Functions, Arrays & Structs
Unit 1

Chapters 6-7, 11

CS 2308/CS5301
Spring 2020

Jill Seaman

Function Call, Return Statement

Function call expression

’identifier (expressionl, . . .) ‘

Causes control flow to enter body of function named
identifier.

parameter1 is initialized to the value of expression1,
and so on for each parameter

expression1 is called an argument.
Return statement: [return expression; |

inside a function, causes function to stop, return
control to caller.

The value of the return expression becomes the
R value of the function call

—

\

Function Definitions

Function definition pattern:

datatype identifier (parameterl, parameter2, ...) {
statements . . .

}

Where a parameter is:

’datatype identifier

datatype: the type of data returned by the function.

identifier. the name by which it is possible to call the
function.

parameters: Like a regular variable declaration, act
within the function as a regular local variable. Allow
passing arguments to the function when it is called.

statements: the function's body, executed when called.

Example: Function

// function example
#include <iostream>
using namespace std;
int addition (int a, int b) {
int result;
result=a+b;
return result;
}
int main () {
int z;
z = addition (5,3);
cout << "The result is " << z <<endl;

}

What are the parameters? arguments?
What is the value of: addition (5,3)7?
What is the output?

—

Void function

A function that returns no value:

void printAddition (int a, int b) {
int result;
result=a+b;
cout << “the answer is: “ << result << endl;

}

use void as the return type.

the function call is now a statement (it does not
have a value)

int main () {
printAddition (5,3);

}

Arguments passed by value

Pass by value: when an argument is passed to a
function, its value is copied into the parameter.

It is implemented using variable initialization
(behind the scenes):

int param = argument;

Changes to the parameter in the function body
do not affect the value of the argument in the
call

The parameter and the argument are stored in
separate variables; separate locations in
memory.

—

Prototypes

In a program, function definitions must occur
before any calls to that function

To override this requirement, place a prototype of
the function before the call.

The pattern for a prototype:

’datatype identifier (typel, type2, ...);

the function header without the body (parameter
names are optional).

Example: Pass by Value

#include <iostream> Output:

using namespace std; number is 12
myValue is 200
Back in main, number is 12

void changeMe(int);

int main() {
int number = 12;
cout << "number is " << number << endl;
changeMe (number) ;
cout << "Back in mai number is " << number << endl;
return 0;
} int myValue = number;

void changeMe(int myValue) {
myValue = 200;
cout << "myValue is " << myValue << endl;
}
8

changeMe failed to change the argument!

(.. (-

Parameter passing by Reference Example: Pass by Reference

#include <iostream> Output:
Pass by reference: when an argument is passed using namespace std; e s 200
to a function, the function has direct access to void changeMe(int &); Back in main, number is 200
the original argument (no copying).
. L. . int main() {
Pass by reference in C++ is implemented using int number = 12;
. cout << "number is " << number << endl;
a reference parameter, which has an ampersand changeMe (number) ;
&) in front of it: cout << "Back im~wain, number is " << number << endl;
(&)
void changeMe (int &myValue); return 0;

} myValue is an alias for number,
only one shared variable

A reference parameter acts as an alias to its . .
g on . void changeMe(int &myValue) {
argument, it is NOT a separate storage location. myValue = 200;

. . cout << "myValue is " << myValue << endl;
Changes to the parameter in the function DO }
affect the value of the argument

Scope of variables More scope rules

Variables in the same exact scope cannot have the

For a given variable definition, in which part of same name

the program can it be accessed?

Global variable (defined outside of all functions):
can be accessed anywhere, after its definition.

Parameters and local function variables cannot
have the same name

Local variable (defined inside of a function): Variable defined in inner block can hide a

can be accessed inside the block in which it is variable with the same name in an outer block.
defined, after its definition. int x = 10;
L. . if (x < 100) { Output: [34
Parameter: can be accessed anywhere inside of its zzﬁtxi ;’;0 S 1o
function body.)
Variables are destroyed at the end of their cout << x << endl; _
scope. . Variables defined in one function cannot be ,seen

from another.

Example: Overloaded functions

double calcWeeklyPay (int hours, double payRate) {
return hours * payRate;

Overloaded Functions

Overloaded functions have the same name but }
diﬁerent parameter IiStS double calcWeeklyPay (double annSalary) {
’ return annSalary / 52;
The parameter lists of each overloaded function } Output:
must have different types and/or number of By s 7 g orked and pay rate: 37 19.5
parameters. int main () { Enter annual salary: 75000
int h; Pay is: 1442.31
Compiler will determine which version of the double xi fod ang ey -
. . cou ncter ours worke an a rate: H
function to call by matching arguments to cin o> b > P
parameter’ IiStS cout << "Pay is: " << calcWeeklyPay(h,r) << endl;
cout << "Enter annual salary: ";
cin >> r;
cout << "Pay is: " << calcWeeklyPay(r) << endl;
13 return 0; 14
L -
Default Arguments Example: Default Arguments
. void showArea (double length = 20.0, double width = 10.0)
A default argument for a parameter is a value y
assigned to the parameter when an argument is double area = length * width;
not provided for it in the function call. X cout << “The area is * << area << endl;

The default argument patterns:

. _ This function can be called as follows:
in the prototype:

showArea(); ==> uses 20.0 and 10.0

’datatype identifier (typel = cl, type2 = c2, ...); The area is 200

OR in the function header:

showArea(5.5,2.0); ==> uses 5.5 and 2.0
datatype identifier (typel pl = cl, type2 p2 = c2, ...) { The area is 11
} showArea(12.0); ==> uses 12.0 and 10.0
15 The area is 120 16

, c1, c2 are constants (named or literals)

—

An array is:

Arrays

A series of elements of the same type
placed in contiguous memory locations

that can be individually referenced by using an
index along with the array name.

