
1

Pointers to Structs and Objects

CS 2308
Fall 2016

Jill Seaman

Sections: 11.9 & 13.3

2

11.9: Pointers to Structures

l Given the following Structure:

l We can define a pointer to a structure

l Now studentPtr points to the s1 structure. 

struct Student {
 string name; // Student’s name
 int idNum; // Student ID number
 int creditHours; // Credit hours enrolled
 float gpa; // Current GPA
};

Student s1 = {“Jane Doe”, 12345, 15, 3.3};
Student *studentPtr;
studentPtr = &s1;

3

Pointers to Structures

l How to access a member through the pointer?

l dot operator has higher precedence than the
dereferencing operator, so:

l You must dereference the pointer first: 

Student s1 = {“Jane Doe”, 12345, 15, 3.3};
Student *studentPtr;
studentPtr = &s1;

cout << *studentPtr.name << end; // ERROR

*studentPtr.name *(studentPtr.name) is equivalent to

cout << (*studentPtr).name << end; // WORKS

studentPtr is not a structure!

4

structure pointer operator: ->

l Due to the awkwardness of the pointer notation,  
C provides an operator for dereferencing structure
pointers:

l The structure pointer operator is the hyphen (-)
followed by the greater than (>), like an arrow.

l In summary: 

studentPtr->name (*studentPtr).nameis equivalent to

sptr->name // a member of the structure sptr points to

s1.name // a member of structure s1

5

Structure Pointer: example
l Function to input a student, using a ptr to struct

l Call:

void inputStudent(Student *s) {
 cout << “Enter Student name: “;
 getline(cin,s->name);

 cout << “Enter studentID: “;
 cin >> s->idNum;

 cout << “Enter credit hours: “;
 cin >> s->creditHours;

 cout << “Enter GPA: “;
 cin >> s->gpa;
}

cout << “Name” << name1 << endl;

Student s1;
inputStudent(&s1);
cout << s1.name << endl;
...

Or you could use a
reference parameter.
I’m using a pointer to
give an example of
using the -> syntax.

6

Dynamically Allocating Structures

l Structures can be dynamically allocated with new:

l Arrays of structures can also be dynamically
allocated:

Student *sptr;
sptr = new Student;

sptr->name = “Jane Doe”;
sptr->idNum = 12345;
...
delete sptr;

Student *sptr;
sptr = new Student[100];
sptr[0].name = “John Deer”;
...
delete [] sptr;

If a pointer points to an array,
you can use square brackets
with it, as if it were an array.
Do not use -> here.

7

in 13.3: Pointers to Objects

l We can define pointers to objects, just like
pointers to structures

l We can access public members of the object
using the structure pointer operator (->)

Time t1(12,20);
Time *timePtr;
timePtr = &t1;

timePtr->addMinute();
cout << timePtr->display() << endl;

Output:
12:21

8

Dynamically Allocating Objects

l Objects can be dynamically allocated with new:

l Arrays of objects can also be dynamically
allocated:

Time *tptr;
tptr = new Time(12,20);

...
delete tptr;

Time *tptr;
tptr = new Time[100];
tptr[0].addMinute();
...
delete [] tptr;

You can pass arguments
to a constructor using
this syntax.

It uses the default constructor
to initialize the elements in the
new array.
Initializer lists are not allowed.

