(— Week 3

Functions & Arrays

Gaddis: Chapters 6 and 7

CS 5301
Fall 2017

Jill Seaman

Function Call, Return Statement

Function call expression

’identifier (expressionl, . . .) ‘

Causes control flow to enter body of function named
identifier.

parameter1 is initialized to the value of expression1,
and so on for each parameter

expression1 is called an argument.
Return statement: ’return expression; ‘

inside a function, causes function to stop, return
control to caller.

The value of the return expression becomes the
value of the function call

Function definition pattern:

datatype identifier (parameterl, parameter2, ...) {
statements . . .

}

Function Definitions

Where a parameter is:
’ datatype identifier ‘

datatype: the type of data returned by the function.

identifier: the name by which it is possible to call the
function.

parameters: Like a regular variable declaration, act
within the function as a regular local variable. Allow
passing arguments to the function when it is called.

statements: the function's body, executed when called.

Example: Function

// function example
#include <iostream>
using namespace std;
int addition (int a, int b) {
int result;
result=a+b;
return result;
}
int main () {
int z;
z = addition (5,3);
cout << "The result is " << z <<endl;

}

What are the parameters? arguments?
What is the value of: addition (5,3)7?
What is the output?

|

—

Void function

A function that returns no value:

void printAddition (int a, int b) {
int result;
result=a+b;
cout << “the answer is: “ << result << endl;

}

use void as the return type.

the function call is now a statement (it does not
have a value)

int main () {
printAddition (5,3);

}

Arguments passed by value

Pass by value: when an argument is passed to a
function, its value is copied into the parameter.

It is implemented using variable initialization (in
the background):

int param = argument;

Changes to the parameter in the function body
do not affect the value of the argument in the
call

The parameter and the argument are stored in
separate variables; separate locations in
memory.

—

Prototypes

In a program, function definitions must occur
before any calls to that function

To override this requirement, place a prototype of
the function before the call.

The pattern for a prototype:

’datatype identifier (typel, type2, ...); ‘

the function header without the body (parameter
names are optional).

Example: Pass by Value

#include <iostream> Output:

using namespace std; number is 12
myValue is 200

Back in main, number is 12

void changeMe(int);

int main() {
int number = 12;
cout << "number is " << number << endl;

changeMe (number) ;
cout << "Back in mai number is " << number << endl;
return 0;

’mtnwvmue=numben

}

void changeMe(int myValue) ({
myValue = 200;
cout << "myValue is " << myValue << endl;

}

changeMe failed to change the argument!

(..

arameter passing by Reference

Pass by reference: when an argument is passed
to a function, the function has direct access to
the original argument (no copying).

Pass by reference in C++ is implemented using
a reference parameter, which has an ampersand
(&) in front of it:

void changeMe (int &myValue);

A reference parameter acts as an alias to its
argument, it is NOT a separate storage location.

Changes to the parameter in the function DO
affect the value of the argument

Example: Boolean functions

bool isEven(int number) {
bool status;
if (number % 2 == 0)
status = true; // number is even if there is no remainder.
else
status = false; // Otherwise, the number is odd.
return status;

} (‘\ﬂ Returns a true or false

int main() {
int val;
cout << "Enter an integer and I will tell you "
cout << "if it is even or odd: "
cin >> val;

Function call used as a
boolean expression

if (isEven(val))
cout << val << " is even.\n";
else
cout << val << " is odd.\n";

—

Example: Pass by Reference

#include <iostream> Output:

using namespace std; number is 12
myValue is 200

Back in main, number is 200

void changeMe(int &);

int main() {
int number = 12;
cout << "number is " << number << endl;
changeMe (number) ;
cout << "Back im in, number is " << number << endl;
return 0;

} myValue is an alias for number,
only one shared variable

void changeMe(int &myValue) {
myValue = 200;
cout << "myValue is " << myValue << endl;

}

Arrays

An array is:
A series of elements of the same type
placed in contiguous memory locations

that can be individually referenced by adding an
index to a unique identifier.

