Functions

\

Week 3

, Arrays & Structures

Gaddis: Chapters 6, 7, 11

CS 5301
Spring 2014

Jill Seaman

— I

arameter passing by Reference

Pass by reference: when an argument is passed
to a function, the function has direct access to
the original argument (no copying).

Pass by reference in C++ is implemented using
a reference parameter, which has an ampersand
(&) in front of it:

void changeMe (int &myValue);

A reference parameter acts as an alias to its
argument, it is NOT a separate storage location.

Changes to the parameter in the function DO
affect the value of the argument

—

#include <iostream>
using namespace std;

void changeMe(int &);

int main() {
int number = 12;

changeMe (number) ;
cout << "Back 1in
return 0;

}

myValue = 200;

}

cout << "number is "

cout << "myValue is "

Example: Pass by Reference

— _ :

Output:

number is 12
myValue is 200

Back in main, number is 200

<< number << endl;

in, number is " << number << endl;

myValue is an alias for number,
only one shared variable

void changeMe(int &myValue) {

<< myValue << endl;

Overloaded Functions

Overloaded functions have the same name but
different parameter lists.

The parameter lists of each overloaded function
must have different types and/or number of
parameters.

Compiler will determine which version of the
function to call by matching arguments to
parameter lists

Example: Overloaded functions
double calcWeeklyPay (int hours, double payRate) {
return hours * payRate;
}
double calcWeeklyPay (double annSalary) {
return annSalary / 52;

}

Output:
Enter hours worked and pay rate: 37 19.5
Pay is: 721.5
int main () { Enter annual salary: 75000
int h; Pay is: 1442.31

double r;
cout << "Enter hours worked and pay rate: ";
cin >> h >> r;

cout << "Pay is: " << calcWeeklyPay(h,r) << endl;
cout << "Enter annual salary: ";

cin >> r;

cout << "Pay is: " << calcWeeklyPay(r) << endl;
return 0; 5

—

A default argument for a parameter is a value
assigned to the parameter when an argument is
not provided for it in the function call.

The default argument patterns:

Default Arguments

in the prototype:

’datatype identifier (typel = cl, type2 = c2, ...);

OR in the function header:

datatype identifier (typel pl = cl, type2 p2 =c2, ...) {

}.“

Example: Default Arguments

void showArea (double length = 20.0, double width = 10.0)
{

double area = length * width;

cout << “The area is “ << area << endl;
}

This function can be called as follows:

showArea(); ==> uses 20.0 and 10.0
The area is 200

showArea(5.5,2.0); ==> uses 5.5 and 2.0
The area is 11

showArea(12.0); ==> uses 12.0 and 10.0
The area is 120 7

, c1, c2 are constants (named or literals)

Default Arguments: rules

When an argument is left out of a function call,
all arguments that come after it must be left out

as well.
showArea(5.5); // uses 5.5 and 10.0
showArea(,7.1); // NO, won't work, invalid syntax

If not all parameters to a function have default
values, the parameters with defaults must come
last:

int showArea (double = 20.0, double); //NO
int showArea (double, double = 20.0); //OK 8

—

An array is:

Arrays

A series of elements of the same type
placed in contiguous memory locations

that can be individually referenced by adding an
index to a unique identifier.

To declare an array:

’datatype identifier [size]; ‘ ’int numbers([5];

datatype is the type of the elements
identifier is the name of the array
size is the number of elements (constant)’

Array access

to access the value of any of the elements of the
array individually as if it was a normal variable:

’scores[Z] = 89.5;

scores[2] is a variable of type float

use it anywhere a float variable can be used.
rules about subscripts:

always start at 0, last subscript is size-1

must have type int but can be any expression

watchout: brackets used both to declare the array
and to access elements. g

—

To specify contents of the array in the definition:

Array initialization

|float scores[3] = {86.5, 92.1, 77.5}; \

creates an array of size 3 containing the
specified values.

|float scores[10] = {86.5, 92.1, 77.5}; \

creates an array containing the specified values
followed by 7 zeros (partial initialization).

| float scores[] = {86.5, 92.1, 77.5}; |

creates an array of size 3 containing the
specified values (size is determined from list).

Arrays: operations

Valid operations over entire arrays:
function call: myFunc (scores, x);
Invalid operations over structs:
assignment: arrayl = array2;
comparison: arrayl == array2
output: cout << arrayi;
input: cin >> array2;

Must do these element by element, probably
using a for loop

12

Example: Processing arrays
Computing the average of an array of scores:

const int NUM _SCORES = 8;
int scores[NUM _SCORES];
cout << “Enter the *“ << NUM_SCORES
<< “ programming assignment scores: “ << endl;

for (int i=0; i < NUM_SCORES; i++) {
cin >> scores[i];

}

int total = 0; //initialize accumulator
for (int i=0; i < NUM_SCORES; i++) {
total = total + scores[i];
}
double average =
static_cast<double>(total) / NUM SCORES;

Example: Partially filled arrays

int sumList (int list[], int size) {//sums elements in list array
int total = 0;
for (int i=0; i < size; i++) { sums from position 0 to size-1,

total = total + list[i]; even if the array is bigger.

return total;

}

const int CAPACITY = 100;

int main() {
int scores[CAPACITY];
int count = 0; //tracks number of elems in array
cout << “Enter the programming assignment scores:” << endl;
cout << “Enter -1 when finished” << endl;
int score;
cin >> score;

while (score != -1 && count < CAPACITY) {
scores[count] = score;
count++;

cin >> score;

}

int sum = sumList(scores,count); |pass count, not CAPACITY s

In the function definition, the parameter type is a
variable name with an empty set of brackets: []

Do NOT give a size for the array inside []
void showArray(int values[], int size)

In the prototype, empty brackets go after the
element datatype.

void showArray(int[], int)

In the function call, use the variable name for the
array.

Arrays as parameters

showArray (numbers, 5)

An array is always passed by reference.

Multidimensional arrays

multidimensional array: an array that is
accessed by more than one index

int table[2][5]; // 2 rows, 5 columns
table[0][1] = 10; // puts 10 in first row,
// second column

Initialization:

int a[4][3] = {4,6,3,12,7,15,41,32,81,52,11,9};
First row: 4,6,3
Second row: 12, 7, 15
etc. 16

—

when using a 2D array as a parameter, you must
specify the number of columns:

Multidimensional arrays

void myfunction(int vals[][3], int rows) {
for (int i = 0; i < rows; ++i) {
for (int j = 0; j < 3; ++3j)
cout << vals[i][]J] << " ";
cout << "\n";
}
}
int main() {
int a[4][3] = {4,6,3,12,7,15,41,32,81,52,11,9};

myfunction(a,4);

Structures: operations

Valid operations over entire structs:
assignment: studentl = student2;

function Ca”ZmyFunc(gradStudent,x);

’ void myFunc(Student, int); //prototype

Invalid operations over structs:
comparison: studentl == student2
output: cout << studentl;
input: cin >> student2;

Must do these member by member 1

A structure stores a collection of objects of
various types

Structures

Each element in the structure is a member, and
is accessed using the dot member operator.

struct Student {
int idNumber;
string name;
int age;
string major;

Defines a new data type

}i
Student studentl, student2; Defines new variables
studentl.name = “John Smith”; 18

Student student3 = {123456,”Ann Page”,22,"Math”};

Arrays of Structures

You can store values of structure types in arrays.
Student roster[40]; //holds 40 Student structs

Each student is accessible via the subscript
notation.

roster[0] = studentl;

Members of structure accessible via dot notation

cout << roster[0].name << endl;

20

—

Arrays of structures processed in loops:
Student roster[40];

Arrays of Structures

//input
for (int i=0; i<40; i++) {
cout << "Enter the name, age, idNumber and "
<< "major of the next student: \n";
cin >> roster[i].name >> roster[i].age
>> roster[i].idNumber >> roster[i].major;

}

//output all the id numbers and names
for (int i=0; i<40; i++) {
cout << roster[i].idNumber << endl;
cout << roster[i].name << endl;

} 21

Passing structures to functions

Structure variables may be passed as
arguments to functions:

void getStudent(Student &s) { // pass by reference
cout << "Enter the name, age, idNumber and "
<< "major of the student: \n";
cin >> s.name >> s.age >> s.idNumber >> s.major;

}

void showStudent(Student x) {
cout << x.idNumber << endl;
cout << x.name << endl;
cout << x.age << endl;
cout << x.major << endl;

}

// in main:
Student studentl;
getStudent(studentl);

22
showStudent (studentl);

