Modeling with UML
Chapter 2, part 2

CS 4354
Summer Il 2015

Jill Seaman

Class diagrams

+ Used to describe the internal structure of the system.

+ Also used to describe the application domain.

* They describe the system in terms of
+Classes, an abstract representation of a set of objects
+Attributes, properties of the objects in a class
4+Operations that can be performed on objects in a class

4+Associations that can occur between objects in various classes

Class diagram for a simple watch

SimpleWatch

1 1 1 1
2] 17 12 |

| PushButton | | Display | | Battery | | Time

Boxes are classes

Lines show associations (between objects)
Numbers show how many objects must be
associated

This diagram does not show attributes or
operations

Class Diagrams: details

+ Classes are boxes composed of three compartments:
4+Top compartment: name
4+Center compartment: attributes
4+Bottom compartment: operations
* Lines between classes represent associations between classes
4+These can have role names and multiplicity constraints
+ Conventions:
4+Class names start with uppercase letter
+Attributes can (and should) have types specified

+ Attributes and Operations are sometimes omitted for simplicity

UML class diagram: classes that participate in the
ReportEmergency use case.

| reports 1
Incident
EmergencyReport | 1% |

*
incidentsGenerated

reportsGenerated| *

FieldOfficer Dispatcher
name:String 1 name:String 1
badgeNumber: Integer | author badgeNumber:Integer [.

Associations and links

+ A link is some connection between two objects.

+ Associations are relationships between classes and represent the
fact that links may (or do) exist between object instances.

4 Associations are noted with a line between the boxes.

+ Associations can be symmetrical (bidirectional) or asymmetrical
(unidirectional).

+Unidirectional association is indicated by using a line with an arrow
4+The arrow indicated in which direction navigation is supported.

4+If the line has no arrows, it’s assumed to be bidirectional.

Roles

» Each end of an association can be labeled by a role.

* Allows us to distinguish among the multiple associations
originating from a class.

+An employee can belong to a department and be the head of the
department.

* Roles clarify the purpose of the association.

« If there is no role name specified, you can use the name of the
class at the unspecified end.

* Previous diagram:

4+The FieldOfficers who generate reports are called authors (or the author of
the report).

Multiplicity

* Multiplicity: a set of integers labeling one end of an association

* Indicates how many links can originate from an instance of the
class at the other end of the association.

* This is generally an upper bound.

* * is shorthand for 0..n, called “many”

+ Most associations belong to one of these three types:
4+A one-to-one association has a multiplicity 1 on each end.

+A one-to-many association has a multiplicity 1 on one end and 0..n or 1..n
on the other.

4+A many-to-many association has a multiplicity 0..n or 1..n on both ends.

Example of a unidirectional association

Polygon - Point

This system supports navigation from the Polygon to the
Point, but not vice versa. Given a specific Polygon, it is
possible to query all Points that make up the Polygon.
But a given Point does not know which Polygon(s) it
belongs to.

*Note: the diagram in the book is wrong,
it has two arrows.

Examples of multiplicity

1
PoliceOfficer BadgeNumber
* *
CourseSection [— Student
1 *
FieldOfficer author report IncidentReport

A CourseSection contains many Students
A Student is enrolled in many CourseSections

How many reports can a FieldOfficer write?
How many authors of a report can there be?

Association class

+ Association class: an association with attributes and/or operations

* Depicted by a class symbol that contains the attributes and
operations and is connected to the association symbol with a
dashed line.

Allocates

role:String
notificationTime:Time

FieldOfficer

| Incident

name:String ! 1|
badgeNumber : Integer |FonooRECes :

1..*% incident

These kinds of classes
are not commonly used.

Aggregation and Composition

» Aggregation is a kind of association that specifies a whole/part
relationship between the aggregate (whole) and component part.

+Useful to denote hierarchical relationships (directory contains files)

4+Specified with an open diamond on the aggregate (whole) side.

« Composition is a special case of aggregation where the composite
object has sole responsibility for the life cycle of the component
parts.

4+The composite is responsible for the creation and destruction of the
component parts.

+An object may be part of only one composite.

4+ Specified with a closed diamond on the composite (whole) side.

Examples of a aggregations

1 * 1 *)
State K>—— County K>— Township
1 *
PoliceStation T>——| PoliceOfficer

| >—

Directory k>—| File |

Could any of these be composites?
- can a County belong to more than one State?
+can a County exist without a State?

