
1

C++ Programming on Linux 
Multi-file development

CS 2308 
Fall 2016 

Jill Seaman

2

Programs with Multiple Files
l How the code is usually split up 

★ Put main in its own file, with helper functions 
➡ acts like a driver  

★ Put each class declaration in a separate *.h file 
(called a header file) 

★ Put the implementation of each class (the member 
function definitions) in its own *.cpp file 

★ Each *.cpp file (even the driver) must #include 
(directly or indirectly) the header file (*.h) of each 
class that it uses or implements. 

★ NEVER  #include *.cpp files!!! 

3

Time class, separate files

cout << “Name” << name1 << endl;

#include <string>
using namespace std;

// models a 12 hour clock
class Time {

private:
    int hour;
    int minute;
    void addHour();
    
public:
    void setHour(int);
    void setMinute(int);
    int getHour() const;
    int getMinute() const;
    
    string display() const;
    void addMinute();
};

//Example using Time class
#include<iostream>
#include "Time.h"
using namespace std;

int main() {
    Time t;
    t.setHour(12);
    t.setMinute(58);
    cout << t.display() <<endl;
    t.addMinute();
    cout << t.display() << endl;
    t.addMinute();
    cout << t.display() << endl;
    return 0;
}

Time.h Driver.cpp

4

Time class, separate files

cout << “Name” << name1 << endl;

#include <iomanip>
#include <sstream>
#include "Time.h"
using namespace std;

void Time::setHour(int hr) {
  hour = hr;   
}

void Time::setMinute(int min) {
  minute = min;  
}

int Time::getHour() const {
  return hour;
}

int Time::getMinute() const {
  return minute;
}

void Time::addHour() { 
  if (hour == 12)
     hour = 1;
  else
     hour++;
} 
void Time::addMinute() {
  if (minute == 59) {
     minute = 0; 
     addHour();   
  } else
     minute++;
}
string Time::display() const {
   ostringstream sout;  
   sout.fill('0');      
   sout << hour << ":" 
        << setw(2) << minute;
   return sout.str();
}

Time.cpp



5

How to compile a multiple file 
program

l From the command line (files in either order): 
 

✴ The header file should not be listed.   
     (it is #included in *.cpp files) 

✴ one (and only one) file must have the main function 

• a.out is (by default) the executable file for the 
entire program.

[...]$g++ Time.cpp Driver.cpp  

[...]$ ./a.out
12:58
12:59
1:00

6

Renaming the executable file

l From the command line, use -o option: 

• now timetest is the name of the executable file 
for the entire program:

[...]$g++ Time.cpp Driver.cpp -o timetest  

[...]$ ./timetest
12:58
12:59
1:00

7

Separate Compilation
l If we make a change to Driver.cpp, we have to 

recompile it 
✴ but perhaps we would rather not have to recompile 

Time.cpp as well. 
l We can compile one file at a time, and link the 

results together later to make the executable. 
l Compiling without linking (use -c option): 
 

✴ -c option produces object files, with a .o extension 
(Time.o, Driver.o)

[...]$g++ -c Time.cpp  
[...]$g++ -c Driver.cpp  

8

Separate Compilation 

• The .o files must be linked together to produce 
the executable file (a.out): 

• Now if we change only Time.cpp, we can 
recompile just Time.cpp, and link the new .o file 
to the original Driver.o file: 

[...]$ g++ Time.o Driver.o
[...]$ ./a.out

[...]$g++ -c Time.cpp  
[...]$g++ Time.o Driver.o
[...]$./a.out  

Note there is no -c option used here

Links new Time.o to old Driver.o, 
making a new a.out

Produces new Time.o



9

Make

l Make is a utility that manages (separate) 
compilation of large groups of source files. 

l After the first time a project is compiled, make 
re-compiles only the changed files (and the 
files depending on the changed files). 

l These dependencies are defined by rules 
contained in a makefile. 

l The rules are defined and managed by humans 
(programmers).

10

Make

l Rule format: 
 

l target is a filename (or an action/goal name) 
l In order to produce the target file, the 

prerequisite files must exist and be up to date 
(if not, make finds a rule to produce them). 

l An example rule: 

target: [prerequisite files]
<tab>[command to execute]

Time.o: Time.cpp Time.h
g++ -c Time.cpp

If Time.o does not exist, OR if 
Time.cpp or Time.h is newer than Time.o, 
(re)produce Time.o using this command

11

Makefile

l The makefile is a text file named “makefile”: 
 
 
 
 
 
 
 

l Note: “timetest” is the name of the executable 
file in this example (not a.out).

cout << “Name” << name1 << endl;

#makefile

timeTest: Driver.o Time.o
g++ Driver.o Time.o -o timetest

Driver.o: Driver.cpp Time.h
g++ -c Driver.cpp

Time.o: Time.cpp Time.h
g++ -c Time.cpp

Do not copy/paste 
this to your makefile, 

Don’t forget the tabs 

Don’t call it makefile.txt

You can use nano 
to create this file

12

Make

l running make from the linux/unix prompt with no 
arguments executes first rule in the makefile. 
✴ This may trigger execution of other rules. 

l executing the make command followed by a 
target executes the rule for that target. 

[...]$ make

[...]$ make Time.o 



13

Compile class + driver using make

• Make: 
 
 
 
Execute: 

• Modify Driver.cpp in nano, make again:

[...]$ make
g++ -c Driver.cpp
g++ -c Time.cpp
g++ Driver.o Time.o -o timeTest

[...]$ ./timeTest
12:58
12:59
1:00

[...]$ make
g++ -c Driver.cpp
g++ Driver.o Time.o -o timeTest

This creates files 
Driver.o, Time.o, and 
timeTest

It knows the timestamp 
of Driver.cpp is newer than 
Driver.o, so it fires the 
rule to make Driver.o again


