Linked Lists

Week 8
Gaddis: Chapter 17

CS 5301
Spring 2014

Jill Seaman

Node Organization

» Each node contains:

- data field — may be organized as a structure, an
object, etc.

- a pointer — that can point to another node

pointer

data

Introduction to Linked Lists

* A data structure representing a list

A series of dynamically allocated nodes
chained together in sequence

- Each node points to one other node.

* A separate pointer (the head) points to the first
item in the list.

* The last element points to nothing (NULL)

NULL

list
head

Empty List

* An empty list contains 0 nodes.
* The list head points to NULL (address 0)
* (There are no nodes, it's empty)

list
head

NULL

Declaring the Node data type

* Use a struct for the node type

struct ListNode {
double value;
ListNode *next;

}i
* (this is just a data type, no variables declared)

* next can hold the address of a ListNode.

- it can also be NULL
- “self-referential data structure”

Using NULL

» Equivalent to address O
» Used to specify end of the list
* Use ONE of the following for NULL:

#include <iostream>
#include <cstddef>

* to test a pointer for NULL (these are equivalent):
while (p) ... <==> while (p != NULL) ...

if (!p) ... <==> if (p == NULL) ...

\

Defining the Linked List variable

* Define a pointer for the head of the list:

ListNode *head = NULL;

* It must be initialized to NULL to signify the end
of the list.

* Now we have an empty linked list:

head

NULL

— I S

Linked List operations

 Basic operations:
- create a new, empty list
- append a node to the end of the list
- insert a node within the list
- delete a node
- display the linked list
- delete/destroy the list
- copy constructor

Linked List class declaration

// file NumberList.h

#include <cstddef> // for NULL
using namespace std;

class NumberList

{

private:
struct ListNode // the node data type
double value; // data
struct ListNode *next; // ptr to next node
}i
ListNode *head; // the list head
public:
NumberList();
NumberList(const NumberList & src);
~NumberList();

void appendNode(double);

void insertNode(double);

void deleteNode(double); 9
void displayList();

Linked List functions: constructor

Constructor: sets up empty list

// file NumberList.cpp

#include "NumberList.h"

NumberList: :NumberList ()

head = NULL;
}

Linked List functions: appendNode

| appendNode: adds new node to end of list
Algorithm:

Create a new node and store the data in it
If the list is empty

Make head point to the new node.
Else

Find the last node in the list

Make the last node point to the new node

Linked List functions: appendNode

How to find the last node in the list?
Algorithm:

Make a pointer p point to the first element
while (the node p points to) is not pointing to NULL
make p point to (the node p points to) is pointing to

In C++:
ListNode *p = head; ListNode *p = head;
while ((*p).next != NULL) <==> |while (p->next)
P = (*p).next; p = p->next;

p=p->next is like i++ 12

Linked List functions: appendNode

void NumberList::appendNode(double num) {
ListNode *newNode; // To point to the new node

// Create a new node and store the data in it
newNode = new ListNode;

newNode->value = num;

newNode->next = NULL;

// 1If empty, make head point to new node
if (!'head)
head = newNode;

else {
ListNode *nodePtr; // To move through the list
nodePtr = head; // initialize to start of list

// traverse list to find last node
while (nodePtr->next) //it’s not last
nodePtr = nodePtr->next; //make it pt to next

// now nodePtr pts to last node
// make last node point to newNode
nodePtr->next = newNode; 13

—

Visit each node in a linked list, to

display contents, sum data, test data, etc.
Basic process:

Traversing a Linked List

set a pointer to point to what head points to
while pointer is not NULL
process data of current node
go to the next node by setting the pointer to
the pointer field of the current node
end while

Linked List functions: displayList

void NumberList::displayList() {
ListNode *nodePtr; //ptr to traverse the list

// start nodePtr at the head of the list
nodePtr = head;

// while nodePtr pts to something (not NULL), continue
while (nodePtr)

//Display the value in the current node
cout << nodePtr->value << endl;

//Move to the next node
nodePtr = nodePtr->next;
}
}

void NumberList::displayList() {
ListNode *nodePtr;
for (nodePtr = head; nodePtr; nodePtr = nodePtr->next)
cout << nodePtr->value << endl;

Deleting a Node from a Linked List

deleteNode: removes node from list, and deletes
(deallocates) the removed node.

Requires two pointers:

one to point to the node to be deleted

one to point to the node before the node to be
deleted.

previousNode nodePtr

B E R R

list
head ’ Deleting 13 from the Iist‘

Change the pointer of the previous node to point
to the node after the one to be deleted.

