—

Week 2

Branching & Looping

Gaddis: Chapters 4 & 5

CS 5301
Spring 2016

Jill Seaman

—

« if and else

if/else

if (expression)
statementl

else
statement?2

double rate, monthlySales;

if (monthlySales > 3000)

rate = .025;
else
rate = .029;

* the else is optional:

if (expression)
statement

« if expression is true, statement1 is executed
« if expression is false, statement2 is executed

« if expression is true, statement is executed,
otherwise statement is skipped

3

Relational Operators

* relational operators (result is bool):

== Equal to (do not use =)
= Not equal to

> Greater than

< Lessthan

>= Greater than or equal to
<= Less than or equal to

- operator precedence:

int x=90;

int n=6;

»7 < 25

» 89 == x

»x % 2 1=0

»8 + 5 * 10 <=10 * n

* [o Which operation happens first? next? ...
+ - int x, y;
<> <=>= y -10 ...
== |= 5>y + 10 ..
bool tl1 = x > 7;
bool t2 = x * 5 >=y + 10; 2

Block or compound statement

* a set of statements inside braces:

{

int x;

cin >> x;

}

cout << “Enter a value for x: “ << endl;

* This allows us to use multiple statements when
by rule only one is allowed.

int number;

cin >> number;

if (number % 2 == 0)
cout << “0";

else

cout << “1";

number = number / 2;

cout << “Enter a number” << endl;

number = (number + 1) / 2;

—

if-else is a statement.

Nested if/else

It can occur as a

statement inside of another if-else statement.

if (testScore < 60)
elsgr?de s F This is equivalent to the code on
if (testScore < 70) the left. It is just formatted differently
grade = 'D';
else {
if (testScore < 80) if (testScore < 60)
grade = 'C' grade = 'F'
else { else if (testScore < 70)
if (testScore < 90) grade = 'D'
grade = 'B'; else if (testScore < 80)
else grade = 'C'
grade = 'A'; else if (testScore < 90)
} grade = 'B'
} else
} grade = 'A';
5
: . |switch (expression) {
SWItCh Stmt' case constant: statements
case constant: statements
default: statements
}

execution starts at the case labeled with the value of

the expression.

if no match, start at default
use break to exit switch (usually at end of statements)

cout <<
break;

cout <<
break;
cout <<

example switch (ch) {
case ‘a’:
case ‘A’:
case 'b’:
case ‘B’':
default:
}

“Invalid choice”;

“Option A”";

“Option B”;

—

Logical Operators

logical operators (values and results are bool):

I not la
&& and

is true when a is false
a && b istrue when both a and b are true
Il or a || b istrue when either a or b is true

examples T/F?:

operator precedence:

int x=6;

int y=10;

a. x ==5 && y <= 3

b. x>0 & x < 10

c. x ==10 || y == 10
d. x == 10 || x == 11
e. !(x >0)

f. (x> 6 || y == 10)

Input Validation

Input validation: inspecting input data to

determine whether it is acceptable

Invalid input is an error that should be treated as
an exceptional case.

The program can ask the user to re-enter the data
The program can exit with an error message

cout <<
cin >> score;

} else {
cout <<

}

“Enter a score between 0 and 100: ”;

if (score >= 0 && score <= 100) {
//do something with score here

"That is an invalid score.

\Il";

—

Compound assignment

More assignment statements

operator usage equivalent syntax:
+= X += e; X =X + e;
-= X -= e; X =X - €e;
*= X *= e; X =X * e;
/= X /= e; X =x/ e;

increment, decrement

operator usage equivalent syntax:
++ X++; ++x; |x = x + 1;
- X-=7; --x; |x =x - 1;

two kinds of loops

conditional loop

execute as long as a certain condition is true

count-controlled loop:

executes a specific number of times
initialize counter to zero (or other start value).
test counter to make sure it is less than count.

update counter during each iteration.

int number = 1;
while (number <= 3)

number = number + 1;

}

cout << “Done” << endl;

cout << “Student” << number << endl;
// or use number++

number is a “counter”,
it keeps track of the number of
times the loop has executed.

11

—

while

while loops

statement may be a
compound statement
(a block: {statements})

while (expression)
statement

if expression is true, statement is executed, repeat

Example:

int number;

cout << “Enter a number, 0 when finished: ”;
cin << number;

while (number != 0)

cout << “You entered ” << number << endl;
cout << “Enter the next number: ”;
cin >> number;

cout << “Done” << endl;

Enter a number, 0 when finished: 22
You entered 22

Enter the next number: 5

You entered 5

Enter the next number: 0 10
Done

output:

for loops

statement may be a
compound statement
(a block: {statements})

for:

for (exprl; expr2; expr3)
statement

exprl;

while (expr2) {
statement
expr3;

equivalent to:

}

Good for implementing count-controlled loops:

pattern: for (initialize; test; update)

for (int number = 1; number <= 3; number++)

{

cout << “Student” << number << endl;

cout << “Done” << endl;

do-while loops

statement may be a

compound statement

do while: |4
_statement (a block: {statements})
while (expression);

statement is executed.
if expression is true, then repeat

The test is at the end, statement ALWAYS
executes at least once.

int number;

do {
cout << “Enter a number, 0 when finished: ”;
cin << number;
cout << “You entered ” << number << endl;

} while (number != 0);

Keeping a running total (summing)

Example:

int days;
float total = 0.0; //Accumulator

cout << “How many days did you ride your bike? “;
cin >> days;

for (int i = 1; i <= days; i++)
{
float miles;
cout << “Enter the miles for day “ << i << *“: ";
cin >> miles;
total = total + miles;

}

cout << “Total miles ridden: “ << total << endl;

Sentinel controlled loop

Use a special value to signify end of the data:

float total = 0.0; //Accumulator
float miles;

cout << "Enter the miles you rode each day, ";
cout << "one number per line.\n";
cout << "Then enter -1 when finished.\n";
cin >> miles;
while (miles != -1)
total = total + miles;

cin >> miles;

cout << "Total miles ridden: " << total << endl;

Sentinel value must NOT be a valid value |,

Nested loops

When one loop appears in the body of another

For every iteration of the outer loop, we do all
the iterations of the inner loop

for (row=l; row<=3; row++) //outer
{
for (col=1l; col<=3; col++) //inner
cout << row * col << “ *;
cout << endl;

Output:

w N =
o BN
o o W

continue and break Statements
Use break to terminate execution of a loop

When used in a nested loop, terminates the
inner loop only.

Use continue to go to end of current loop and
prepare for next repetition

while, do-while loops: go immediately to the test,
repeat loop if test passes

for loop: immediately perform update step, then
test, then repeat loop if test passes

17

Sample Problem 2

In Programming Challenge 10 of Chapter 3 you
were asked to write a program that converts a Celsius
temperature to Fahrenheit. Modify that program so it
uses a loop to display a table of the Celsius
temperatures 0-20, and their Fahrenheit equivalents.

—

A software company sells a package that retails for
$99. Quantity discounts are given according to the
following table.

Sample Problem 1

Quantity Discount

10-19 20%
20-49 30%
50-99 40%

100 or more |50%

Write a program that asks for the number of units sold
and computes the total cost of the purchase.

Input Validation: Make sure the number of units 1igs
greater than 0. Otherwise output an error message.

Sample Problem 3

Write a program with a loop that lets the user enter a
series of integers. The user should enter —99 to signal
the end of the series. After all the numbers have been
entered, the program should display the largest and
smallest numbers entered.

Modify the program so that it also displays “ALL
POSITIVE” if all of the numbers are greater than zero.
Otherwise it should output “NOT all positive”.

20

