
Functions

Unit 6

Gaddis: 6.1-5,7-10,13,15-16 and 7.8

CS 1428
Spring 2020

Jill Seaman

!1

6.1 Modular Programming

!2

! Modular programming: breaking a program up
into smaller, manageable components (modules)

! Function: a collection of statements that perform
a task, grouped into a single named unit. 

! Why is modular programming important?
‣ Improves maintainability/readability of programs by giving

structure and organization to the code

‣ Simplifies the process of writing programs: programmer can
write one small function at a time

!3

6.2 Defining and Calling Functions

!4

• Function definition: statements that make up a
function, along with its name, parameters and
return type.

• Function call: statement (or expression) that
causes a function to execute

return-type function-name (parameters)
{
 statements
}

function-name (arguments)

Function Definition

!5

A Function definition includes:
! return type: data type of the value that the function

returns to the part of the program that called it.
! function-name: name of the function. Function

names follow same rules as variables.
! parameters: optional list of variable definitions.

These will be assigned values each time the
function is called.

! body: statements that perform the function’s task,
enclosed in { }.

Function Definition

!6

return-type function-name (parameters)
{
 statements
}

Function header
(in the box)

Function Return Type

!7

• If a function computes and returns a value, the
type of the value it returns must be indicated as
the return type: 

• If a function does not return a value, its return
type is void:  

int getRate()
{
 return 8;
}

void printHeading()
{
 cout << "Monthly Sales\n";
}

Calling a Function

!8

! To execute the statements in a function, you must
“call” it from within another function (like main).

! To call a function, use the function name followed
by a list of expressions (arguments) in parens:

! Whenever called, the program executes the body of
the called function (it runs the statements).

! After the function terminates, execution resumes in
the calling function after the function call.

printHeading();

Functions in a program

!9

• Example:
#include <iostream>
using namespace std;

void displayMessage()
{
 cout << “Hello from the function displayMessage.\n”;
}

int main()
{
 cout << “Hello from Main.\n”;
 displayMessage();
 cout << “Back in function Main again.\n”;
 return 0;
}

Functions in a program

!10

• Output:

• Flow of Control (order of statements):

Hello from main.
Hello from the function displayMessage.
Back in function main again.

Control always
starts at main

Calling Functions: rules

!11

• A program is a collection of functions, one of
which must be called “main”.

• Function definitions can contain calls to other
functions.

• A function must be defined before it can be
called
‣ In the program text, the function definition must occur before

all calls to the function

‣ Unless you use a “prototype”

6.3 Function Prototypes

!12

• Compiler must know the following about a
function before it can process a function call:
‣ name, return type and

‣ data type (and order) of each parameter

• Not necessary to have the body of the function
before the call.

• Sufficient to put just the function header before
all functions containing calls to that function
‣ The complete function definition must occur later in the

program.

‣ The header alone is called a function prototype

!13

#include <iostream>
using namespace std;

// function prototypes
void first();
void second();

int main() {
 cout << "I am starting in function main.\n";
 first(); // function call
 second(); // function call
 cout << "Back in function main again.\n";
 return 0;
}

// function definitions
void first() {
 cout << "I am now inside the function first.\n";
}
void second() {
 cout << "I am now inside the function second.\n";
}

Prototypes in a program Prototype Style Notes

!14

• Place prototypes near the top of the program
(before any other function definitions)--good
style. 

• Using prototypes, you can place function
definitions in any order in the source file

• Common style: all function prototypes at
beginning, followed by definition of main,
followed by other function definitions.

6.4 Sending Data into a Function

!15

• You can pass (or send) values to a function in
the function call statement.

• This allows the function to work over different
values each time it is called.

• Arguments: Expressions (or values) passed to
a function in the function call.

• Parameters: Variables defined in the function
definition header that are assigned the values
passed as arguments.

A Function with a Parameter

!16

• num is the parameter.
• Calls to this function must provide an argument

(expression) that has an integer value:

• 5 is the argument.

void displayValue(int num)
{
 cout << "The value is " << num << endl;
}

displayValue(5);

Function with parameter in program

!17

#include <iostream>
using namespace std;

// Function Prototype
void displayValue(int);

int main() {
 cout << "I am passing 5 to displayValue.\n";
 displayValue(5);
 cout << "Back in function main again.\n”;
 displayValue(8); //call again with diff. argument
 return 0;
}

// Function definition
void displayValue(int num) {
 cout << "The value is " << num << endl;
}

I am passing 5 to displayValue.
The value is 5
Back in function main again.
The value is 8

Output:

Parameter Passing Semantics

!18

• Given this function call, with the argument of 5:

• Before the function body executes, the
parameter (num) is initialized to the argument (5),
like this: 

• Then the body of the function is executed, using
num as a regular variable:

displayValue(5);

int num = 5; //this stmt is executed implicitly

cout << "The value is " << num << endl;

Parameters in Prototypes and
Function Definitions

!19

• The prototype must include the data type of
each parameter inside its parentheses: 

• The definition must include a definition for each
parameter in its parens

• The call must include an argument (expression)
for each parameter, inside its parentheses

void evenOrOdd(int); //prototype

void evenOrOdd(int num) //header
{ if (num%2==0) cout << “even”;
 else cout << “odd”; }

evenOrOdd(x+10); //call

Passing Multiple Arguments

!20

When calling a function that has multiple
parameters:
! the following must all match:
‣ the number and order of data types in the prototype

‣ the number and order of parameters in the function definition

‣ the number and order of arguments in the function call

! the first argument will be used to initialize the first
parameter, the second argument to initialize the
second parameter, etc.
‣ they are assigned in order.

void power(int, int); //prototype

Example: function calls function

!21

void deeper() {
 cout << “I am now in function deeper.\n”;
}

void deep() {
 cout << “Hello from the function deep.\n”;
 deeper();
 cout << “Back in function deep.\n”;
}

int main() {
 cout << “Hello from Main.\n”;
 deep();
 cout << “Back in function Main again.\n”;
 return 0;
}

Hello from Main.
Hello from the function deep.
I am now in function deeper.
Back in function deep.
Back in function Main again.

Output:

Example: call function more than once

!22

#include <iostream>
#include <cmath>
using namespace std;

void pluses(int count) {
 for (int i = 0; i < count; i++)
 cout << "+";
 cout << endl;
}

int main() {
 int x = 2;
 pluses(4);
 pluses(x);
 pluses(x+5);
 pluses(pow(x,3.0));
 return 0;
}

++++
++
+++++++
++++++++

Output:

Example: multiple parameters

!23

#include <iostream>
#include <cmath>
using namespace std;

void pluses(char ch, int count) {
 for (int i=0; i < count; i++)
 cout << ch;
 cout << endl;
}

int main() {
 int x = 2;
 char cc = '!';
 pluses('#',4);
 pluses('*',x);
 pluses(cc,x+5);
 pluses('x',pow(x,3.0));
 return 0;
}

####
**
!!!!!!!
xxxxxxxx

Output:

6.7 The return statement

!24

! Used to stop the execution of a void function
! Can be placed anywhere in the function body
‣ the function immediately transfers control back to the

statement that called it.

! Statements that follow the return statement will
not be executed

! In a void function with no return statement,  
the compiler adds a return statement before the
last }

return;

The return statement: example

!25

void someFunc (int x) {
 if (x < 0)
 cout << “x must not be negative.” << endl;
 else {
 // Continue with lots of statements, indented
 // ...
 // so many it’s hard to keep track of matching {}
 }
}

void someFunc (int x) {
 if (x < 0) {
 cout << “x must not be negative.” << endl;
 return;
 }
 // Continue with lots of statements, less indentation,
 // no brackets to try to match ...
}

This is equivalent, easier to read

6.8 Returning a value from a
function

!26

• You can use the return statement in a non-void
function to send a value back to the function
call:

• The value of the expr will be sent back.
• The data type of expr must be placed in the

function header: 

return expr;

int doubleIt(int x) {
 return x*2;
}

Return type:

Value being returned

Calling a function that returns a
value

!27

! If the function returns void, the function call is a
statement:

! If the function returns a value, the function call is
an expression:

! The value of the function call (underlined) is the
value of the expr returned from the function,  
and you should do something with it.

pluses(4);

int y = doubleIt(4);

Returning the sum of two ints

!28

#include <iostream>
using namespace std;

int sum(int,int);

int main() {
 int value1;
 int value2;
 int total;
 cout << "Enter 2 numbers: " << endl;
 cin >> value1 >> value2;
 total = sum(value1, value2);
 cout << "The sum is " << total << endl;
}

int sum(int x, int y) {
 return x + y;
}

Enter 2 numbers:
20 40
The sum is 60

Output:

Data transfer

!29

• The function call from main: 
passes the values stored in value1 and value2 (20
and 40) to the function, assigning them to x and y.

• The result, x+y (60), is returned to the call and
stored in total.

x

x y

y

sum(value1, value2)

Function call expression

!30

• When a function call calls a function that returns
a value, it is an expression.