Deleting a node

’previousNode—>next = nodePtr->next;

previousNode nodePtr
5 a 13 19 | | NULL
list L““““““J
head

Now just “delete” the nodePtr node

Delete Node Algorithm

Delete the node containing num

If list is empty, exit
If first node contains num
make p point to first node
make head point to second node
delete p
else
use p to traverse the list, until it points to num or NULL
--as p is advancing, make n point to the node before it
if (p is not NULL)
make n’s node point to what p’s node points to
delete p’s node 19

—

After the node is deleted:

Deleting a node

’delete nodePtr;

previousNode nodePtr
N
5 19 N NULL
list
head

Linked List functions: deleteNode

void NumberList::deleteNode(double num) {

ListNode *p = head; // to traverse the list
ListNode *n; // trailing node pointer (previous)

// skip nodes not equal to num, stop at last
while (p && p->value!=num) {

n = p; // save it!

p = p->next; // advance it

// p not null: num is found, set links + delete
if (p) { . . .
if (p==head) { // p points to the first elem, n is garb
head = p->next;

delete p;

} else { // n points to the predecessor
n->next = p->next;
delete p;

}
}
}

20

Destroying a Linked List

The destructor must “delete” (deallocate) all
nodes used in the list

To do this, use list traversal to visit each node
For each node,

save the address of the next node in a pointer
delete the node

21

Inserting a Node into a Linked List

Requires two pointers:
pointer to point to the node after the insertion point
pointer to point to node before point of insertion

New node is inserted between the nodes pointed
at by these pointers

The before and after pointers move in tandem as
the list is traversed to find the insertion point

Like delete

23

(., . destructor

inked List functions: destructor

~NumberList: deallocates all the nodes

NumberList: :~NumberList () {

ListNode *nodePtr; // traversal ptr
ListNode *nextNode; // saves the next node

nodePtr = head; //start at head of list
while (nodePtr) {
nextNode = nodePtr->next; // save the next

delete nodePtr; // delete current
nodePtr = nextNode; // advance ptr

}

22

Inserting a Node into a Linked List

New node created, new position located:

previousNode nodePtr

5 ‘ } % 13 ‘ } 19 NULL
17 NULL

newNode

24

Inserting a Node into a Linked List

Insertion completed:

previousNode nodePtr
L — [—
5 13 19 NULL

list
head

17

newNode

25

Insert Node Algorithm

Insert node in a certain position

Create the new node, store the data in it
Use pointer p to traverse the list,
until it points to: node after insertion point or NULL
--as p is advancing, make n point to the node before
if p points to first node (p is head, n was not set)
make head point to new node
make new node point to p’s node
else
make n’s node point to new node
make new node point to p’s node

26

Linked List functions: insertNode

void NumberList::insertNode(double num) {

//make new node
ListNode *newNode = new ListNode;
newNode->value = num;

//set up pointers
ListNode *p = head;
ListNode *n;

//advance pointers through list to insertion point
while (p && p->value<num) {

n = p;
p = p->next;

//change pointers to include new node
if (p==head) {

head = newNode;

newNode->next = p;
} else {

n->next=newNode; 27
newNode->next = p;

}

Linked List functions:
copy constructor

Can’t copy src.head to head (then the lists would
share same nodes)

NumberList: :NumberList (const NumberList & src) {
head = NULL; // initialize empty list

// traverse src list, append its values to end of this list
ListNode *nodePtr;

for (nodePtr=src.head; nodePtr; nodePtr=nodePtr->next)

{

appendNode (nodePtr->value) ;

28

— |

Driver to demo NumberList

in ListDriver.cpp

// set up the list
NumberList list;
list.appendNode(2.5);
list.appendNode(7.9);

int main() {

list.appendNode(12.6);
list.displayList();

list.insertNode (8.5);
list.displayList();

RPENNDO
[, NE N e
NN
e e e e e
o UV o

list.insertNode (1.5);
list.displayList();

list.deleteNode (2.5);
list.displayList();

— |

Linked List variations

Doubly linked list

each node has two pointers, one to the next node
and one to the previous node

head points to first element, tail points to last.

can traverse list in reverse direction by starting at
the tail and using p=p->prev.

]
- oo
hgga NiLL

30

Linked List variations

Circular linked list

IR IIE s EEIE e EU

31

last cell’'s next pointer points to the first element.

Advantages of linked lists
(over arrays)

A linked list can easily grow or shrink in size.

The programmer doesn’t need to predict how many
values could be in the list.

The programmer doesn’t need to resize (copy) the
list when it reaches a certain capacity.

When a value is inserted into or deleted from a
linked list, none of the other nodes have to be
moved.

32

| Advantages of arrays
(over linked lists)

Arrays allow random access to elements: array]i]

linked lists allow only sequential access to elements
(must traverse list to get to i'th element).

Arrays do not require extra storage for “links”

linked lists are impractical for lists of characters or
booleans (pointer value is bigger than data value).

33

