—

Pointers to Structs and Objects

Sections: 11.9 & 13.3

CS 2308
Fall 2016

Jill Seaman

Pointers to Structures

How to access a member through the pointer?

Student *studentPtr;
studentPtr = &sl;

cout << *studentPtr.name << end;

Student sl = {“Jane Doe”, 12345, 15, 3.3};

// ERROR

dereferencing operator, so:

*studentPtr.name is equivalent to

dot operator has higher precedence than the

*(studentPtr.name)

You must dereference the pointer first:

’cout << (*studentPtr).name << end;

// WORKS

—

Given the following Structure:

11.9: Pointers to Structures

struct Student {

string name; // Student’s name

int idNum; // Student ID number

int creditHours; // Credit hours enrolled
float gpa; // Current GPA

}i

We can define a pointer to a structure

Student sl = {“Jane Doe”, 12345, 15, 3.3};
Student *studentPtr;
studentPtr = &sl;

Now studentPtr points to the s1 structure.

\

—

structure pointer operator: ->

pointers:

studentPtr->name |s equivalent to (*studentPtr).name

followed by the greater than (>), like an arrow.
In summary:

sl.name // a member of structure sl

4

Due to the awkwardness of the pointer notation,
C provides an operator for dereferencing structure

The structure pointer operator is the hyphen (-)

sptr->name // a member of the structure sptr points to

—

Function to input a student, using a ptr to struct

Structure Pointer: example

void inputStudent(Student *s) {
cout << “Enter Student name: *“;
getline(cin,s->name);

cout << “Enter studentID: “;
cin >> s->idNum;

cout << “Enter credit hours: “;
cin >> s->creditHours;

cout << “Enter GPA: “;
cin >> s->gpa;

}

Call: Student s1;
inputStudent (&sl);
cout << sl.name << endl;

Dynamically Allocating Structures

Structures can be dynamically allocated with new:

Student *sptr;
sptr = new Student;

sptr->name = “Jane Doe”;
sptr->idNum = 12345;

delete sptr;

Arrays of structures can also be dynamically
allocated:

Student *sptr;
sptr = new Student[100];
sptr[0].name = “John Deer”;

delete [] sptr; °

in 13.3: Pointers to Objects

We can define pointers to objects, just like

pointers to structures
Time t1(12,20);

Time *timePtr;
timePtr = &tl;

We can access public members of the object
using the structure pointer operator (->)

timePtr->addMinute();
cout << timePtr->display() << endl;

Output:
12:21

Dynamically Allocating Objects

Objects can be dynamically allocated with new:

Time *tptr; . You can pass arguments
tptr = new Time(12,20); < to a constructor using
this syntax.

delete tptr;

Arrays of objects can also be dynamically

allocated:

Time *tptr; It uses the default constructor
tptr = new Time[100]; «——— [toinitialize the elements in the
tptr[0].addMinute(); new array.

delete [] tptr; Initializer lists are not allowed.

