
!1

Introduction to Classes

Unit 4

Chapter 13

CS 2308
Spring 2019

Jill Seaman
!2

13.2 The Class

! A class in C++ is similar to a structure.
- It allows you to define a new (composite) data type.

! A class contains the following:
- variables AND
- functions (these manipulate the variables)

! These are called members
! A class declaration defines the member

variables and the prototypes of the member
functions.

!3

Example class declaration
// models a 12 hour clock

class Time //new data type
{
 private:
 int hour;
 int minute;
 void addHour();

 public:
 void setHour(int);
 void setMinute(int);
 int getHour() const;
 int getMinute() const;

 string display() const;
 void addMinute();
};

!4

Access specifiers
! Used to control access to members of the class
- public members can be accessed by functions inside

AND outside of the class
- private members can be called or accessed only from

functions inside the class (the class’s member functions) 
Private is the default setting for class members.

! Member variables are declared private, to hide
their definitions from outside the class.

! Certain functions are declared public to provide
controlled access to the hidden/private data.
- these public functions form the interface to the class

!5

Using const with member functions

! const appearing after the parentheses in a
member function declaration specifies that the
function will not change any data inside the
object.

! These member functions won’t change hour or
minute.

! Other functions may or may not change them.
! using const here is optional.

int getHour() const;
int getMinute() const;
string display() const;

!6

Accessors and mutators

! Accessor functions
- return a value from the object (without changing it)
- can be defined using const.
- a “getter” is a special accessor function that returns

the value of one member variable
! Mutator functions
- Change the value(s) of member variable(s).
- a “setter” is a special mutator function that changes

(sets) the value of one member variable. 

!7

Defining member functions
! Member function definitions usually occur after

of the class definition.
! The name of each function is preceded by the

class name and scope resolution operator (::)

void Time::setHour(int hr) {
 hour = hr;
}

hour appears to be undefined,
but it is a member variable of the Time class

!8

Defining Member Functions
void Time::setHour(int hr) {
 hour = hr; // hour is a member var
}
void Time::setMinute(int min) {
 minute = min; // minute is a member var
}
int Time::getHour() const {
 return hour;
}
int Time::getMinute() const {
 return minute;
}

void Time::addHour() { // a private member func
 if (hour == 12)
 hour = 1;
 else
 hour++;
}

!9

Defining Member Functions
void Time::addMinute() {
 if (minute == 59) {
 minute = 0;
 addHour(); // call to private member func
 } else
 minute++;
}

string Time::display() const {
 // returns time in string formatted to hh:mm
 string hourString = to_string(hour);
 string minuteString = to_string(minute);
 if (minuteString.length()==1)
 minuteString = "0" + minuteString;
 return hourString + ":" + minuteString;
}

to_string(int): converts an int to string.
string.length(): returns number of chars in string.
str1+str2: returns a new string formed by adding chars of str1
followed by chars of str2.

!10

13.3 Defining an instance of the
class

! ClassName variable;  

! This defines t1 to contain an object of type Time
(with hour and minute members).

! Then access public members of class with dot
notation: 
 
 

Time t1;

t1.setHour(3);
t1.setMinute(41);
t1.addMinute();

calls to member functions

like declaring a structure variable

!11

Using the Time class
int main() {
 Time t;
 t.setHour(12);
 t.setMinute(58);
 cout << t.display() <<endl;
 t.addMinute();
 cout << t.display() << endl;
 t.addMinute();
 cout << t.display() << endl;
}

12:58
12:59
1:00

Output: Note: the program includes the
code from slides 3, 8, 9, and 11
(and any #includes needed).
See AllTime.cpp in timedemo.zip

!12

13.1 Procedural Programming
A style of programming in which:
! Data is stored in variables

- Perhaps using arrays and structs.
! Program is a collection of functions that perform

operations over the variables
- Good example: PA2 Music Library program

! Variables are passed to the functions as
arguments
• Focus is on organizing and implementing the

functions.

!13

Procedural Programming: Problem
! It is not uncommon for
- program specifications to change
- representations of data to be changed for

internal improvements.
! As procedural programs become larger and

more complex, it is difficult to make changes.
- A change to a given variable or data structure

requires changes to all of the functions operating
over that variable or data structure.

! Example: use vectors or linked lists instead of
arrays for the inventory !14

Object Oriented Programming:
Solution

! An object (instance of a class) contains
- data (like fields of a struct)
- functions that operate over that data

! Code outside the object can access the data
only through the object’s functions.

