
Intro to Programming & C++

Unit 1 

Sections 1.1-4 and 2.1-10, 2.12-13, 2.15-17 

CS 1428 
Spring 2020 

Jill Seaman

!1

1.1 Why Program?

Computer – programmable machine designed to 
follow instructions 

Program – a set of instructions, stored in 
computer memory, to make the computer do 
something 

Programmer – person who writes instructions 
(programs) to make computer perform a task 

SO, without programmers, no programs; without 
programs,  a computer cannot do anything
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Why Learn to Program?

•Programming is a fundamental part of computer 
science. 

•Having an understanding of programming helps 
you to understand the strengths and limitations 
of computers. 

• It helps you become a more intelligent user of 
computers. 

• It can be fun! 
• It helps you to develop problem solving skills.
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1.2 Computer Systems: Hardware 
and Software

! Hardware:   
the physical components that a computer is 
made of. 

! Software: 
the programs that run on a computer
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Hardware Components Illustrated
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Hardware Components

! Central Processing Unit (CPU) 
! Arithmetic Logic Unit  (math, comparisons, etc) 
! Control Unit (processes instructions) 

! Main Memory (RAM): Fast, expensive, volatile 
! Secondary Storage: Slow, cheap, long-lasting 
! Input Devices: keyboard, mouse, camera 
! Output Devices: screen, printer, speakers
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CPU Organization
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Main Memory
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The number 149 is stored in the byte with the address 16, 
and the number 72 is stored at address 23.



1.3 Programs and Programming 
Languages

! A program is a set of instructions that the 
computer follows to perform a task 

! An algorithm: 
‣ A set of well-defined steps for performing a task or 

solving a problem. 
‣ A step by step ordered procedure that solves a 

problem in a finite number of precise steps. 
! An algorithm can be in any language (English, 

C++, machine code, etc).
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Example (algorithm)

1.Display on screen: “how many hours did you work?” 
2.Wait for user to enter number, store it in memory 
3.Display on screen: “what is your pay rate (per hour)?” 
4.Wait for user to enter rate, store it in memory 
5.Multiply hours by rate, store result in memory 
6.Display on screen: “you have earned $xx.xx” where 

xx.xx is result of step 5. 

Note: Computer does not speak English,  
it only understands its own “machine language”
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Programming Languages
! High Level Languages (like C++): 
‣ Words, symbols, numbers, i.e. c = a + b 
‣ Easier for humans to read and use 

! Low Level Languages: 
‣ Load the number from location 2001 into the CPU,  

Load the number from location 2002 into the CPU, 
Add the two numbers, Store the result in location 2003 

‣ Instructions are encoded as a sequence of 1's and 0’s 
‣ Computer understands this language (often called 

Machine Language). 
! Programs written in high level language must be 

translated to machine language. !11

Translation Process
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1.4 What is a Program Made of?
! Key Words  
‣ Have a special meaning in C++ 
‣ May only be used for their intended purpose.  
‣ Also known as reserved words. 
‣ Examples: using, namespace, int, double, and return  

! Programmer-Defined Identifiers 
‣ Names made up by the programmer 
‣ Not part of the C++ language 
‣ Used to represent various things: variables (memory 

locations), functions, etc. !13

More Program Elements
! Operators 
‣ Used to perform operations on data 
‣ Examples: <<  >>  =  *   

! Punctuation 
‣ Characters that mark the end of a statement, or that 

separate items in a list  
‣ Examples: ,  ; 
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More Program Elements
! Syntax 
‣ The rules of grammar that must be followed when 

writing a program 
‣ Controls the use of key words, operators, 

programmer-defined symbols, and punctuation 
! Lines and Statements 
‣ A “line” is a single line in the body of a program 
‣ A “statement” is a complete instruction that causes 

the computer to perform some action 
‣ Example:  
cout << "How many hours did you work? "; !15

Variables
! Variable: symbolic names that represent 

locations in the computer’s memory (RAM). 
‣ The data may change while program is running!! 
‣ Each variable can store only one type of information 