Inheritance (or generalization)

+ Inheritance is a relationship between a base class and a more
refined class.

4+ the refined class has attributes and operations of its own, as well as the
attributes and operations of the base class (it inherits them).

PoliceOfficer ‘—'Abstract class: name in italics

name:String
badgeNumber:Integer

~

I | i
th initiator
FieldOfficer IM | Dispatcher 1

1
* reportsGenerated

| EmergencyReport } 1

* incidents

Incident
1..%
13 14
Inheritance example Example of a hierarchical file system
Doctor
Name
Phone #
Email * .
- Note the operations FileSystemElement
register () . .
de-register () Overridden operations are not shown 4
| | 1V | I
Hospital doctor General practitioner
Staff # Practice Directory File
Pager # Address

Associations are not attributes!

* Do not add an attribute to a class to represent the end of an
association already in the diagram

4+Among other problems, this is redundant

+ Associations in a diagram do NOT specify how they should be
implemented

* There are various ways to record in an implementation the fact that
one object is related to another.

4+0One class may contain a reference to an object it is associated with
4+0One class may contain a list of the objects it is associated with

4+The class may run a method/function to determine which objects it is
associated with.

Attributes are like associations

+ A Customer’s name attribute indicates that a Customer has a name
4+The name type might even be a Class, like a String
* The attribute types are usually small, simple classes

 The attribute usually has only one value, often its own copy

* In UML, the syntax of an attribute is:
+ visibility name : type = defaultValue
+visibility, type and defaultValue are optional

+visibility: + (public), # (protected), or - (private)

Operations

* An operation is a process that a class knows how to carry out

+Normally we don’t show the setters and getters, these can often be
inferred

* In UML, the syntax of an operation is:
+ visibility name (parameter-list) : return-type
+visibility: + (public), # (protected), or - (private)

+parameter-list contains comma separated parameters, with syntax like
attributes.

+ An operation is something that is invoked on an object (like a
signature or prototype), without a definition.

+So overriding definitions are generally not shown in the class diagram

Class diagram with an interface

<<interface>>

This diagram says that — insiye
objects:
a)Persons have a name
b)Guitarists have a name
c) Guitars have a name
. et srumer): o
d)MusicPlayers have a e N
name ‘

-name: Strng) void

el
-+ getNamel) -String + play() : void

[

Guitarist

~favoriteGuitr

Interface: labelled with <<interface>>
Implementors: point to the interface
using dashed, open arrow

1

20

When and how to use Class Diagrams

+ All the time.
+ Try to keep them simple, don’t use unnecessary notation.
4+ Especially if you are using them to model the application domain.

+ If you want to specify the implementation very specifically, you will use
more of the notation.

« Don’t draw models for every part of the program (at least not all in
great detail)

 Focus first on concepts, then add detail as the design process
continues.

21

Sequence Diagrams

* Represent the dynamic behavior of the system

* In UML, Interaction diagrams are models that describe how
groups of objects collaborate in some behavior.

* There are two kinds of Interaction diagrams:
+Sequence Diagrams

+Collaboration Diagrams (we will not talk about these).

* Both of these diagrams describe patterns of communication
among a set of interacting objects.

22

Sequence Diagrams: basics

* An object of a given class is shown as a box at the top of a dashed
vertical line.

+The dashed line is the lifeline, representing the object’s lifetime.
* An object interacts with another object by sending messages.
4+The message must be an operation of the receiving object.
4+The message is shown as an arrow between the lifelines of the object
» Arguments may be passed along with a message
4+they correspond to the parameters of the receiver’s operation.

+variables can be used to label the return value of the operation

23

Sequence diagram for a simple watch

i | :SimpleWatch | | :Display I | :Time |
:WatchUser I '
[]_PressButtonl() blinkHours() |
pressButtonl () blinkMinutes ()

pressButton2() | | incrementMinutes ()

II
|
|
L..I I refresh()
pressButtonslAnd2 i)
|
|
|

| commi tNewTime ()

L stopBlinking() |

e Actor and objects (not classes) across the top

e \ertical lines are lifelines of the objects

¢ | abeled arrows are messages sent to another
object

24

Objects, lifelines, and activation boxes

* Objects are represented with a box containing a name and the

Class the object is an instance of.

4 name : Class

4+ The underline indicates this is an object, not a class.

4+ Only one part (the name or the Class) is required to be specified.

