
1

Week 2
Branching & Looping

Gaddis: Chapters 4 & 5

CS 5301
Fall 2017

Jill Seaman

2

Relational Operators
l relational operators (result is bool):

l operator precedence:

== Equal to (do not use =)
!= Not equal to
> Greater than
< Less than
>= Greater than or equal to
<= Less than or equal to

int x=90;
int n=6;
‣ 7 < 25
‣ 89 == x
‣ x % 2 != 0
‣ 8 + 5 * 10 <=10 * n

* / %
+ -
< > <= >=
== !=
=

int x, y;

... x < y -10 ...

... x * 5 >= y + 10 …

bool t1 = x > 7;
bool t2 = x * 5 >= y + 10;

Which operation happens first? next? …

3

 if/else
l if and else

l if expression is true, statement1 is executed
l if expression is false, statement2 is executed

l the else is optional:
l if expression is true, statement is executed,

otherwise statement is skipped

if (expression)
 statement1
else
 statement2

if (expression)
 statement

double rate, monthlySales;
. . .
if (monthlySales > 3000)
 rate = .025;
else
 rate = .029;

4

Block or compound statement
l a set of statements inside braces: 
 
 

l This allows us to use multiple statements when
by rule only one is allowed.

{
 int x;
 cout << “Enter a value for x: “ << endl;
 cin >> x;
}

int number;
cout << “Enter a number” << endl;
cin >> number;
if (number % 2 == 0)
{
 number = number / 2;
 cout << “0”;
}
else
{
 number = (number + 1) / 2;
 cout << “1”;
}

5

Nested if/else
l if-else is a statement. It can occur as a

statement inside of another if-else statement.

if (testScore < 60)
 grade = 'F';
else {
 if (testScore < 70)
 grade = 'D';
 else {
 if (testScore < 80)
 grade = 'C';
 else {
 if (testScore < 90)
 grade = 'B';
 else
 grade = 'A';
 }
 }
 }

if (testScore < 60)
 grade = 'F';
else if (testScore < 70)
 grade = 'D';
else if (testScore < 80)
 grade = 'C';
else if (testScore < 90)
 grade = 'B';
else
 grade = 'A';

This is equivalent to the code on
the left. It is just formatted differently

6

Logical Operators
l logical operators (values and results are bool):

l operator precedence:

l examples T/F?:

! not
&& and
|| or

int x=6;
int y=10;
a. x == 5 && y <= 3
b. x > 0 && x < 10
c. x == 10 || y == 10
d. x == 10 || x == 11
e. !(x > 0)
f. !(x > 6 || y == 10)

!
* / %
+ -
< > <= >=
== !=
&&
||

 !a
a && b
a || b

is true when a is false
is true when both a and b are true
is true when either a or b is true

7

switch statement
l switch stmt:

- execution starts at the case labeled with the value of
the expression.

- if no match, start at default
- use break to exit switch (usually at end of statements)

l example: switch (ch) {
 case ‘a’:
 case ‘A’: cout << “Option A”;
 break;
 case ‘b’:
 case ‘B’: cout << “Option B”;
 break;
 default: cout << “Invalid choice”;
}

switch (expression) {
 case constant: statements
 ...
 case constant: statements
 default: statements
}

8

Input Validation
l Input validation: inspecting input data to

determine whether it is acceptable
l Invalid input is an error that should be treated as

an exceptional case.
➡ The program can ask the user to re-enter the data
➡ The program can exit with an error message
cout << “Enter a score between 0 and 100: ”;
cin >> score;
if (score < 0 || score > 100) {
 cout << "That is an invalid score.” << endl;
} else {
 //do something with score here
}

9

More assignment statements
l Compound assignment

l increment, decrement

operator usage equivalent syntax:
+= x += e; x = x + e;

-= x -= e; x = x - e;

*= x *= e; x = x * e;

/= x /= e; x = x / e;

operator usage equivalent syntax:

++ x++; ++x; x = x + 1;

-- x--; --x; x = x - 1;

10

while loops
l while

★ if expression is true, statement is executed, repeat
l Example:

l output:

while (expression)
 statement

statement may be a
compound statement
(a block: {statements})

int number;
cout << “Enter a number, 0 when finished: ”;
cin << number;
while (number != 0)
{
 cout << “You entered ” << number << endl;
 cout << “Enter the next number: ”;
 cin >> number;
}
cout << “Done” << endl;

Enter a number, 0 when finished: 22
You entered 22
Enter the next number: 5
You entered 5
Enter the next number: 0
Done

11

two kinds of loops
l conditional loop

★ execute as long as a certain condition is true
l count-controlled loop:

★ executes a specific number of times
- initialize counter to zero (or other start value).
- test counter to make sure it is less than count.
- update counter during each iteration.

int number = 1;
while (number <= 3)
{
 cout << “Student” << number << endl;
 number = number + 1; // or use number++
}
cout << “Done” << endl;

number is a “counter”,
it keeps track of the number of
times the loop has executed.

12

for loops
l for:

★ equivalent to:

l Good for implementing count-controlled loops:

for (expr1; expr2; expr3)
 statement

statement may be a
compound statement
(a block: {statements})

expr1;
while (expr2) {
 statement
 expr3;
}

for (int number = 1; number <= 3; number++)
{
 cout << “Student” << number << endl;
}
cout << “Done” << endl;

pattern: for (initialize; test; update)

13

do-while loops
l do while:

l The test is at the end, statement ALWAYS
executes at least once.

do
 statement
while (expression);

statement may be a
compound statement
(a block: {statements})

statement is executed.
if expression is true, then repeat

int number;
do {
 cout << “Enter a number, 0 when finished: ”;
 cin << number;
 cout << “You entered ” << number << endl;
} while (number != 0);

14

Keeping a running total (summing)
l Example:

int days;
float total = 0.0; //Accumulator

cout << “How many days did you ride your bike? “;
cin >> days;

for (int i = 1; i <= days; i++)
{
 float miles;
 cout << “Enter the miles for day “ << i << “: ”;
 cin >> miles;
 total = total + miles;
}

cout << “Total miles ridden: “ << total << endl;

15

Sentinel controlled loop
l Use a special value to signify end of the data:

l Sentinel value must NOT be a valid value

float total = 0.0; //Accumulator
float miles;

cout << "Enter the miles you rode each day, ";
cout << "one number per line.\n";
cout << "Then enter -1 when finished.\n";

cin >> miles;

while (miles != -1)
{
 total = total + miles;
 cin >> miles;
}

cout << "Total miles ridden: " << total << endl;

16

Nested loops
l When one loop appears in the body of another
l For every iteration of the outer loop, we do all

the iterations of the inner loop
for (row=1; row<=3; row++) //outer
{
 for (col=1; col<=3; col++) //inner
 cout << row * col << “ “;
 cout << endl;
}

1 2 3
2 4 6
3 6 9

Output:

17

continue and break Statements
l Use break to terminate execution of a loop
l When used in a nested loop, terminates the

inner loop only.

l Use continue to go to end of current loop and
prepare for next repetition

l while, do-while loops: go immediately to the test,
repeat loop if test passes

l for loop: immediately perform update step, then
test, then repeat loop if test passes

18

Sample Problem

l A software company sells a package that retails for
$99. Quantity discounts are given according to the
following table.  
 
 
 
 
 
 
Write a program that asks for the number of units sold
and computes the total cost of the purchase.

l Input Validation: Make sure the number of units is
greater than 0. Otherwise output an error message.

Quantity Discount
10-19 20%
20-49 30%
50-99 40%
100 or more 50%