! If the representation of the data inside the object
needs to change:

- Only the object’s function definitions must be
redefined to adapt to the changes.

- The code outside the object does not need to
change, it accesses the object in the same way.

!15

Object Oriented Programming:
Concepts

! Encapsulation: combining data and code into a
single object.

! Data hiding (or Information hiding) is the
ability to hide the details of data representation
from the code outside of the object.

! Interface: the mechanism that code outside the
object uses to interact with the object.

- The object’s (public) functions
- Specifically, outside code needs to “know” only

the function prototypes (not the function bodies).
!16

Object Oriented Programming:
Real World Example

! In order to drive a car, you need to understand
only its interface:

- ignition switch
- gas pedal, brake pedal
- steering wheel
- gear shifter

! You don’t need to understand how the steering
works internally.

! You can operate any car with the same interface.

!17

Classes and Objects
! A class is like a blueprint for an object.
- a detailed description of an object.
- used to make many objects.
- these objects are called instances of the class.

! For example, the string class in C++.
- Make an instance (or two): 

- use the object’s functions to work with the objects:

string cityName1=“Austin”, cityName2=“Dallas”;

int size = cityName1.length();

cityName2.append(” Cowboys“); !18

13.5 Separating Specs from
Implementation

! Class declarations are usually stored in their
own “header files” (Time.h)
- called the specification file

! Member function definitions are stored in a
separate file (Time.cpp)
- called the class implementation file

! Main function and standalone functions go in a
third file (Driver.cpp)

See the Multi-file
Development Lecture
and timedemo.zip

!19

13.6 Inline member functions
• Member functions can be defined
- after the class declaration (normally) OR
- inline: in class declaration
• Inline is appropriate for short function bodies:

class Time {
 private:
 int hour;
 int minute;
 void addHour(); // not inlined
 public:
 int getHour() const { return hour; }
 int getMinute() const { return minute; }
 void setHour(int h) { hour = h; }
 void setMinute(int m) { minute = m; }
 string display() const; //not inlined
 void addMinute(); //not inlined
};

!20

13.7 Constructors

• A constructor is a member function with the same
name as the class.
• It is called automatically when an object is created
• It performs initialization of the new object
• It has no return type  

class Time
{
 private:
 int hour;
 int minute;
 void addHour();
 public:
 Time(); // Constructor prototype
...

!21

Constructor Definition
! Note no return type, prefixed with Class::

// file Time.cpp
#include <sstream>
#include <iomanip>
using namespace std;

#include "Time.h"

Time::Time() { // initializes hour and minute
 hour = 12;
 minute = 0;
}
void Time::setHour(int hr) {
 hour = hr;
}
void Time::setMinute(int min) {
 minute = min;
} !22

Constructor “call”
! From main:

//using Time class (Driver.cpp)
#include<iostream>
#include "time.h"
using namespace std;

int main() {
 Time t; //Constructor called implicitly here

 cout << t.display() <<endl;
 t.addMinute();
 cout << t.display() << endl;
}

12:00
12:01

Output:

!23

13.8 Passing Arguments to
Constructors

• To create a constructor that takes arguments:
- Indicate the parameters in the prototype:  
 
 
 

- Use the parameters in the definition:  
Time::Time(int hr, int min) {
 hour = hr;
 minute = min;
}

class Time
{
 public:
 Time(int,int); // Constructor prototype
...

!24

Passing Arguments to Constructors

• Pass arguments to the constructor when you create
an object (in the declaration):

int main() {
 Time t (12, 59);
 cout << t.display() <<endl;
}

12:59
Output:

!25

Default Constructors

! A default constructor is a constructor that takes
no arguments (like Time()).

! If you write a class with NO constructors, the
compiler will include a default constructor for
you, one that does (almost) nothing.

! The original version of the Time class did not
define a constructor, so the compiler provided a
constructor for it.

!26

Classes with no Default Constructor

• When all of a class's constructors require arguments,
then the class has NO default constructor.
- C++ will NOT automatically generate a constructor

with no arguments unless your class has NO
constructors at all. 

• When there are constructors, but no default
constructor, you must pass the required arguments to
the constructor when creating an object.