* The dotted line below the object is the object’s lifeline

4 Vertical rectangle: an activation box representing the duration of an

operation.

4+ There must be a message pointing to the top of the box indicating the

operation the box corresponds to.

25

Messages and return arrows

* Messages are represented with a solid horizontal arrow from one
object’s lifeline to another.

4+ The call originates in the object at the source of the arrow
4+ It is received by the object at the end of the arrow
4 The order in which the messages occur is top to bottom on the page.

4+ The message must be labeled with the name, but can also include the
arguments, and a variable to label the operation’s result value.

* Return arrows are dashed arrows from the bottom of the activation
box back to the lifeline of the object that sent the initial message.

4 These are optional!

4+ They might be labeled with the return value (rather than using a variable)

26

Self-call and Create new

« Self-call (object calls one of its own methods)

+Message arrow back to original activation:

+ Creating new instances:

+“new Class()” message points to object’s box:

: MailSystem

new Mailbox()

: MailSystem

locateMailbox

: Mailbox

27

lteration and branching

 Notation for iteration (loops)
+Repeated message has an asterisk (*op3())
=(Optional: indicate basis of iteration in brackets: *[for all order lines] op3()
+ Notation for branching (alternatives)

+Conditional messages are marked with a guard (a condition inside square
brackets) OR

+Alternative messages are placed in a partitioned box labeled “alt”
=each partition has a guard
+May be easier to draw a separate diagram for each alternative

+ If you really want to model control flow, you should use an activity
diagram instead.

28

Branching and iteration in sequence diagrams.

Using alt box to show branching.

b c lA window from the user interface l
'l_' I_ Medical Receptionist /
Arrows with common [i>0]1 opl() 1 | % | P:Patientinfo | | D:MHCPMS-DB | | AS: Authorization|
start point are > | T
mutually exclusive | Viewinfo (PID) | I |
alternatives L | {f.%‘;n (Info, PID, | |
[i<=0] op2() | > [authorize (Info, | BIIB ﬁzt:TE)ID
| uib) l Info: kind of info
to be returned
~opal) - , authorization
| alt I
| [authorization OK] Patient info I
[+~ |
‘lr | N] | R 4
I [authorization fail] Error (no access) I
| | L [Je=mm . !
I | ' ! ’ f
| | | I :
| | |
29 30
‘ aﬂw an Order ‘an!)rggr Ling‘ a Stock Item ‘
1 o 0 I 1 1 . .
M R ! Sequence Diagrams: good practices
Object prepare I
gl
checl
Message Condition « The sequence diagram must be consistent with a given class
fteration [hasStock] diagram that fully specifies the classes and their operations
remove() | needsReorder:=
needsToReorder() . P, . .
4+ messages to an object’s lifeline must correspond to valid operations for
~=——Self-Call that object’s class; arguments must be specified, and return values
labeled.
Return

[needsReorder]
new

- — — —

L
|
|
1

X

>

Deletion

31

» Arguments should be defined somewhere in the diagram:

4+ A Name of another object in the diagram,
4+ An attribute of another object or
4+ A variable labeling the result of a previous message call.

+ Activation boxes should not overlap horizontally unless one box’s
message has called the other.

32

Sequence diagrams for concurrency/threads

» asynchronous messages are represented with a half-arrowhead.

4+ An asynchronous message does not block the caller, it continues
simultaneously.

4+ It is ok for activation boxes to overlap horizontally if one is not called from
another.

+ An asynchronous message can do one of three things:
4 Create a new thread, linking to the top of an activation
4+ Create a new object
4+ Communicate with a thread that is already running

+ Object deletion is shown with a large X.

* Note: GUIs are often asynchronous.

33

new

Activation

Asynchronous Message

a Transaction

/

[
I
I
|
[
[
|
|
|
[
I
I
|
|
|

U new

a Transaction
Coordinator

a firs!

=+

new | Transaction

Checker

new

a second
Transaction

all
done?

4

&N
other
"] processing
ok suppressed
~

Checker

~a

ok

beValid
N

all
done?

Self-call

object
deletes

itself \>_<

34

When and how to use Sequence Diagrams

* When you want to look at the behavior of several objects within a
single use case.

* When the order of the method calls in the code seems confusing.

* When you are trying to determine which class should contain a
given method.

4+to uncover the responsibilities of the classes in the class diagrams
+to discover even new classes

+ During Object-Oriented Design, sequence diagrams and the class
diagram are often developed in tandem.

35

