
Intro to Programming & C++

Unit 1

Sections 1.1-4 and 2.1-10, 2.12-13, 2.15-17

CS 1428
Spring 2020

Jill Seaman

!1

1.1 Why Program?

Computer – programmable machine designed to
follow instructions

Program – a set of instructions, stored in
computer memory, to make the computer do
something

Programmer – person who writes instructions
(programs) to make computer perform a task

SO, without programmers, no programs; without
programs, a computer cannot do anything

!2

Why Learn to Program?

•Programming is a fundamental part of computer
science.

•Having an understanding of programming helps
you to understand the strengths and limitations
of computers.

• It helps you become a more intelligent user of
computers.

• It can be fun!
• It helps you to develop problem solving skills.

!3

1.2 Computer Systems: Hardware
and Software

! Hardware:  
the physical components that a computer is
made of.

! Software: 
the programs that run on a computer

!4

Hardware Components Illustrated

!5

Hardware Components

! Central Processing Unit (CPU)
! Arithmetic Logic Unit (math, comparisons, etc)
! Control Unit (processes instructions)

! Main Memory (RAM): Fast, expensive, volatile
! Secondary Storage: Slow, cheap, long-lasting
! Input Devices: keyboard, mouse, camera
! Output Devices: screen, printer, speakers

!6

CPU Organization

!7

Main Memory

!8

The number 149 is stored in the byte with the address 16,
and the number 72 is stored at address 23.

1.3 Programs and Programming
Languages

! A program is a set of instructions that the
computer follows to perform a task 

! An algorithm:
‣ A set of well-defined steps for performing a task or

solving a problem.
‣ A step by step ordered procedure that solves a

problem in a finite number of precise steps.
! An algorithm can be in any language (English,

C++, machine code, etc).
!9

Example (algorithm)

1.Display on screen: “how many hours did you work?”
2.Wait for user to enter number, store it in memory
3.Display on screen: “what is your pay rate (per hour)?”
4.Wait for user to enter rate, store it in memory
5.Multiply hours by rate, store result in memory
6.Display on screen: “you have earned $xx.xx” where

xx.xx is result of step 5.

Note: Computer does not speak English,  
it only understands its own “machine language”

!10

Programming Languages
! High Level Languages (like C++):
‣ Words, symbols, numbers, i.e. c = a + b
‣ Easier for humans to read and use

! Low Level Languages:
‣ Load the number from location 2001 into the CPU,  

Load the number from location 2002 into the CPU, 
Add the two numbers, Store the result in location 2003

‣ Instructions are encoded as a sequence of 1's and 0’s
‣ Computer understands this language (often called

Machine Language).
! Programs written in high level language must be

translated to machine language. !11

Translation Process

!12

1.4 What is a Program Made of?
! Key Words
‣ Have a special meaning in C++
‣ May only be used for their intended purpose.
‣ Also known as reserved words.
‣ Examples: using, namespace, int, double, and return

! Programmer-Defined Identifiers
‣ Names made up by the programmer
‣ Not part of the C++ language
‣ Used to represent various things: variables (memory

locations), functions, etc. !13

More Program Elements
! Operators
‣ Used to perform operations on data
‣ Examples: << >> = *

! Punctuation
‣ Characters that mark the end of a statement, or that

separate items in a list
‣ Examples: , ;

!14

More Program Elements
! Syntax
‣ The rules of grammar that must be followed when

writing a program
‣ Controls the use of key words, operators,

programmer-defined symbols, and punctuation
! Lines and Statements
‣ A “line” is a single line in the body of a program
‣ A “statement” is a complete instruction that causes

the computer to perform some action
‣ Example:  
cout << "How many hours did you work? "; !15

Variables
! Variable: symbolic names that represent

locations in the computer’s memory (RAM).
‣ The data may change while program is running!!
‣ Each variable can store only one type of information

(for example characters, integers, real numbers).
! Variable Definition (or Declaration)
‣ A statement that causes a variable to be created in

memory.
‣ The data type of a variable must be indicated in the

variable definition.
‣ Example: double hours;  
(double is a data type corresponding to real numbers) !16