(for example characters, integers, real numbers). 
! Variable Definition (or Declaration) 
‣ A statement that causes a variable to be created in 

memory. 
‣ The data type of a variable must be indicated in the 

variable definition. 
‣ Example:    double hours;  
(double is a data type corresponding to real numbers) !16



2.1 The Parts of a C++ Program

// sample C++ program

#include <iostream>

using namespace std;

int main() 

{

cout << "Hello, world!";

return 0;

}
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Parts of a C++ Program

! Comment:  //…
‣ ignored by compiler  
‣ notes to human reader 

! Preprocessor Directive: #include <iostream> 
‣ compiler inserts contents of file iostream here 
‣ required because cout is defined in iostream 

! using namespace std;

‣ allows us to write  cout instead of std::cout 

!18

Parts of a C++ Program

• int main ()
– start of function (group of statements) named main 
– the starting point of the program 

• {}   
– contains the body of the function 

• cout << “Hello, world!”;
– statement to display message on screen 

• return 0;
– quit and send value 0 to OS (means success!)
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2.2 The cout Object
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! cout: short for “console output” 
‣ a stream object: represents the contents of the screen 

! <<: the stream insertion operator 
‣ use it to send data to cout (to be output to the screen) 

! when this instruction is executed, the console 
(screen) looks like this: 

cout << “This is an example.”;

This is an example.

Note: the “ ” do 
not show up in  
the output



The endl manipulator
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! endl: short for “end line” 
‣ send it to cout when you want to start a new line of output. 

! or you can use the newline character: \n 

! Either way the output to the screen is: 

cout << “Hello ” << endl << “there!”;

cout << “Hello \nthere!”;

Hello 
there!

more examples
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cout << “Hello ”;
cout << “there!”;

Hello there!

cout << “Hello ” << “there!”;

Hello there!

cout << “The best selling book on Amazon\n is \”The Help\””;

The best selling book on Amazon
 is ”The Help”

2.3 The #include Directive
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! Inserts the contents of another file into the 
program. 

! For example, cout is not part of the core C++ 
language, it is defined in the iostream file. 

! Any program that uses the cout  object must 
contain the extensive setup information found in 
iostream. 

! The code in iostream is C++ code. 

#include <iostream>

2.4 Variables, Literals and 
Assignment Statements
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! Variable: named location in main memory 
! A variable declaration has a name and datatype 
‣ The data type indicates the kind of data it can contain. 

‣ The identifier is a name of your choosing. 

‣ Note the  book calls it a “variable definition”. 

! A variable must be declared before it can be 
used!! 

! Example variable declarations: 
‣ int someNumber;

‣ char firstLetter;



Literals
! A literal represents a constant value used in a 

program statement. 
! Numbers:  0, 34, 3.14159, -1.8e12, etc. 
! Strings (sequence of keyboard symbols):  
‣ “Hello”, “This is a string” 
‣ “100 years”, “100”, “Y”, etc. 

! NOTE: These are different:  5  “5”
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Assignment Statements
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! An assignment statement uses the = operator 
to store a value in an already declared variable. 
‣ someNumber = 12; 

! When this statement is executed, the computer 
stores the value 12 in memory, in the location 
named “someNumber”. 

! The variable receiving the value must be on the 
left side of the = (the following does NOT work): 
‣ 12 = someNumber;  //This is an ERROR

Example program using a variable
#include <iostream>
using namespace std;

int main()  {
   int number;

   number = 100;
   cout << “The value of the number is “ 
        << number  << endl;
   return 0;
}
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The value of the number is 100output screen:

2.5 Identifiers
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! An identifier is a name for some program 
element (like a variable). 

! Rules: 
‣ May not be a keyword (see Table 2.4 in the book) 

‣ First character must be a letter or underscore 

‣ Following characters must be letters, numbers or 
underscores. 

! Identifiers are case-sensitive: 
‣ myVariable is not the same as MyVariable



Data Types
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! Variables are classified according to their data 
type. 

! The data type determines the kind of 
information that may be stored in the variable. 

! A data type is a set of values. 
! Generally two main (types of) data types:  
‣ Numeric 

‣ Character-based

C++ Data Types
! int, short, long 
‣ whole numbers (integers) 

! float, double

‣ real numbers (with fractional amounts, decimal points) 
! bool

‣ logical values: true and false 
! char
‣ a single character (keyboard symbol) 

! string

‣ any text, a sequence of characters !30

2.6 Integer Data Types
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! Whole numbers such as 12, 7, and -99 
! Typical ranges (may vary on different systems): 

! Example variable declarations:
short dayOfWeek;
long distance;
int xCoordinate;

Data Type: Range of values:

short -32,768 to 32,767

int -2,147,483,648 to 2,147,483,647

long -2,147,483,648 to 2,147,483,647

2.7 The char Data Type
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! All the keyboard and printable symbols. 
! Literal values:  ‘A’ ‘5’ ‘?’ ‘b’
‣ characters are indicated using single quotes 

! Numeric value of character from the ASCII 
character set is stored in memory:

C++ code segment: 
char letter; 
letter = ‘C'; 
cout << letter << endl;

MEMORY: 
letter

67

Appendix B shows the ASCII code values

OUTPUT:

C



2.8 The C++ string class 

• Sequences of characters 
• May require the string header file: 
• To declare string variables in programs: 

• To assign literals to variables: 
firstName = "George";

lastName = "Washington";

• To display via cout 
cout << firstName << " " << lastName;
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OUTPUT: George Washington

#include <string>

string firstName, lastName;

2.9 Floating-Point Data Types
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! Real numbers such as 12.45, and -3.8 
! Typical ranges (may vary on different systems): 

! Floating-point literals can be represented in 
– Fixed point (decimal) notation: 
 31.4159   0.0000625 
– E (scientific) notation: 
 3.14159E1   6.25e-5

Data Type: Range of values:

float +/- 3.4e +/- 38 (~7 digits of precision)

double +/- 1.7e +/- 308 (~15 digits of precision)

2.10 The bool Data Type
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! The values true and false. 
! Literal values:  true, false 
! (false is equivalent to 0, true is equivalent to 1)

int main() {
   bool boolValue;
   boolValue = true;
   cout << boolValue << endl;
   boolValue = false;
   cout << boolValue << endl;
   return 0;
} 

1
0

output screen:

2.12 More about Variable 
Assignments and Initialization
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! To initialize a variable means to assign it a 
value when it is declared: 
‣ int length = 12; 

! You can define and initialize multiple variables 
at once (and change them later) :

int length = 12, width = 5, area;
area = 35;
length = 10;
area =40;



2.13 Scope
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! The scope of a variable is the part of the 
program in which the variable can be accessed. 

! A variable cannot be used before it is declared.
// This program can't find its variable.
#include <iostream>
using namespace std;

int main() {
   cout << value; // ERROR! value not declared yet!

   int value = 100;
   return 0;
}

2.15 Comments
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• Notes of explanation used to document parts of 
the program 

• Intended for humans reading the source code 
of the program: 
– Indicate the purpose of the program 
– Describe the use of variables 
– Explain complex sections of code 

• Are ignored by the compiler

Single and Multi-Line Comments
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• Single-Line comments begin with // through to 
the end of line: 

• Multi-Line comments begin with /*, end with */

int length = 12; // length in inches
int width = 15;  // width in inches
int area;        // calculated area
// calculate rectangle area
area = length * width;

/* this is a multi-line
   comment
*/

int area;   /* calculated area */

2.16 Named Constants
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• Named constant : variable whose value cannot 
be changed during program execution 

• Used for representing constant values with 
descriptive names: 
 const double TAX_RATE = 0.0675; 
 const int NUM_STATES = 50; 

• Often named in uppercase letters  
(see style guidelines)

Note: initialization required.



2.17 Programming Style
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• The visual organization of the source code 
• Includes the use of spaces, tabs, and blank 

lines 
• Includes naming of variables, constants. 
• Includes where to use comments. 
• Purpose: improve the readability of the source 

code

Programming Style
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Common elements to improve readability: 
• Braces { } aligned vertically 
• Indentation of statements within a set of braces 
• Blank lines between declaration and other 

statements 
• Long statements intentionally broken up over 

multiple lines.

See the Style Guidelines on the class website. 
You must follow these in your programming assignments.