To declare an array:

’datatype identifier [size]; ‘ ’int numbers([5];

datatype is the type of the elements
identifier is the name of the array
size is the number of elements (constant)”

Array access

to access the value of any of the elements of the
array individually, as if it was a normal variable:

’scores[Z] = 89.5;

scores[2] is a variable of type float
rules about subscripts (aka indexes):
they always start at 0, last subscript is size-1
the subscript must have type int
they can be any expression

watchout: brackets used both to declare the array
and to access elements. 0

—

To specify contents of the array in the definition:

Array initialization

]float scores[3] = {86.5, 92.1, 77.5}; \

creates an array of size 3 containing the
specified values.

’float scores[10] = {86.5, 92.1, 77.5}; ‘

creates an array containing the specified values
followed by 7 zeros (partial initialization).

| £loat scores[] = {86.5, 92.1, 77.5}; \

creates an array of size 3 containing the
specified values (size is determined from list).

Arrays: operations

Valid operations over entire arrays:
function call: myFunc (scores,x);
Invalid operations over entire arrays:
assignment: arrayl = array2;
comparison: arrayl == array2
output: cout << arrayi;
input: cin >> array2;

Must do these element by element, probably
using a for loop

20

—

Assignment: copy one array to another

Processing arrays

const int SIZE = 4;
int oldvalues[SIZE] = {10, 100, 200, 300};
int newValues[SIZE];

for (int count = 0; count < SIZE; count++)
newValues[count] = oldValues[count];

Output: displaying the contents of an array

const int SIZE = 5;
int numbers[SIZE] = {10, 20, 30, 40, 50};

for (int count = 0; count < SIZE; count++)
cout << numbers[count] << endl; 21

\

—

Example: Processing arrays

Computing the average of an array of scores:

const int NUM _SCORES = 8;
int scores[NUM SCORES];
cout << “Enter the *“ << NUM_SCORES
<< “ programming assignment scores: “ << endl;

for (int i=0; i < NUM_SCORES; i++) {
cin >> scores[i];

}

int total = 0; //initialize accumulator
for (int i=0; i < NUM_SCORES; i++) {
total = total + scores[i];
}
double average =
static cast<double>(total) / NUM_SCORES;

22

Finding highest and lowest
values in arrays

Maximum: Need to track the highest value seen
so far. Start with highest = first element.

const int SIZE = 5;
int array[SIZE] = {10, 100, 200, 30};

int highest = array[0];
for (int count = 1; count < SIZE; count++)
if (array[count] > highest)
highest = array[count];

cout << “The maximum value is ” << highest << endl;

23

Arrays as parameters

In the function definition, the parameter type is a
variable name with an empty set of brackets: []

Do NOT give a size for the array inside []
void showArray(int values[], int size)

In the prototype, empty brackets go after the
element datatype.

void showArray(int[], int)

In the function call, use the variable name for the
array.

showArray (numbers, 5)

An array is always passed by reference.

—

Two-Dimensional Arrays

Like a table in a spreadsheet: rows and columns
Declaration requires two size declarators:

’int table [5][3]; // 5 rows, 3 columns ‘

Rows are always first

2D arrays can be initialized:

int table [2][3] =
{ {1, 2, 3},
{4, 5, 6} }; 1 2 3

25

—

wo-Dimensional Array processing

Two-Dimensional Array functions

2D array processing usually requires nested for

IOOpS. void showTable (int array[][3], int rows) {
for (int x=0; x<rows; x++) {
for (int y=0; y<3; y++)
cout << setw(4) << array[x][y] << “ “;
cout << endl;

}
How showTable is called:

int table [2][3] =
{ {1, 2, 3},
{4, 5, 6} };

showTable(table, 2);

27

Access an element of the array using two
indices:

int table [2][3] =
{ {1, 2, 3},

{4, 5, 6} };

cout << table[0][2]; Output: 3

Two dimensional arrays can be passed to
functions.

The number of columns is required in the
parameter declaration:

void showTable (int array[][3], int rows) {

} 2%

Structures

A structure stores a collection of objects of
various types

Each element in the structure is a member, and
is accessed using the dot member operator.

struct Student {
int idNumber;
string name;
int age;
string major;

Defines a new data type

}i
Student studentl, student2; Defines new variables
studentl.name = “John Smith”; 28

Student student3 = {123456,”Ann Page”,22,”"Math”};

—

Valid operations over entire structs:

Structures: operations

assignment: studentl = student2;

function call: myFunc (gradstudent, x);

’ void myFunc(Student, int); //prototype

Invalid operations over structs:
comparison: studentl == student2
output: cout << studenti;
input: cin >> student2;

Must do these member by member R

—

You can store values of structure types in arrays.
Student roster[40]; //holds 40 Student structs

Arrays of Structures

Each student is accessible via the subscript
notation.

roster[0] = studentl;

Members of structure accessible via dot notation

cout << roster[0].name << endl;

30

Arrays of Structures: initialization

To initialize an array of structs:

struct Student {
int idNumber;
string name;
int age;
string major;

}i
int main()
{
Student roster[] = {
{123456,"Ann Page",22,"Math"},
{111222,"Jack Spade",18,"Physics"}
}i
} 31

Arrays of Structures

Arrays of structures processed in loops:
Student roster[40];

//input
for (int i=0; i<40; i++) {
cout << "Enter the name, age, idNumber and "
<< "major of the next student: \n";
cin >> roster[i].name >> roster[i].age
>> roster[i].idNumber >> roster[i].major;
}

//output all the id numbers and names
for (int i=0; i<40; i++) {
cout << roster[i].idNumber << endl;
cout << roster[i].name << endl;

} 32