!27

13.9 Destructors

• Member function that is automatically called when an
object is destroyed.
• Destructor name is ~classname, e.g., ~Time
• Has no return type; takes no arguments.
• Only one destructor per class 

(it cannot be overloaded, cannot take arguments).
• If the class dynamically allocates memory, the

destructor should release (delete) it

!28

Destructors

• Example: Inventory class, with a dynamically
allocated array of part numbers:

class Inventory {
 private:
 String *parts; //dynamically allocated array
 int count;
 public:
 Inventory (int);
 ~Inventory(); //destructor
 bool addPart(string);
 int removePart(string);
 void showInventory();
};

Inventory.h

!29

Destructors

• Example: member function definitions for constructor
and destructor:
#include "Inventory.h"

Inventory::Inventory(int size){
 parts = new String[size]; //dynamic allocation
 count = 0;
}

Inventory::~Inventory() {
 delete [] parts;
}

Inventory.cpp

!30

Destructors

• Example: driver creates and destroys an Inventory 

• When is an object destroyed?
- at the end of its scope (regular variables) OR
- when it is deleted (if it’s dynamically allocated)

int main() {

 Inventory inv(100); //calls constructor, allocates array

 //do stuff with inv here

} //end of main, inv object destroyed here,
 // calls its destructor (which deletes parts array)

!31

13.10 Overloaded Constructors

• Recall: when 2 or more functions have the same
name they are overloaded.
• A class can have more than one constructor function
- They have the same name, so they are overloaded
• Overloaded functions must have different parameter

lists: class Time
{
 private:
 int hour;
 int minute;
 public:
 Time();
 Time(int);
 Time(int,int);
... !32

Overloaded Constructors
! definitions:

#include "Time.h"

Time::Time() {
 hour = 12;
 minute = 0;
}
Time::Time(int hr) {
 hour = hr;
 minute = 0;
}
Time::Time(int hr, int min) {
 hour = hr;
 minute = min;
}

!33

Overloaded Constructor “call”
! From main:

int main() {
 Time t1;
 Time t2(2);
 Time t3(4,50);

 cout << t1.display() <<endl;
 cout << t2.display() <<endl;
 cout << t3.display() << endl;
}

Output:
12:00
2:00
4:50

!34

13.12 Arrays of Objects
• An array can contain objects (the element type can be

a Class): 

• The default constructor (Time()) is used to initialize
each element of the array when it is created.
• This array is initialized to 10 Time objects, each set to

12:00.
• To invoke a constructor that takes arguments, you

must use an initializer list . . .

int main() {

 Time recentCalls[10]; //times of last 10 phone calls

}

!35

Arrays of Objects
initializer lists

• Each initializer takes the form of a function call:

• If there are fewer initializers in the list than elements
in the array, the default constructor will be called for
all the remaining elements.
• This array is initialized to 7 Time objects, set to  

1:00, 2:13, 3:24, 4:00, 4:50, 12:00 and 12:00.

int main() {
 Time recentCalls[7] = {Time(1),
 Time(2,13),
 Time(3,24),
 Time(4),
 Time(4,50)};
}

!36

Accessing Objects in an Array

• Objects in an array are referenced using subscripts
• Member functions are referenced using dot notation
• Must access the specific object in the array BEFORE

calling the member function:

• Processing array elements in a loop:

recentCalls[2].setMinute(30);
cout << recentCalls[4].display() << endl;

for (int i=0; i<7; i++)
 cout << recentCalls[i].display() << “ “;
cout << endl;

!37

Composition
! When one class contains another as a member:

#include “Time.h"
class Calls
{
 private:
 Time calls[10]; // times of 10 phone calls
 // this array is initialized using default constructor
 public:
 void set(int,Time);
 void displayAll();
}
#include <iostream>
using namespace std;
#include "Calls.h"

void Calls::set(int i, Time t) {
 calls[i] = t;
}
void Calls::displayAll () {
 for (int i=0; i<10; i++) {
 cout << calls[i].display(); //calls member function
 cout << “ “;
 }
}

Calls.h

Calls.cpp

!38

Composition
! Driver for Calls

//Example using Calls and Time classes
#include<iostream>
using namespace std;
#include “Calls.h” //this includes “Time.h”

int main() {
 Calls callTimes;
 Time t1(4,30);
 callTimes.set(0,t1);
 Time t2(11,42);
 callTimes.set(1,t2);

 callTimes.displayAll();
 cout << endl;
}

4:30 11:42 12:00 12:00 12:00 12:00 12:00 12:00 12:00 12:00
Output:

