
!1

Functions, Arrays & Structs

Unit 1

Chapters 6-7, 11

CS 2308/CS5301
Spring 2020

Jill Seaman

!2

Function Definitions
! Function definition pattern:

★ datatype: the type of data returned by the function.
★ identifier: the name by which it is possible to call the

function.
★ parameters: Like a regular variable declaration, act

within the function as a regular local variable. Allow
passing arguments to the function when it is called.

★ statements: the function's body, executed when called.

datatype identifier (parameter1, parameter2, ...) {
 statements . . .
}

datatype identifier
Where a parameter is:

!3

Function Call, Return Statement
! Function call expression

★ Causes control flow to enter body of function named
identifier.

★ parameter1 is initialized to the value of expression1,
and so on for each parameter

★ expression1 is called an argument.
! Return statement:

★ inside a function, causes function to stop, return
control to caller.

! The value of the return expression becomes the
value of the function call

identifier (expression1, . . .)

return expression;

!4

Example: Function

! What are the parameters? arguments?
! What is the value of: addition (5,3)?
! What is the output?

// function example
#include <iostream>
using namespace std;
int addition (int a, int b) {
 int result;
 result=a+b;
 return result;
}
int main () {
 int z;
 z = addition (5,3);
 cout << "The result is " << z <<endl;
}

!5

Void function
! A function that returns no value:

✴ use void as the return type.
! the function call is now a statement (it does not

have a value)

void printAddition (int a, int b) {
 int result;
 result=a+b;
 cout << “the answer is: “ << result << endl;
}

int main () {
 printAddition (5,3);
}

!6

Prototypes
! In a program, function definitions must occur

before any calls to that function
! To override this requirement, place a prototype of

the function before the call.
! The pattern for a prototype:

✴ the function header without the body (parameter
names are optional).

datatype identifier (type1, type2, ...);

!7

Arguments passed by value

! Pass by value: when an argument is passed to a
function, its value is copied into the parameter.

! It is implemented using variable initialization
(behind the scenes): 

! Changes to the parameter in the function body
do not affect the value of the argument in the
call

! The parameter and the argument are stored in
separate variables; separate locations in
memory.

int param = argument;

!8

Example: Pass by Value

!  
#include <iostream>
using namespace std;

void changeMe(int);

int main() {
 int number = 12;
 cout << "number is " << number << endl;
 changeMe(number);
 cout << "Back in main, number is " << number << endl;
 return 0;
}

void changeMe(int myValue) {
 myValue = 200;
 cout << "myValue is " << myValue << endl;
}

Output:
number is 12
myValue is 200
Back in main, number is 12

int myValue = number;

changeMe failed to change the argument!

!9

Parameter passing by Reference

! Pass by reference: when an argument is passed
to a function, the function has direct access to
the original argument (no copying).

! Pass by reference in C++ is implemented using
a reference parameter, which has an ampersand
(&) in front of it: 

! A reference parameter acts as an alias to its
argument, it is NOT a separate storage location.

! Changes to the parameter in the function DO
affect the value of the argument

void changeMe (int &myValue);

!10

Example: Pass by Reference

!  
#include <iostream>
using namespace std;

void changeMe(int &);

int main() {
 int number = 12;
 cout << "number is " << number << endl;
 changeMe(number);
 cout << "Back in main, number is " << number << endl;
 return 0;
}

void changeMe(int &myValue) {
 myValue = 200;
 cout << "myValue is " << myValue << endl;
}

Output:
number is 12
myValue is 200
Back in main, number is 200

myValue is an alias for number, 
only one shared variable

!11

Scope of variables

! For a given variable definition, in which part of
the program can it be accessed?
★ Global variable (defined outside of all functions): 

can be accessed anywhere, after its definition.
★ Local variable (defined inside of a function): 

can be accessed inside the block in which it is
defined, after its definition.

★ Parameter: can be accessed anywhere inside of its
function body.

! Variables are destroyed at the end of their
scope. !12

More scope rules
! Variables in the same exact scope cannot have the

same name
- Parameters and local function variables cannot

have the same name
- Variable defined in inner block can hide a

variable with the same name in an outer block.

! Variables defined in one function cannot be seen
from another.

int x = 10;
if (x < 100) {
 int x = 30;
 cout << x << endl;
}
cout << x << endl;

30
10

Output:

!13

Overloaded Functions

! Overloaded functions have the same name but
different parameter lists.

! The parameter lists of each overloaded function
must have different types and/or number of
parameters.

! Compiler will determine which version of the
function to call by matching arguments to
parameter lists

!14

Example: Overloaded functions

!  
double calcWeeklyPay (int hours, double payRate) {
 return hours * payRate;
}
double calcWeeklyPay (double annSalary) {
 return annSalary / 52;
}

int main () {
 int h;
 double r;
 cout << "Enter hours worked and pay rate: ";
 cin >> h >> r;
 cout << "Pay is: " << calcWeeklyPay(h,r) << endl;
 cout << "Enter annual salary: ";
 cin >> r;
 cout << "Pay is: " << calcWeeklyPay(r) << endl;
 return 0;
}

Output:
Enter hours worked and pay rate: 37 19.5
Pay is: 721.5
Enter annual salary: 75000
Pay is: 1442.31

!15

Default Arguments

! A default argument for a parameter is a value
assigned to the parameter when an argument is
not provided for it in the function call.

! The default argument patterns:
✴ in the prototype:

✴ OR in the function header:

! c1, c2 are constants (named or literals)

datatype identifier (type1 = c1, type2 = c2, ...);

datatype identifier (type1 p1 = c1, type2 p2 = c2, ...) {
 ...
}

!16

Example: Default Arguments

! This function can be called as follows:

void showArea (double length = 20.0, double width = 10.0)
{
 double area = length * width;
 cout << “The area is “ << area << endl;
}

showArea(); ==> uses 20.0 and 10.0
The area is 200

showArea(5.5,2.0); ==> uses 5.5 and 2.0
The area is 11

showArea(12.0); ==> uses 12.0 and 10.0
The area is 120

!17

Arrays
! An array is:
- A series of elements of the same type
- placed in contiguous memory locations
- that can be individually referenced by using an

index along with the array name.
! To declare an array:

- datatype is the type of the elements
- identifier is the name of the array
- size is the number of elements (constant)

int numbers[5];datatype identifier [size];

!18

Array initialization
! To specify contents of the array in the definition:

- creates an array of size 3 containing the
specified values.

- creates an array containing the specified values
followed by 7 zeros (partial initialization).

- creates an array of size 3 containing the
specified values (size is determined from list).

float scores[] = {86.5, 92.1, 77.5};

float scores[3] = {86.5, 92.1, 77.5};

float scores[10] = {86.5, 92.1, 77.5};

!19

Array access
! to access the value of any of the elements of the

array individually, as if it was a normal variable:

- scores[2] is a variable of type float
! rules about subscripts (aka indexes):
- they always start at 0, last subscript is size-1
- the subscript must have type int
- they can be any expression

! watchout: brackets used both to declare the array
and to access elements.

scores[2] = 89.5;

!20

Arrays: operations

! Valid operations over entire arrays:
− function call: myFunc(scores,x);

! Invalid operations over entire arrays:
− assignment: array1 = array2;
− comparison: array1 == array2
− output: cout << array1;
− input: cin >> array2;
− Must do these element by element, probably

using a for loop

!21

Processing arrays

! Assignment: copy one array to another

! Output: displaying the contents of an array

const int SIZE = 4;
int oldValues[SIZE] = {10, 100, 200, 300};
int newValues[SIZE];

for (int count = 0; count < SIZE; count++)
 newValues[count] = oldValues[count];

const int SIZE = 5;
int numbers[SIZE] = {10, 20, 30, 40, 50};

for (int count = 0; count < SIZE; count++)
 cout << numbers[count] << endl; !22

Example: Processing arrays

const int NUM_SCORES = 8;
int scores[NUM_SCORES];
cout << “Enter the “ << NUM_SCORES
 << “ programming assignment scores: “ << endl;

for (int i=0; i < NUM_SCORES; i++) {
 cin >> scores[i];
}

int total = 0; //initialize accumulator
for (int i=0; i < NUM_SCORES; i++) {
 total = total + scores[i];
}
double average =
 static_cast<double>(total) / NUM_SCORES;

Computing the average of an array of scores:

!23

Finding highest and lowest
values in arrays

! Maximum: Need to track the highest value seen
so far. Start with highest = first element.

const int SIZE = 5;
int array[SIZE] = {10, 100, 200, 30};

int highest = array[0];
for (int count = 1; count < SIZE; count++)
 if (array[count] > highest)
 highest = array[count];

cout << “The maximum value is ” << highest << endl;

! In the function definition, the parameter type is a
variable name with an empty set of brackets: []

- Do NOT give a size for the array inside [] 

! In the prototype, empty brackets go after the
element datatype. 

! In the function call, use the variable name for the
array.

! An array is always passed by reference.
!24

Arrays as parameters

void showArray(int values[], int size)

void showArray(int[], int)

showArray(numbers, 5)

! Like a table in a spreadsheet: rows and columns
! Declaration requires two size declarators:

! Rows are always first
! 2D arrays can be initialized:

!25

Two-Dimensional Arrays

int table [5][3]; // 5 rows, 3 columns

int table [2][3] =
 { {1, 2, 3},
 {4, 5, 6} }; 1 2 3

4 5 6

! Access an element of the array using two
indices:

! Two dimensional arrays can be passed to
functions.

! The number of columns is required in the
parameter declaration:

!26

Two-Dimensional Array processing

int table [2][3] =
 { {1, 2, 3},
 {4, 5, 6} };
cout << table[0][2]; Output: 3

void showTable (int array[][3], int rows) {
…
}

! 2D array processing usually requires nested for
loops:

! How showTable is called:

!27

Two-Dimensional Array functions

void showTable (int array[][3], int rows) {
 for (int x=0; x<rows; x++) {
 for (int y=0; y<3; y++)
 cout << setw(4) << array[x][y] << “ “;
 cout << endl;
 }
}

int table [2][3] =
 { {1, 2, 3},
 {4, 5, 6} };

showTable(table,2); !28

Structures
! A structure stores a collection of objects of

various types
! Each element in the structure is a member, and

is accessed using the dot member operator.

Student student1, student2;
student1.name = “John Smith”;
Student student3 = {123456,”Ann Page”,22,”Math”};

struct Student {
 int idNumber;
 string name;
 int age;
 string major;
};

Defines a new data type

Defines new variables

!29

Structures: operations

! Valid operations over entire structs:
− assignment: student1 = student2;
− function call: myFunc(gradStudent,x);  

 

! Invalid operations over structs:
− comparison: student1 == student2
− output: cout << student1;
− input: cin >> student2;
− Must do these member by member

void myFunc(Student, int); //prototype

!30

Arrays of Structures

! You can store values of structure types in arrays.

! Each student is accessible via the subscript
notation.

! Members of structure accessible via dot notation

Student roster[40]; //holds 40 Student structs

roster[0] = student1;

cout << roster[0].name << endl;

!31

Arrays of Structures: initialization

! To initialize an array of structs:
struct Student {
 int idNumber;
 string name;
 int age;
 string major;
};

int main()
{
 Student roster[] = {
 {123456,"Ann Page",22,"Math"},
 {111222,"Jack Spade",18,"Physics"}
 };

} !32

Arrays of Structures

! Arrays of structures processed in loops:
Student roster[40];

//input
for (int i=0; i<40; i++) {
 cout << "Enter the name, age, idNumber and "
 << "major of the next student: \n";
 cin >> roster[i].name >> roster[i].age
 >> roster[i].idNumber >> roster[i].major;
}

//output all the id numbers and names
for (int i=0; i<40; i++) {
 cout << roster[i].idNumber << endl;
 cout << roster[i].name << endl;
}

