l; row<=3; row++) //outer
for (col=1l; col<=3; col++) //inner

cout << row * col << endl; Use continue to go to end of current loop and
prepare for next repetition

while, do-while loops: go to test, repeat loop if
test passes

for loop: perform update step, then test, then
repeat loop if test passes

Output:

8

OO WO BNWNRE

—

Function Definitions

Function definition pattern:

datatype identifier (parameterl, parameter2, ...) {
statements . . .

}

Where a parameter is:

’datatype identifier

datatype: the type of data returned by the function.

identifier: the name by which it is possible to call the
function.

parameters: Like a regular variable declaration, act
within the function as a regular local variable. Allow
passing arguments to the function when it is called.

statements: the function's body, executed when called.

N

Example: Function

// function example
#include <iostream>
using namespace std;
int addition (int a, int b) {
int result;
result=a+b;
return result;
}
int main () {
int z;
z = addition (5,3);

cout << "The result is " << z <<endl;

}

What are the parameters? arguments?
What is the value of: addition (5,3)7?
What is the output?

11

—

N

Function Call, Return Statement

Function call expression

’identifier (expressionl, . . .) ‘

Causes control flow to enter body of function named
identifier.

parameter1 is initialized to the value of expression1,
and so on for each parameter

expression1 is called an argument.
Return Statement: ’return expression; ‘

inside a function, causes function to stop, return
control to caller.

The value of the return expression becomes the
value of the function call

Void function

A function that returns no value:

void printAddition (int a, int b) {
int result;
result=a+b;
cout << “the answer is: “

<< result << endl;

}

use void as the return type.

the function call is now a statement (it does not
have a value)
int main () {

printAddition (5,3);
}

Prototypes Arguments passed by value

In a program, function definitions must occur _
before any calls to that function Pass by value: when an argument is passed to a

function, its value is copied into the parameter.

To override this requirement, place a prototype of o _ _ e
the function before the call. It is implemented using variable initialization

(behind the scenes):

int param = argument;

The pattern for a prototype:

[datatype identifier (typel, typez, -.-); | Changes to the parameter in the function body
do not affect the value of the argument in the
the function header without the body (parameter call
names are optional). The parameter and the argument are stored in
. separate variables; separate locations in
| | memory.
Example: Pass by Value Scope of variables

Coing mamespace sea; umber i 12 For a given variable definition, in which part of
o . myvalle s 200 12 the program can it be accessed?

void changeMe(int); ’

Global variable (defined outside of all functions):

int main() { can be accessed anywhere, after its definition.
int number = 12;
cout << "number is " << number << endl; Local variable (defined inside of a function):

changeMe (number) ;
cout << "Back in mai number is " << number << endl;

can be accessed inside the block in which it is

return 0; defined, after its definition.
int myValue = ber; . . .
' T Parameter: can be accessed anywhere inside of its
void changeMe(int myValue) { function bOdy
myValue = 200; . .
cout << "myValue is " << myValue << endl; Variables are destroyed at the end of their
} Is scope. 16

changeMe failed to change the argument!

More scope rules

Variables in the same exact scope cannot have the
same name

Parameters and local function variables cannot
have the same name

Variable defined in inner block can hide a
variable with the same name in an outer block.

int x = 10;
if (x < 100) { Output: [34
int x = 30; 10
cout << x << endl;

}

cout << x << endl;

Variables defined in one function cannot be seen
from another.

|