2.1 The Parts of a C++ Program

// sample C++ program

#include <iostream>

using namespace std;

int main()

{

cout << "Hello, world!";

return 0;

}

!17

Parts of a C++ Program

! Comment: //…
‣ ignored by compiler
‣ notes to human reader

! Preprocessor Directive: #include <iostream>
‣ compiler inserts contents of file iostream here
‣ required because cout is defined in iostream

! using namespace std;

‣ allows us to write cout instead of std::cout

!18

Parts of a C++ Program

• int main ()
– start of function (group of statements) named main
– the starting point of the program

• {}
– contains the body of the function

• cout << “Hello, world!”;
– statement to display message on screen

• return 0;
– quit and send value 0 to OS (means success!)

!19

2.2 The cout Object

!20

! cout: short for “console output”
‣ a stream object: represents the contents of the screen

! <<: the stream insertion operator
‣ use it to send data to cout (to be output to the screen)

! when this instruction is executed, the console
(screen) looks like this:

cout << “This is an example.”;

This is an example.

Note: the “ ” do
not show up in
the output

The endl manipulator

!21

! endl: short for “end line”
‣ send it to cout when you want to start a new line of output.

! or you can use the newline character: \n

! Either way the output to the screen is:

cout << “Hello ” << endl << “there!”;

cout << “Hello \nthere!”;

Hello
there!

more examples

!22

cout << “Hello ”;
cout << “there!”;

Hello there!

cout << “Hello ” << “there!”;

Hello there!

cout << “The best selling book on Amazon\n is \”The Help\””;

The best selling book on Amazon
 is ”The Help”

2.3 The #include Directive

!23

! Inserts the contents of another file into the
program.

! For example, cout is not part of the core C++
language, it is defined in the iostream file.

! Any program that uses the cout object must
contain the extensive setup information found in
iostream.

! The code in iostream is C++ code.

#include <iostream>

2.4 Variables, Literals and
Assignment Statements

!24

! Variable: named location in main memory
! A variable declaration has a name and datatype
‣ The data type indicates the kind of data it can contain.

‣ The identifier is a name of your choosing.

‣ Note the book calls it a “variable definition”.

! A variable must be declared before it can be
used!!

! Example variable declarations:
‣ int someNumber;

‣ char firstLetter;

Literals
! A literal represents a constant value used in a

program statement.
! Numbers: 0, 34, 3.14159, -1.8e12, etc.
! Strings (sequence of keyboard symbols):
‣ “Hello”, “This is a string”
‣ “100 years”, “100”, “Y”, etc.

! NOTE: These are different: 5 “5”

!25

Assignment Statements

!26

! An assignment statement uses the = operator
to store a value in an already declared variable.
‣ someNumber = 12;

! When this statement is executed, the computer
stores the value 12 in memory, in the location
named “someNumber”.

! The variable receiving the value must be on the
left side of the = (the following does NOT work):
‣ 12 = someNumber; //This is an ERROR

Example program using a variable
#include <iostream>
using namespace std;

int main() {
 int number;

 number = 100;
 cout << “The value of the number is “
 << number << endl;
 return 0;
}

!27
The value of the number is 100output screen:

2.5 Identifiers

!28

! An identifier is a name for some program
element (like a variable).

! Rules:
‣ May not be a keyword (see Table 2.4 in the book)

‣ First character must be a letter or underscore

‣ Following characters must be letters, numbers or
underscores.

! Identifiers are case-sensitive:
‣ myVariable is not the same as MyVariable

Data Types

!29

! Variables are classified according to their data
type.

! The data type determines the kind of
information that may be stored in the variable.