• The function call can occur in any context
where an expression is allowed:
‣ assign to variable (or array element)

‣ output via cout

‣ use in a more complicated expression

‣ pass as an argument to another function

• The value of the function call is determined by
the value of the expression returned from the
function.

total = sum(x,y);

cout << sum(x,y);

cout << sum(x,y)*.1;

z = pow(sum(x,y),2);

6.9 Returning a boolean value

!31

• the above function is equivalent to this one:

bool isValid(int number)
{
 bool status;
 if (number >=1 && number <= 100)
 status = true;
 else
 status = false;
 return status;
}

bool isValid (int number) {
 return (number >=1 && number <= 100);
}

Returning a boolean value

!32

• You can call the function in an if or while:
bool isValid(int);

int main() {
 int val;
 cout << “Enter a value between 1 and 100: ”
 cin >> val;

 while (!isValid(val)) {
 cout << “That value was not in range.\n”;
 cout << “Enter a value between 1 and 100: ”
 cin >> val;
 }
 // . . .

6.5 Passing Data by Value
(review)

!33

• Pass by value: when an argument is passed to
a function, its value is copied into the
parameter.

• Parameter passing is implemented using
variable initialization (behind the scenes): 

• Changes to the parameter in the function
definition cannot affect the value of the
argument in the call

int param = argument;

#include <iostream>
using namespace std;

void changeMe(int);

int main() {
 int number = 12;
 cout << "number is " << number << endl;
 changeMe(number);
 cout << "Back in main, number is " << number << endl;
 return 0;
}

void changeMe(int myValue) {
 myValue = 200;
 cout << "myValue is " << myValue << endl;
}

Example: Pass by Value

!34

number is 12
myValue is 200
Back in main, number is 12

Output:

int myValue = number;

changeMe failed!

Pass by Value notes

!35

When the argument is a variable (as in f(x)):
• The parameter is initialized to a copy of the

argument’s value.
• Even if the body of the function changes the

parameter, the argument in the function call is
unchanged.

• The parameter and the argument are stored in
separate variables, separate locations in
memory.

6.13 Passing Data by Reference

!36

• Pass by reference: when an argument is
passed to a function, the function has direct
access to the original argument.

• Pass by reference in C++ is implemented using
a reference parameter, which has an
ampersand (&) in front of it: 

• A reference parameter acts as an alias to its
argument.

• Changes to the parameter in the function DO
affect the value of the argument

void changeMe (int &myValue);

#include <iostream>
using namespace std;

void changeMe(int &);

int main() {
 int number = 12;
 cout << "number is " << number << endl;
 changeMe(number);
 cout << "Back in main, number is " << number << endl;
 return 0;
}

void changeMe(int &myValue) {
 myValue = 200;
 cout << "myValue is " << myValue << endl;
}

Example: Pass by Reference

!37

number is 12
myValue is 200
Back in main, number is 200

Output:

myValue is an alias for number, 
only one shared variable

this statement changes number

double square(double number) {
 return number * number;
}

void getRadius(double &rad) {
 cout << "Enter the radius of the circle: ";
 cin >> rad;
}

int main() {
 const double PI = 3.14159;
 double radius;
 double area;
 cout << fixed << setprecision(2);
 getRadius(radius);
 area = PI * square(radius);
 cout << "The area is " << area << endl;
 return 0;
}

Using Pass by Reference for input

!38

During the function execution,
rad is an alias to radius in the
main program.

Pass by Reference notes

!39

• Changes made to a reference parameter are
actually made to its argument

• The & must be in the function header AND the
function prototype.

• The argument passed to a reference parameter
must be a variable – it cannot be a constant or
contain an operator (like +)

• Use when appropriate – don’t use when:
‣ the argument should not be changed by function (!)

‣ the function returns only 1 value: use return stmt!

6.10 Local and Global Variables

!40

• Variables defined inside a function are local to
that function.
‣ They are hidden from the statements in other functions,

which cannot access them.

• Because the variables defined in a function are
hidden, other functions may have separate,
distinct variables with the same name.
‣ This is not bad style. These are easy to keep straight

• Parameters are also local to the function in
which they are defined.

#include <iostream>
using namespace std;

void anotherFunction();

int main() {
 int num = 1;
 cout << "In main, num is " << num << endl;
 anotherFunction();
 cout << "Back in main, num is " << num << endl;
 return 0;
}

void anotherFunction() {
 int num = 20;
 cout << "In anotherFunction, num is " << num << endl;
}

Local variables are hidden from
other functions

!41

In main, num is 1
In anotherFunction, num is 20
Back in main, num is 1

Output:

This num variable is visible
only in main

This num variable is visible
only in anotherFunction

Local Variable Lifetime

!42

• A function’s local variables and parameters
exist only while the function is executing.

• When the function begins, its parameters and
local variables (as their definitions are
encountered) are created in memory, and when
the function ends, the parameters and local
variables are destroyed.

• This means that any value stored in a local
variable is lost between calls to the function in
which the variable is declared.

Global Variables

!43

• A global variable is any variable defined outside
all the functions in a program.

• The scope of a global variable is the portion of
the program starting from the variable definition
to the end of the file

• This means that a global variable can be
accessed by all functions that are defined after
the global variable is defined

• A local variable may have the same name as a
global variable. The global variable is hidden in
that variable’s block.

#include <iostream>
using namespace std;

void anotherFunction();
int num = 2;

int main() {
 cout << "In main, num is " << num << endl;
 anotherFunction();
 cout << "Back in main, num is " << num << endl;
 return 0;
}

void anotherFunction() {
 cout << "In anotherFunction, num is " << num << endl;
 num = 50;
 cout << "But now it is changed to " << num << endl;
}

Global Variables: example

!44

In main, num is 2
In anotherFunction, num is 2
But now it is changed to 50
Back in main, num is 50

Output:

Global Variables/Constants

!45

Do not use global variables!!! Because:
• They make programs difficult to debug.

‣ If the wrong value is stored in a global var, you must scan
the entire program to see where the variable is changed

• Functions that access globals are not self-
contained
‣ cannot easily reuse the function in another program.

‣ cannot understand the function without understanding how
the global is used everywhere

It is ok (and good) to use global constants
because their values do not change.

const double PI = 3.14159;  

double getArea(double number) {
 return PI * number * number;
}

double getPerimeter(double number) {
 return PI * 2 * number;
}

int main() {
 double radius;
 cout << fixed << setprecision(2);
 cout << "Enter the radius of the circle: ";
 cin >> radius;

 cout << "The area is " << getArea(radius) << endl;
 cout << "The perimeter is " << getPerimeter(radius) << endl;
}

Global Constants: example

!46

Enter the radius of the circle: 2.2
The area is 15.21
The perimeter is 13.82

Output:

Functions and Array Elements

!47

! An array element can be passed to any
parameter of the same (or compatible) type:
double square (double);

int main() {
 double numbers[5] = {2.2, 3.3, 5.11, 7.0, 3.2};

 for (int i=0; i<5; i++)
 cout << square(numbers[i]) << " ";
 cout << endl;
 return 0;
}

double square (double x) {
 return x * x;
}

4.84 10.89 26.1121 49 10.24

Output:

Functions and Array Elements

!48

! An array element can be passed by reference. 
What is output by this program?

void changeMe(int &myValue) {
 myValue = 200;
}

int main() {
 int numbers[5] = {2, 3, 5, 7, 3};

 for (int i=0; i<5; i++)
 changeMe(numbers[i]);

 for (int i=0; i<5; i++)
 cout << numbers[i] << " ";
 cout << endl;
}

7.8 Arrays as Function Arguments

!49

! An entire array can(!) be passed to a function
that has an array parameter
void showArray(int[], int);

int main() {
 int numbers[5] = {2, 3, 5, 7, 3};
 showArray(numbers,5);
 return 0;
}

void showArray(int values[], int size) {
 for (int i=0; i<size; i++)
 cout << values[i] << " ";
 cout << endl;
}

2 3 5 7 3

Output:

Passing arrays to functions

!50

• In the function definition, the parameter type is a
variable name with an empty set of brackets: []
‣ Do NOT give a size for the parameter 
 

• In the prototype, empty brackets go after the
element datatype. 

• In the function call, use the variable name for the
array (no brackets!).

void showArray(int values[], int size) {…}

void showArray(int[], int);

showArray(numbers, 5);

Passing arrays to functions

!51

• An array is always passed by reference.

• The parameter name is an alias to the array
being passed in, even though it has no &.

• Changes made to the array (elements) inside
the function DO affect the array in the function
call.

Passing arrays to functions

!52

! Changing an array inside a function:
void incrArray(int[], int);
void showArray(int[], int);

int main() {
 int numbers[5] = {2, 3, 5, 7, 3};
 incrArray(numbers,5);
 showArray(numbers,5);
 return 0;
}

void incrArray(int values[], int size) {
 for (int i=0; i<size; i++)
 (values[i])++; //values[i]=values[i]+1;
}

3 4 6 8 4

Output:

Passing arrays to functions

!53

• Usually functions that have an array parameter
also have an int parameter for the count of the
number of elements in the array.
‣ so the function knows how many elements to process.

• The count parameter is just a regular int
parameter and must be included in the
parameter list and a corresponding argument
value must appear in the function call.