To declare an array:

’datatype identifier [size]; ‘ ’int numbers([5];

datatype is the type of the elements
identifier is the name of the array
size is the number of elements (constant)”

—

Array initialization

To specify contents of the array in the definition:

| float scores[3] = {86.5, 92.1, 77.5}; \

creates an array of size 3 containing the
specified values.

’float scores[10] = {86.5, 92.1, 77.5}; ‘

creates an array containing the specified values
followed by 7 zeros (partial initialization).

|float scores[] = {86.5, 92.1, 77.5}; \

creates an array of size 3 containing the
specified values (size is determined from list).

Arrays: operations

Valid operations over entire arrays:
function call: myFunc (scores,x);
Invalid operations over entire arrays:
assignment: arrayl = array2;
comparison: arrayl == array2
output: cout << arrayil;
input: cin >> array2;

Must do these element by element, probably
using a for loop

15

—

Array access

to access the value of any of the elements of the
array individually as if it was a normal variable:

’scores[Z] = 89.5;

scores[2] is a variable of type float

use it anywhere a float variable can be used.
rules about subscripts:

always start at O, last subscript is size-1

must have type int but can be any expression

watchout: square brackets are used both to
declare the array and to access elements. *

Processing arrays

Assignment: copy one array to another

const int SIZE = 4;
int oldvalues[SIZE] = {10, 100, 200, 300};
int newValues[SIZE];

for (int count = 0; count < SIZE; count++)
newValues[count] = oldValues[count];

Output: displaying the contents of an array

const int SIZE = 5;
int numbers[SIZE] = {10, 20, 30, 40, 50};

for (int count = 0; count < SIZE; count++)
cout << numbers[count] << endl; 16

—

Processing arrays

Summing and averaging of an array of scores:

const int NUM_SCORES = 8;
int scores[NUM_SCORES];
cout << “Enter the “ << NUM_SCORES
<< “ programming assignment scores: “ << endl;

for (int i=0; i < NUM_SCORES; it++) {
cin >> scores[i];

}

int total = 0; //initialize accumulator
for (int i=0; i < NUM_SCORES; i++) {
total = total + scores[i];
}
double average =
static_cast<double>(total) / NUM_SCORES;

Comparing arrays

Equality: Are the arrays exactly the same?
Must examine entire array to determine true
Only one counter-example proves it is false

const int SIZE = 5;
int firstArray[SIZE] = {10, 100, 200, 300};
int secondArray[SIZE] = {10, 100, 201, 300};

if (firstArray[count] != secondArray[count])
arraysEqual=false;

if (arraysEqual)
cout << “The arrays are equal” << endl;
else
cout << “The arrays are not equal” << endl; 19

bool arraysEqual = true; //assume true, until proven false

for (int count = 0; count < SIZE && arraysEqual; count++)

| Finding highest and lowest

values in arrays

Maximum: Need to track the highest value seen
so far. Start with highest = first element.

const int SIZE = 5;
int array[SIZE] = {10, 100, 200, 30};

int highest = array[0];
for (int count = 1; count < SIZE; count++)
if (array[count] > highest)
highest = array[count];

cout << “The maximum value is ” << highest << endl;

L

Arrays as parameters

In the function definition, the parameter type is a
variable name with an empty set of brackets: []

Do NOT give a size for the array inside []

void showArray(int values[], int size)

In the prototype, empty brackets go after the
element datatype.

void showArray(int[], int)

In the function call, use the variable name for the
entire array.

showArray (numbers, 5)

An array is always passed by reference.

Example: Partially filled arrays

int sumList (int list[], int size) {//sums elements in list array
int total = 0;
for (int i=0; i < size; i++) { sums from position 0 to size-1,
total = total + list[i]; even if the array is bigger.
return total;

}
const int CAPACITY = 100;

int main() {

int scores[CAPACITY];
int count = 0; //tracks number of elems in array
cout << “How many programming assignment scores?” << endl;
cin >> count;
if (count <= 100) {

cout << “Enter the scores, one per line: ” << endl;

for (int i=0; i<count; i++)

cin >> scores[i];

int sum = sumList(scores,count); pass count, not CAPACITY

cout << “average: “<< sum/static_cast<double>(count) <<endl;
} else

cout << “There can be at most 100 scores.” << endl; 21