! A data type is a set of values.
! Generally two main (types of) data types:
‣ Numeric

‣ Character-based

C++ Data Types
! int, short, long
‣ whole numbers (integers)

! float, double

‣ real numbers (with fractional amounts, decimal points)
! bool

‣ logical values: true and false
! char
‣ a single character (keyboard symbol)

! string

‣ any text, a sequence of characters !30

2.6 Integer Data Types

!31

! Whole numbers such as 12, 7, and -99
! Typical ranges (may vary on different systems):

! Example variable declarations:
short dayOfWeek;
long distance;
int xCoordinate;

Data Type: Range of values:

short -32,768 to 32,767

int -2,147,483,648 to 2,147,483,647

long -2,147,483,648 to 2,147,483,647

2.7 The char Data Type

!32

! All the keyboard and printable symbols.
! Literal values: ‘A’ ‘5’ ‘?’ ‘b’
‣ characters are indicated using single quotes

! Numeric value of character from the ASCII
character set is stored in memory:

C++ code segment:
char letter;
letter = ‘C';
cout << letter << endl;

MEMORY:
letter

67

Appendix B shows the ASCII code values

OUTPUT:

C

2.8 The C++ string class

• Sequences of characters
• May require the string header file:
• To declare string variables in programs:

• To assign literals to variables:
firstName = "George";

lastName = "Washington";

• To display via cout
cout << firstName << " " << lastName;

!33
OUTPUT: George Washington

#include <string>

string firstName, lastName;

2.9 Floating-Point Data Types

!34

! Real numbers such as 12.45, and -3.8
! Typical ranges (may vary on different systems):

! Floating-point literals can be represented in
– Fixed point (decimal) notation:
 31.4159 0.0000625
– E (scientific) notation:
 3.14159E1 6.25e-5

Data Type: Range of values:

float +/- 3.4e +/- 38 (~7 digits of precision)

double +/- 1.7e +/- 308 (~15 digits of precision)

2.10 The bool Data Type

!35

! The values true and false.
! Literal values: true, false
! (false is equivalent to 0, true is equivalent to 1)

int main() {
 bool boolValue;
 boolValue = true;
 cout << boolValue << endl;
 boolValue = false;
 cout << boolValue << endl;
 return 0;
}

1
0

output screen:

2.12 More about Variable
Assignments and Initialization

!36

! To initialize a variable means to assign it a
value when it is declared:
‣ int length = 12;

! You can define and initialize multiple variables
at once (and change them later) :

int length = 12, width = 5, area;
area = 35;
length = 10;
area =40;

2.13 Scope

!37

! The scope of a variable is the part of the
program in which the variable can be accessed.

! A variable cannot be used before it is declared.
// This program can't find its variable.
#include <iostream>
using namespace std;

int main() {
 cout << value; // ERROR! value not declared yet!

 int value = 100;
 return 0;
}

2.15 Comments

!38

• Notes of explanation used to document parts of
the program

• Intended for humans reading the source code
of the program:
– Indicate the purpose of the program
– Describe the use of variables
– Explain complex sections of code

• Are ignored by the compiler

Single and Multi-Line Comments

!39

• Single-Line comments begin with // through to
the end of line:

• Multi-Line comments begin with /*, end with */

int length = 12; // length in inches
int width = 15; // width in inches
int area; // calculated area
// calculate rectangle area
area = length * width;

/* this is a multi-line
 comment
*/

int area; /* calculated area */

2.16 Named Constants

!40

• Named constant : variable whose value cannot
be changed during program execution

• Used for representing constant values with
descriptive names:
 const double TAX_RATE = 0.0675;
 const int NUM_STATES = 50;

• Often named in uppercase letters  
(see style guidelines)

Note: initialization required.

2.17 Programming Style

!41

• The visual organization of the source code
• Includes the use of spaces, tabs, and blank

lines
• Includes naming of variables, constants.
• Includes where to use comments.
• Purpose: improve the readability of the source

code

Programming Style

!42

Common elements to improve readability:
• Braces { } aligned vertically
• Indentation of statements within a set of braces
• Blank lines between declaration and other

statements
• Long statements intentionally broken up over

multiple lines.

See the Style Guidelines on the class website.
You must follow these in your programming assignments.

