
!1

List ADT:
Linked lists vs. Arrays

CS 2308
Spring 2020

Jill Seaman

!2

Abstract Data Type
! A data type for which:
- only the properties of the data and the operations to

be performed on the data are specific,
- how the data will be represented or how the

operations will be implemented is unspecified.
! An ADT may be implemented using various

specific data types or data structures, in many
ways and in many programming languages.

! Examples:
- Stacks and Queues (implemented using arrays+LL)
- C++ string class (not sure how it’s implemented)

!3

The Abstract List Data Type

! A List is an ordered collection of items of some
type T:
➡ each element has a position in the list
➡ duplicate elements are allowed

! List is not a C++ data type. It is conceptual. It
can be implemented in various ways

! We have implemented it using a linked list
(NumberList).

! Now we are going to use an array to implement
the list. !4

Common List operations

! Basic operations over a list:
- create a new, empty list
- append a value to the end of the list
- insert a value within the list
- delete a value (remove it from the list)
- display the values in the list
- delete/destroy the list  

 (if it was dynamically allocated)

!5

Declaring the List data type

! We will be defining a class called NumberList to
represent a List data type.
- ours will store values of type double, using an array.

! The class will implement the basic operations
over lists on the previous slide.

! In the private section of the class we will:
- define an array of double to store the elements in

the list.
- define a count variable that keeps track of how

many elements are currently in the list. !6

NumberList class declaration

!
class NumberList
{
 private:
 static const int SIZE = 100;
 double array[SIZE];
 int count;

 public:
 NumberList(); // creates an empty list
// ~NumberList(); // not needed, no dynamic allocation

 bool isEmpty();
 void appendNode(double);
 void displayList();
 void deleteNode(double);
 void insertBefore(double, double);
};

NumberList.h

! This has the same public interface as it does when
using linked lists.

!7

Operation:
Create the empty list

! Constructor: sets up empty list  

#include "NumberList.h"

NumberList::NumberList()
{
 count = 0;
}

NumberList.cpp

!8

Operation:
isEmpty test for the empty list

! Test to see if the list has any elements in it.

bool NumberList::isEmpty() {

 return (count==0);
}

NumberList.cpp

!9

Operation:
append value to end of list

! appendNode: adds new value to end of list
! Algorithm: 
 

Make sure the list isn’t full.
Put new element in array at position count.
Increment count.

void NumberList::appendNode(double num) {
 if (count < SIZE) {
 array[count] = num;
 count++;
 } else
 cout << "Error: cannot append value, list is full"
 << endl;
 //maybe we should add isFull/isEmpty?
}

in NumberList.cpp

!10

Operation: display the list

void NumberList::displayList() {

 for (int i=0; i<count; i++) {
 cout << array[i] << " ";
 }
 cout << endl;

}

in NumberList.cpp

! Use a for loop
! Stop at count, not SIZE 
 

!11

Operation:
delete a node from the list

! deleteNode: removes a given value from list
! We need to shift elements over to fill the gap. 
 
Deleting 13 from the list

1 4 7 13 17 25

1 4 7 17 25 25

count = 6

count = 5

!12

deleteNode code
void NumberList::deleteNode(double num) {

 int i=0;
 while (i<count && array[i]!=num) {
 i++;
 }

 if (i<count) { //found at i
 count--;

 //shift left to close gap
 while (i<count) {
 array[i] = array[i+1];
 i++;
 }
 }
}

in NumberList.cpp

!13

Operation:
insert a value into a list

! Inserts a new value into the middle of a list.
! We’ll insert before a given target value (or append

to the end if the target is not in the list).
! We need to shift elements over to produce a gap. 
 
 

Inserting 15 into the list

1 4 7 13 17 25

1 4 7 13 15 17 25

count = 6

count = 7
!14

insertBefore code

void NumberList::insertBefore(double num, double target) {

 //find the insertion point
 int i=0;
 while (i<count && array[i]!=target) {
 i++;
 }

 count++;

 //shift right to open up a spot in the array
 int j = count-1;
 while (j>i) {
 array[j]=array[j-1];
 j--;
 }
 array[i] = num;
}

in NumberList.cpp

!15

Driver to demo NumberList
int main() {

 // set up the list
 // set up the list
 NumberList list;
 list.appendNode(2.5);
 list.appendNode(7.9);
 list.appendNode(12.6);
 list.displayList();

 list.deleteNode(7.9);
 list.displayList();

 list.deleteNode(8.9);
 list.displayList();

 list.deleteNode(2.5);
 list.displayList();

 list.deleteNode(12.6);
 list.displayList();

Output:
2.5 7.9 12.6
2.5 12.6
2.5 12.6
12.6

in ListDriver.cpp
This is the same Driver we used for the
Linked List-based NumberList.
We should confirm that we get the
same exact output for this array-based
implementation.

 NumberList list1;
 list1.appendNode(2.5);
 list1.appendNode(7.9);
 list1.appendNode(12.6);
 list1.displayList();

 // Demo insert:
 list1.insertBefore (8.5, 12.6);
 list1.displayList();

 list1.insertBefore (1.5, 2.5);
 list1.displayList();

 list1.insertBefore (21.5, 25.0);
 list1.displayList();

}

2.5 7.9 12.6
2.5 7.9 8.5 12.6
1.5 2.5 7.9 8.5 12.6
1.5 2.5 7.9 8.5 12.6 21.5

Driver to demo NumberList
in ListDriver.cpp

!16

!17

linked lists vs arrays: space issues
! Linked list is never full (if there’s more memory)
- For arrays we need to predict the largest possible size.

! The amount of memory used to store the linked
list version is always proportional to the number
of elements in the list (it grows+shrinks)
- For arrays, the amount of memory used is often much

more than is required by the actual elements in the list.

! Arrays do not require extra storage for links
- linked lists are impractical for lists of characters or

booleans (pointer value is bigger than data value).
!18

linked lists vs arrays: time issues
! When a value is inserted into or deleted from a

linked list, none of the other nodes have to be
moved.
- Array elements must be shifted to make room or

close a gap.

! Arrays allow random access to elements: array[i]
- for arrays this is pointer arithmetic
- linked lists must be traversed to get to i’th element. 

